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Abstract. For the calculation of foundation settlement it is recommended to take into account so called
influence zone inside the subsoil bellow the foundation structure. Influence zone inside the subsoil is the
region where the load has a substantial influence on the deformation of the soil skeleton. The soil
skeleton is pre-consolidated or over consolidated due to the original geostatic stress state. An excavation
changes the original geostatic stress state and it creates the space for the load transferred from upper
structure. The theory of elastic layer in Westergard manner is selected for the vertical stress calculation.
The depth of influence zone is calculated from the equality of the original geostatic stress and the new
geostatic stress due to excavation combined with the vertical stress from the upper structure. Two close
formulas are presented for the influence zone calculation. Using ADINA code we carried out several
numerical examples to verify the proposed analytical formulas and to enhance their use in civil
engineering practice. Otherwise, the FEM code accuracy can be control. 

Keywords: pre-consolidation pressure; influence zone; Kantorovich method; fundamental solution
layered subsoil; geostatic stress state; FEM.

1. Introduction 

It is an experimentally confirmed fact that a soil substantially changes its material properties when
subjected to external loading. Apart from that, the soil, when subjected to a certain loading history,
has the ability to memorize the highest level of loading mathematically represented by over-
consolidation ratio. In virgin state the soil deformability is relatively high. On the contrary,
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following the unloading/reloading path shows almost negligible deformation until the highest stress
state the soil has experienced ever before is reached (Bowles 1966, Kuklík et al. 1999, Janda et al.

2004, Fajman and Šejnoha 2007). When using standard recommendations (EUROCODE 7 1997) in
the design, e.g., in the analysis of settlement of foundation subsoil, such a soil property is
introduced by specifying the depth of influence zone. In order to obtain an analytical model reliable
in describing the soil-structure interaction, it is crucial, to replace the usual semi-infinite subspace
(Gecit 1981, Kukreti and Ko 1992, Davis and Selvadurai 1996, Mistrikova and Jendzelovsky 2007)
by a layer of finite depth. The depth is determined by the magnitude of instantaneous loading and
the level of previous consolidation (more in Kuklík and Kopá ková 2004). 

2. The solution of elastic layer by means of the Kantorowich method

The aim of the analytical solution is to determine a deformation of an elastic layer in the vertical
direction. The solution procedure builds upon neglecting the horizontal displacements similar to
standard assumptions applied to the analysis of Westergard subspace. Clearly such an assumption
results in a stiffer soil response thus providing an upper estimate of the depth of influence zone. The
problem formulation is evident from Fig. 1. Referring to the Kantorovich method (details in Rektorys
1969, Shufrin and Eisenberger 2006) the distribution of the displacement field is searched in the form

 (1)

where  is a known function of variable z and represents a complete set of base functions.
Let us calculate the components of the small strain tensor. Small strain tensor is the symmetrical

part of the gradient matrix tensor. From (1) yields

(2)

c
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Fig. 1 Formulation of the elastic layer solution 
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Notation  is used for partial derivative.

For stress-strain relation, general Hooke’s law is adopted

(3)

Symbols  represent known values of Young’s modulus, Poisson’s ratio, oedometric
modulus, and shear modulus, respectively. Lagrange’s principle of virtual work, general principle of
equilibrium, is used in the following form

(4)

Since the virtual functions  will be used in the same form as w, integrating equilibrium
equation in vertical direction takes the form of infinite number of partial differential equations

(5)

In the case of axisymetry or if the uniform load is acting on infinite strip the solution can be
searched by solving system of ordinary differential equations. Otherwise, the strategy of convolution
must be employed. Eq. (5), it generalizes of the known Pasternak solution of subsoil (see e.g.,
Filipich and Rosales 2002, Morfidis and Avramidis 2002, Celep and Demir 2007, Co kun et al.

2008, Kotrasova 2009, Ma et al. 2009, Mistrikova and Jendzelovsky 2009).

