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Effects of damping on the linear stability of a free-free 
beam subjected to follower and transversal forces
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Abstract. In this paper a free-free uniform beam with damping effects subjected to follower and
transversal forces at its end is considered as a model for a space structure. The effect of damping on the
stability of the system is first investigated and the effects of the follower and transversal forces on the
vibration of the beam are shown next. Proportional damping model is used in this work, hence, the effects
of both internal (material) and external (viscous fluid) damping on the system are noted. In order to
derive the frequency of the system, the Ritz method has been used. The mode shapes of the system must
therefore be extracted. The Newmark method is utilized in the study of the system vibration. The results
show that an increase in the follower and transversal forces leads to an increase of the vibrational motion
of the beam which is not desirable.

Keywords: beam instability; non-conservative force; follower force; proportional damping; vibration
analysis.

1. Introduction

Many problems are modeled by beams subjected to axial or follower forces. The stability of the

beams under the axial or follower force is of vital importance and is of interest to many researchers

in aerospace industry, as it can be applied to many aerospace structures. The direction of the axial

force is assumed to be immovable while the direction of the follower force is always perpendicular

to the cross surface of the beam and changes with the beam deflections. Axial or follower forces

have a significant influence on the structural natural frequencies. The critical axial force normally

causes the static instability (divergence) and the critical follower force may cause static or dynamic

instability (flutter). Divergence happens when the vibration frequency of the system becomes zero

and flutter occurs when two natural frequencies of the systems converge together. 

In this paper, an aerospace structure is modeled by a Bernoulli-Euler beam with proportional
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damping under the follower and transversal forces. This is an acceptable model for such structures

with a propulsion force and a controller force. The latter is the force for the actuators to control and

guide the aerospace structure to sustain a desired behavior. The main objective pursued in the paper

is to determine the maximum follower force structurally bearable in such a way as to prevent

instability of the structure. It will be shown that the proportional damping has a significant effect on

this maximum follower force. It will also be shown that increasing the follower force or the

transversal force results in an increase in the vibrational movement of the inertial measurement units

(IMU). This in turn causes an inaccuracy in the guidance system and performance degradation in

the actuators. The Ritz method is used in the calculations of the system frequencies and the

Newmark method is employed for the study of the vibrational properties of the model.

Bokaian (1988) obtained an analytical characteristic equation for uniform beams under constant

compressive axial load and considered some approximate relations for the buckling load and

variation of normalized natural frequency with normalized axial force. Thana and Ameen (2007)

addressed the dynamic stability problem of columns and frames subjected to the axially-applied

periodic loads. The finite element method (FEM) was used in their work to analyze dynamic

stability problems of columns. Hassanpour et al. (2007) analyzed the exact solution of free vibration

of a beam with a concentrated mass within its intervals when the beam was subjected to axial

loadings. They determined the exact mode shapes of vibration, which were necessary in the study

and analysis of the time-domain response of sensors and determination of stability regions. 

Joshi (1995) established a simple method to determine the mode shapes and the natural

frequencies of a non-uniform beam subjected to rear end propulsion force. Another research to

obtain the governing vibration equations and the stability of a beam under axial force was carried

out by Nihous (1997). Pourtakdoust and Assadian (2004) modeled a free-free Bernoulli-Euler beam

under an axial force. The three dimensional elastic equations of vibration are solved by the FEM.

Only the divergence was found and shown in their work. And finally the elastic equations along

with the equations of motion were simulated in a controller loop by the authors in their last work. It

has been shown that the oscillations of the actuators were increased when the axial force was

applied. 

Lee (1995) formulated the equation of motion in matrix form of a cantilever Bernoulli-Euler beam

subject to a tip-concentrated follower force at the free end based on the Lagrangian approach and

the assumed mode method. Zuo and Schreyer (1996) studied the instability of a cantilevered beam

and a simply supported plate, subjected to a combination of fixed and follower forces. Langthjem

and Sugiyama (1999) studied a cantilever beam under a follower force with a tip mass to optimize

the design of the beam. Another research on the instability of a non-uniform cantilever beam under

a follower force was done by Au et al. (1999) using finite element method. Langthjem and

Sugiyama (2000) offered a survey of simple, flexible structural elements subjected to non-

conservative follower loads. Detinko (2002) analyzed simple model of a slender beam loaded by a

transverse follower force and undergoing a lateral flutter. Wang and Quek (2002) illustrated the use

of a pair of piezoelectric layers in increasing the flutter and buckling capacity of a column subjected

to a follower force. Kurnik and Przyby owicz (2003) analyzed active stabilisation of self-excited

vibration of slender rotating columns subject to tangential follower forces. Such systems exhibit

flutter-type instability as a result of energy transfer from rotation and to transverse motion of the

shaft. Young and Juan (2003) presented a study of non-linear response of a fluttered, cantilevered

beam subjected to a random follower force at the free end. Wang (2004) presented a comprehensive

analysis of the stability of a cracked beam subjected to a follower compressive load. Ravi Kumar et al.

l
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(2005) dealt with the study of vibration and dynamic instability characteristics of laminated

composite doubly curved panels, subjected to non-uniform follower load, using finite element

approach. Luongo and Di Egidio (2006) studied an internally constrained planar beam, equipped

with a lumped visco-elastic device and loaded by a follower force. Paolone et al. (2006) analyzed

the stability of a cantilever elastic beam with rectangular cross-section under the action of a

follower tangential force and a bending conservative couple at the free end. Elfelsoufi and Azrar

(2006) presented a mathematical model based on integral equations for numerical investigations of

stability analyses of damped beams subjected to sub-tangential follower forces. Many researchers

have also published their work on cantilever beam under a follower force with damping (Ryu and

Sugiyama (2003), Detinko (2003), Di Egidio et al. (2007), Lee et al. (2007), Katsikadelis and

Tsiatas (2007), and Tsiatas and Katsikadelis (2009)). Sugiyama and Langthjem (2007) studied

cantilever beam under a follower force with proportional damping. Both internal (material) and

external (viscous fluid) damping were considered. Tomski et al. (2007) presented the results of

theoretical and numerical studies on the slender, geometrically nonlinear system supported at the

loaded end by a spring of a linear characteristic and subjected to non-conservative (generalized

Beck’s) loading. The large-deflection problem of a non-uniform spring-hinged cantilever beam

under a tip-concentrated follower force was considered by Shvartsman (2007). Shape optimization

was used to optimize the critical load of an Euler-Bernoulli cantilever beam with constant volume

subjected to a tangential compressive tip load and/or a tangential compressive load arbitrarily

distributed along the beam by Katsikadelis and Tsiatas (2007). De Rosa et al. (2008) dealt with the

dynamic behavior of a clamped beam subjected to a sub-tangential follower force at the free end.

Djondjorov and Vassilev (2008) have studied the dynamic stability of a cantilevered Timoshenko

beam lying on an elastic foundation of Winkler type and subjected to a tangential follower force.

Attard et al. (2008) have investigated the dynamic stability behaviors of damped Beck’s columns

subjected to sub-tangential follower forces using fifth-order Hermitian beam elements. Marzani et

al. (2008) have applied the generalized differential quadrature (GDQ) method to solve classical and

non-classical non-conservative stability problems. The governing differential equation for a non-

uniform column subjected to an arbitrary distribution of compressive sub-tangential follower forces

has been obtained. 