2.1 Uniform load acting on an infinite strip 

Denote the width of uniform load strip f
z
 by 2a, i.e., . The solution

 of (5) is independent on . Infinite number of the ordinary differential
equations, together with the boundary and continuity conditions

has the solution

where
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Unknown constants A1, A2 of integration result from the condition of continuity (of the
displacement and the first derivative) in the points of . Inserting these constants into above
formula it provides 

(6)

Hence, the function  being in the form of series

(7)
 

solves the problem. The component of the vertical stress function σ
zz
 is evaluated by differentiating

 with respect to z by terms

All three series in the above formula can be summed (Gradschtein and Rizhik 1963). Finally, σ
zz

can be written in the form 

(8)

3. The phenomenon of influence zone and the governing idea for its calculation

We introduce the subject consider the distribution of vertical stresses according to Fig. 2. Due to
excavation to a certain depth h the original geostatic stress state, which sets the initial compaction
of soil represented by the pre-consolidation pressure (Lewis and Schrefler 1998), the highest stress
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Fig. 2 The governing idea of the influence zone calculation
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level soil records during the prior loading history, is reduced. Subsequent surcharge in the footing
bottom gives further redistribution of the vertical stress. It is assumed that in the region where the
vertical effective stress due to surcharge at the footing bottom combined with the reduced geostatic
effective stress (by excavation) does not exceed the original geostatic effective stress the skeleton
deformations are negligible. This condition, in our sense, describes the depth of the influence zone
H (Daloglu and Ozgan 2004, Kuklík 2006).

3.1 Uniform load acting on an infinite strip 

The stress function  for fixed  acquires its maximum at the point x = 0:

The function  decreases with increasing z. The maximum of the stress function at the
bottom of the influence zone depth is 

(9)

The influence zone depth is estimated by means of the quality 

(10)

where γ is the specific weight of soil and h is the depth of excavation. 
Comparing last two identities we obtain

Denoting 

The above identities give the equation 

Eliminating influence zone finally yields

(11)

This closed formula can be effectively used in civil engineering practice. Now we give several
comments on derived identity. At first, the influence zone is proportional to the strip load width 2a.
Secondly, the influence zone doesn’t depend on Young’s modulus, but significant role plays
Poisson’s ratio. Overloading of the excavation geostatic stress state f

z
/γh is the third parameter to be

taken into account. All this statements are highlighted in following Fig. 3.
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3.2 Uniform load acting on straight line 

If the width 2a decreases to 0 and the uniform load f
z
 increases

The limit value  at the point  for  is obtaining by limit process using the
l’Hospital’s rule

(12)

The very important value of the stress function  for uniform load acting in line is given
in the form 

(13)

From above equation immediately yields another usable formula

(14)

4. Verification using FEM 

The aim of this chapter is to provide results obtained from finite element (FE) analysis and
compare them with results obtained from the presented theory of elastic layer. The line load and the
infinite strip load were selected for comparison. The values of  were compared. The
influence of the FE mesh as well as model width and type of FE is evaluated.
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Fig. 3 Progress of influence zone depth of the 1m wide strip
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4.1 Summary of analytical results 

Let us first remind derived formulas for  in case of straight line load and infinite strip
load.

1) Line load

Where H: depth of influence zone,
: value of the line load, 

ν : Poisson’s ratio. 

2) Infinite strip load

 

Where: H: depth of influence zone,
f
z

: value of the strip load, 
ν : Poisson’s ratio,
a : half of the strip width,

α :

4.2 Finite element method (FEM)

For the FEM analysis were used following assumptions.
• 1 degree of freedom for nodes (z-direction)
• Plain strain
• Isotropic elastic material
• Symmetry-only one half of the model
• Software ADINA (Automatic Dynamic Incremental Non-linear Analysis)

The influences of the model width, mesh shape and type of the used finite elements on the results
are commented in the following parts of the chapter. 

4.2.1 Tested example

The tested example has following details:
• Line load  = 100000 kN/m
• Infinite strip load f

z
 =100000 kN/m2 for a = 0,5 m; f

z
 = 50000 kN/m2 for a = 1,0 m; etc.

• Depth of influence zone H = 5 m
• E = 75 GPa
• ν varies from 0,05 to 0,4
• Model width B = 30 m (15 m using symmetry)
An unreal magnitude of load was used to reach sufficient digital output in the computer code.
The scheme of the example can be seen on the following figure.
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4.2.2 Numerical results
The following Fig. 5 presents analytical and numerical results for a = 0 m − 8 m, i.e., from line

load to very wide strip. The presented results show very good agreement. The differences are
smaller than 0,1% for this range of Poisson’s ratio (from 0.05 to 0.4). The differences rise as the
Poisson’s ratio get closer to 0,5. Table 1 and Table 2 show the base data for graph on Fig. 5 and
Fig. 6. Dashed lines called ANA 0,05 – ANA 0,4 are showing analytical results. On the next Fig. 7

Fig. 4 Scheme of the tested example

Fig. 5 Numerical results

Table 1 Numerical results

1/2 uniform 
load width (m) 0 0.5 1 2 4 8

Poisson’s ratio σ
zz
(0, H) (kPa)