Beal (1965) investigated a uniform free-free beam under an end follower force. He introduced a

direction control mechanism for the follower force to eliminate the tumbling instability of a free-

free beam under a follower force. He also showed that, in the absence of a control system, the

magnitude of the critical follower force is associated with coalescence of the two lowest bending

frequencies. When the control system was included, it was found that the magnitude of the critical

follower force only corresponded to a reduction of the lowest frequency of zero. Wu (1975) studied

the stability of a free-free beam under a controlled follower force by using finite element

discretization with an adjoint formulation. Park and Mote, jr. (1984) studied the maximum

controlled follower force on a free-free beam carrying a concentrated mass. They predicted the

location and the magnitude of the additional concentrated mass and the location and the gain of the

follower force direction control sensor that permit the follower force to be maximized for stable

transverse motion of the beam. Park (1987) investigated a uniform free-free Timoshenko beam

under an end follower force with controlled direction. A finite element model of the beam

transverse motion in the plane was formulated through the extended Hamilton’s principle. The

analysis showed that the effects of the rotary inertia and shear deformation parameters on the stable

transverse motion of the beam are significant in certain ranges. Sato (1991) developed the governing
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equation of motion of a Timoshenko beam under a follower force using Hamilton’s principle.

Mladenov and Sugiyama (1997) dealt with the stability of a flexible space structure subjected to an

end follower force. The model consisted of two viscoelastic beams interconnected by two kinds of

joints. One of the joints was composed of a rotational viscoelastic spring while another one was a

shear viscoelastic spring. Bending flutter or post-flutter divergence showed to occur depending on

the joint rigidity and internal damping. Kim and Choo (1998) analyzed the dynamic stability of a

free-free Timoshenko beam with a concentrated mass subjected to a pulsating follower force. The

effects of axial location and translation inertia of the concentrated mass were studied. They also

examined the change of combination resonance types, the relationship between critical forces and

widths of instability regions, and the effect of shear deformation.

2. Mathematical modeling

Fig. 1 shows the assumed model for an aerospace structure. The propulsion force is modeled by a

follower force and the transversal force represents the controller force, as shown. In this figure, x
s

and  indicate the points on the beam for the locations of the sensors, corresponding to the

locations of the inertial measurement units (IMU) and the controller force in the aerospace structure,

respectively. The beam is assumed to be axially rigid and is a Bernoulli-Euler beam. The gravity

force is also ignored. 

In this paper, the proportional damping model is used for modeling the damping of the system. To

consider the effect of damping in the beam equation, the Kelvin-Voigt model is utilized. According

to Meirovitch (1997), the bending moment is expressed in the form

 (1)

where , are the bending moment, time, bending stiffness, and internal damping

coefficient, respectively. 

The governing equation for the uniform Bernoulli-Euler beam with proportional damping is

derived as follows 

xF
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∂x
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Fig. 1 A free-free beam subjected to follower and transversal forces
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 (2)

In this equation, m is the mass of the beam per unit length, Cβ is the external damping coefficient,

 is the axial force along the beam, and  is the lateral force per unit length.

To calculate the axial force along the beam, the equilibrium dynamics can be used as (Wu 1975)

 (3)

where P0 is the follower force and L is the beam length. 

In Fig. 1, one can consider that

 (4)

In this equation,  is the point at which the control force  is applied on the beam, and

 is the Dirac delta function. 

To simplify the equations, non-dimensional parameters are introduced as the following

(5)

 

By substituting Eqs. (3), (4), and (5) in Eq. (2), Eq. (6) is obtained as the following

 (6)

As Eq. (6) shows, all the parameters in this equation are in non-dimensional form.

Considering the fact that the axial force distribution on the beam is not constant, the governing

differential equation cannot be solved analytically and an approximation method must be used. It is

noted that some approximation methods such as the Galerkin method (Hodges and Pierce 2002)

need the governing equation of motion, which explains why Eq. (6) is introduced. In this study the

Kantorovich method has been employed, which uses the Hamilton’s principle (Hodges and Pierce

2002).

3. Ritz method 

The general form of the Hamilton’s Principle appears as

 (7)

where δ is the variation sign,  is the non-dimensional time,  is the non-dimensional kinetic

energy,  is the non-dimensional potential energy,  is the non-dimensional work done by all

conservative forces, and  is the non-dimensional work done by all non-conservative forces. For
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the model shown in Fig. 1, Eq. (7) may be presented as

 (8)

In the Ritz method, the response is approximated with a series as the following

 (9)

where  is assumed an admissible function and  is a generalized coordinate.

Substitution of Eq. (9) in Eq. (8), and then by substituting the result in Eq. (7), one arrives at

 (10)

where  and ,  is the mass matrix,  is the damping matrix, 

is the stiffness matrix, and  is the generalized force vector described as

 (11)

where  and . 

As a common rule, in the approximate solution methods, a partial differential equation may be put

into a set of ordinary differential equations.

One remarkable point here is that the damping matrix of the system (using proportional damping

model) does not appear as , and a part of the stiffness matrix of the system

that consists of the follower force (geometrical stiffness) does not enter in the damping matrix of

the system. So

 (12)
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For which the geometrical stiffness matrix can be expressed as 

 (13)

3.1 Admissible functions 

In general, the admissible functions  must satisfy the following four conditions: 

1) At least must satisfy all geometric boundary conditions.

2) Must be continuous and differentiable to highest spatial derivative.

3) Should be a complete function.

4) Must be linearly independent.

The mode shapes of a free-free beam with proportional damping satisfy the above conditions and

have been used in this study. As the first two rigid body modes are not involved in the instability,

they are not considered as the admissible functions (Beal 1965).

To obtain the bending mode shapes of a uniform free-free Bernoulli-Euler beam with damping

effects, the free vibration analysis was used (  and  in Eq. (6)). Hence, the equation

 (14)

is solved with the boundary conditions stated as 

 (15)

The solution of Eq. (14) is considered as
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By substituting Eq. (16) in Eq. (14), the equation below is obtained as

 (17)

The boundary conditions of Eq. (15) become
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 (20)

The characteristic equation and the solution of Eq. (19) subject to the boundary condition (20) are

given in Eqs. (21) and (22), respectively. 

 (21)

(22)

As shown in the above equations, the characteristic equation and bending mode shapes of a free-

free uniform Bernoulli-Euler beam with proportional damping are not different from those obtained

for the same beam without damping effects, but the frequencies of the two systems are different

from each other.

 (23)

The second term in the right-hand side of Eq. (23) illustrates the bending frequencies of a uniform

free-free Bernoulli-Euler beam with proportional damping.

3.2 Solution 

The most important objective of the present study is to determine the magnitude and type of the

least follower force (the divergence or flutter) leading to instability . As seen in Eq. (11), the

follower force affects the system stiffness matrix and changes the system frequencies. Therefore, to

pursue the stated goal, one must first determine the system frequencies. To obtain the changes in the

system frequencies in terms of the follower force, set the right hand side of Eq. (10) to zero

( ) and assume a homogeneous response as follows 

 (24)

where  is a vector with constant elements.

By substituting Eq. (24) in the homogeneous Eq. (10) and after some simplifications, the

following matrix A is obtained. Clearly, the system frequencies are the eigenvalues of this matrix.

Matrix A is 

 (25)

where I is introduced as the identity matrix.

As for the results shown in the figures that follow, the parameter λ was divided by  as 
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To obtain the deflection of a point on the beam as shown in Fig. 1 (the distance  from the tip

of the beam ( )), one must calculate the value of  used in Eq. (9). These parameters

are calculated by solving Eq. (10) for which the Newmark method (Craig, Jr and Kurdila (2006)) is

utilized in this paper. To solve the equations and obtain the results, the function  is used

instead of the . It is to be noted that in all the studies in this paper, as many as eight terms of

the mode shapes are considered (N= 8).

4. Numerical results and discussion

The results are discussed for several cases as follows.

4.1  and 

To assure the validity of the computer code first, the case of  and = 0 is considered. In

the first part, it is assumed that . The eigenvalues of the matrix A in Eq. (25) were calculated

and illustrated in Figs. 2 and 3. As seen in Fig. 2, the value of the critical follower force is obtained

as 109.8, which is very closely comparable with the value cited by Beal (1965), namely 109.9. By

increasing the value of , the values of  and  are changed and they will coincide each other

at = 109.8. It is precisely at this value of  at which  and  which are equal to each

other take positive sign, hence ensuing instability at = 109.8. Since this value of  makes

the amplitude of vibration increase with time, the resulting instability is called dynamic instability

or flutter. In Fig. 3, the variation of the first two eigenvalues of matrix A due to the variation of 

is illustrated in a complex plane. It is shown in this figure that if the value of  increases, the

eigenvalues of matrix A move to the right hand side of the complex plane, leading to instability.

Note that in Fig. 3, only one significant figure after the decimal point was considered for the

x s

xs xs/L= qi t( )

χ x( )
ϕ x( )

α 0= β 0=

α 0= β

F0 0=

P0 λI1 λI2

P0 P0 λR1 λR2

P0cr P0cr

P0

P0

Fig. 2 Variation of the first two eigenvalues of matrix A due to the changes in : (a) Real part of the
eigenvalue, (b) Imaginary part of the eigenvalue

P0
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accuracy of the  variation. If two significant figures after the decimal point had been considered

instead, then the value would have been = 109.73.

4.2  and 

In this section, the effect of  alone on the critical follower force  is investigated. In other

words, the eigenvalues of matrix A (Eq. (25)) assuming = 0 and  are calculated. As

indeed shown in Fig. 4, with the smallest value considered for  as  = 10−6, the critical follower

force leading to flutter is suddenly decreased from 109.73 to 88.2. For the  values in the range

, the value of the critical follower force remains constant. Conversely, in the range

, the value of the critical follower force increased. The nature of these variations in a

free-free beam is similar to that in a cantilever beam (Sugiyama and Langthjem 2007).

P0

P0cr

α 0≠ β 0=

α P0cr

β F0 0=

α α

α

10
6–

α 10
3–≤ ≤

10
3–

α< 10
1–≤

Fig. 3 Variation of the first two eigenvalues of matrix A due to the changes in  in the complex planeP0

Fig. 4 Effect of  on the value of  (assuming )α P0cr β 0=
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4.3  and 

Here now, the effect of  alone on the critical follower force  leading to flutter is

investigated. The eigenvalues of matrix A are calculated considering  and . As seen in

Fig. 5, small values of  within the range , do not cause any change in the critical

follower force and the value of this parameter remains unchanged at 109.73, the value obtained for

the case of without damping effects. For the  values in the range , the value of the

critical follower force increased. Although these variations are negligible in contrast with the

previous case ( = 0, ), in this situation ( , ), the value of the critical follower

force is greater than the previous value calculated without damping effects ( = 0, ). The

nature of these variations in a free-free beam is similar to that for a cantilever beam (Sugiyama and

Langthjem 2007).

4.4  and 

In this section, the simultaneous effects of  and  together on the critical follower force 

leading to flutter are investigated. In fact, by considering  and , and assuming ,

the eigenvalues of matrix A are calculated. As Fig. 6 shows, these two parameters affect the  in

different forms. In general, one can assert that there exists a specific value of  at which increasing

the  leads to a rise in the critical follower force, and that at a specific value of , an increase in

the  will at first lead to a decrease of the value of the critical follower force, and brings about a

rise in this parameter later.

In Fig. 7, the variations of eigenvalues of matrix A (two first eigenvalue of matrix A) are

illustrated for = 0.1 and = 0.001 in the complex plane due to the variation of  (in this case

). It is noted that a change in the value of  will move the eigenvalues from the left hand

side of the complex plane to its right hand side. At = 90.9, the real part of the eigenvalue

becomes positive and so the critical follower force for this case equals to 90.9.
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4.5 Vibration analysis

An important objective pursued here is to obtain the vibrational properties of a certain point of the

structure  due to the follower and transversal forces. To determine the vibrational motion

, Eq. (9) shows that the value of  is required, which is in turn calculated form

Eq. (10). The Newmark method is used to solve this equation. The assumptions are that ,

= 0.001 and = 0.1. It is to be noted that for these parameter values, the critical follower force

is = 90.9. Fig. 8 shows the vibrational properties with the = 0.1 as a function of time for a

given initial condition. This is the case whereby = 9. As shown in Fig. 8, the vibrational

amplitude decreases with time. Fig. 8(d) depicts the trajectory for the , from which one can

demonstrate stability of the system for this follower force using the Lyapunov's methods. Similar

results were also obtained for the case of = 112 presented in Fig. 9, which shows instability of

the system. 

x s

y x s t,( ) qi t( )
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x s
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Fig. 6 Effect of  and  on the value of  (a study of the eigenvalues of matrix A assuming  and
)
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Fig. 10 shows the effect of the magnitude of the follower and transversal forces on the motion of

the point = 0.1 assuming = 0.001, = 0.1, , , and  for the two

different cases of = 0.001sin  and = 0.002sin . The magnitude of the transversal force

is selected to be considerably smaller than that of the follower force. Moreover, the frequency is

also taken to be smaller than that of the model. It is observed that increasing the follower or

transversal force results in an increase in the motion of the  of the beam. The  can be

considered to be the location of the IMU on the aerospace structure. This increase in vibrational

xs α β xF
0

1= P0 5= P0 50=

F0 3t( ) F0 3t( )

xs xs

Fig. 8 Vibrational properties for the case of = 9, = 0.001, = 0.1 and = 0 at point = 0.1P0 α β F0 x s

Fig. 9 Vibrational properties for the case of = 112, = 0.001, = 0.1 and = 0 at point = 0.1P0 α β F0 x s
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motion is a destructive phenomenon for the control system of the aerospace structure and hence it

must be remedied by proper approaches.

The results of Fig. 10 indicate that the oscillatory effects in the displacement at the  position

for the two values of  and  tend to eliminate in time due to the presence of damping effects.

Moreover, the amplitude of displacement of the  position tends to a fixed value. For a given set

of values for  and  in time, point  is displaced proportional to the amplitude and frequency

of the exited force.

5. Conclusions

In this paper, a free-free uniform Bernoulli-Euler beam with proportional damping has been

considered subjected to a follower force at the end and a transversal force at a specific point of the

beam. The follower force is a model for the propulsion force and the transversal force represents the

controller force. At first for the model without damping, the critical follower force leading to flutter

was obtained as = 109.73. It was also demonstrated that dynamic instability occurs since the

eigenvalues of matrix A move to the right hand side of the complex plane. The dynamic instability

due to an increase in the magnitude of  and in the presence of proportional damping occurred in

the simulation results. In the case of  and = 0 for the smallest value of , namely

, the critical follower force suddenly decreased from 109.73 to 88.2. In the range

, the value of critical follower force remained constant, while in the range

, the value of critical follower force increased. In this case, all the obtained critical

follower forces cause flutter to occur. In the case of  and = 0, the small values of  in the

range  do not cause any change in the magnitude of the critical follower force, which

remained in this order as for the no damping case, i.e., = 109.73. In the range ,

the value of critical follower force increased (in fact, this type of damping alone has a stabilizing

effect). In this case again, all the obtained critical follower forces caused flutter to occur. The

dependence of the critical follower force on the internal damping factor becomes more complicated

when external damping is also included (  and ). The different values of these two
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parameters affect the  in different manners. Generally, one can conclude that at a given value of

, increasing the value of  leads to a rise in the critical follower force, and that at a given value

of , increasing the value of  leads to a decrease in the value of the critical follower force at

first, and then causes a rise in this parameter later. In this case again, all the obtained critical

follower forces cause flutter to occur.

In general, increasing the follower or transversal force can lead to an increase in the vibration of

the point  (position of the measurement system on the aerospace structures) which is not

desirable for a control system and hence it must be remedied by proper approaches. In the case in

which the beam has a proportional damping, the oscillatory effects of the displacement at the 

position on the beam are damped out in time. But in the model without such damping, these

oscillatory effects persist with time.
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