0.05 14531.1 14412.0 14053.9 12853.8 9959.04 6044.0
0.15 15585.0 15437.8 15000.4 13565.1 10269.9 6091.8
0.25 17322.0 17118.7 16528.5 14661.8 10702.9 6147.7
0.3 18709.0 18453.2 17720.4 15472.4 10988.6 6177.8
0.35 20818.0 20464.7 19479.0 16596.9 11339.0 6207.5
0.4 24495.8 23922.6 22388.4 18273.6 11767.9 6233.1



Fast analytical estimation of the influence zone depth 643

the numerical and analytical solution for straight line load is plotted. On the right vertical axis are
plotted the relative differences between the solutions. The differences are smaller than 0,1% for

Fig. 6 Analytical results

Fig. 7 Analytical x numerical results and their relative differences

Table 2 Analytical results

1/2 uniform 
load width (m) 0 0.5 1 2 4 8

Poisson’s ratio σ
zz
 (0, H) (kPa)

0.05 14529.7 14405.1 14049.9 12851.1 9958.2 6043.6
0.15 15583.9 15430.5 14996.2 13562.5 10269.1 6091.6
0.25 17320.5 17110.7 16524.1 14659.3 10702.4 6147.6
0.3 18708.3 18444.7 17715.8 15470.0 10988.2 6177.8
0.35 20816.7 20455.3 19474.1 16594.7 11338.6 6207.5
0.4 24494.9 23912.0 22383.3 18271.7 11767.7 6233.1
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Poisson’s ratio smaller than 0,49. Both vertical axes in this chart are in logarithmic scale. In all
presented results we keep the geotechnical convention in the stress values, i.e., positive stress value
means pressure while negative stress value is tension.

4.3 Influence of the model width

The influence of the model width on the value of σ
zz

(0, H) was tested on the 7 node elements.
Number of the FE in the mesh remains unchanged for the comparison purposes. However in one
case the mesh was designed denser in order to verify the conclusions made. The influence zone
depth was kept on 5 m. The analytical solution gives the σ

zz
(0, H) value 18 706 kPa and the results

from numerical analysis are in Table 3.

Table 3 Numerical results for varying model width

Number of DOF Number of FE Model width (m) σ
zz (kPa) Relative difference (%)

2259 724 30 18699 −0.05
2259 724 20 18705 −0.02
2259 724 10 18919 1.13
5763 1879 10 18918 1.12
2259 724 40 18691 −0.09

Table 4 Numerical results for varying FE mesh and types of FE

Mesh type FE type FE area
(m2)

Number of 
DOF

Number of 
FEM

σ
zz

(kPa)
Relative diff. 

(%)

TYPE 1

9-NODE QUAD 0.06875 1559 374 18665 −0.23
7-NODE TRIANGL 0.034375 2259 724 18678 −0.16
4-NODE QUAD 0.06875 406 374 18621 −0.47
3-NODE TRIANGL 0.034375 406 724 18765 0.31

TYPE 2

9-NODE QUAD 0.0187 1559 374 18687 −0.11
7-NODE TRIANGL 0.00935 2259 724 18694 −0.08
4-NODE QUAD 0.0187 406 374 18657 −0.27
3-NODE TRIANGL 0.00935 406 724 18757 0.26

TYPE 3

9-NODE QUAD 0.0125 1559 374 18698 −0.06
7-NODE TRIANGL 0.00625 2259 724 18699 −0.05
4-NODE QUAD 0.0125 406 374 18689 −0.10
3-NODE TRIANGL 0.00625 406 724 18912 1.09

TYPE 4

9-NODE QUAD 0.0825 3731 900 18638 −0.38
7-NODE TRIANGL 0.04125 5531 1800 18659 −0.26
4-NODE QUAD 0.0825 966 900 18568 −0.75
3-NODE TRIANGL 0.04125 966 1800 18817 0.58

TYPE 5

9-NODE QUAD 0.01155 3709 900 18691 −0.09
7-NODE TRIANGL 0.005775 5455 1773 18697 −0.06
4-NODE QUAD 0.01155 955 900 18672 −0.20
3-NODE TRIANGL 0.005775 955 1773 18729 0.11
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4.4 Influence of the FE mesh shape and type of FE

The influence was tested on the line load case. The value of the load f0 = 100000 kN/m and the
Poisson’s ratio ν = 0.3. Four types of FE were tested, i.e., triangle with 7 and 3 nodes and quad
with 9 and 4 nodes. The width of the model remains 30 m. Five different settings of the FE mesh
were tested. Three types had coarse mesh with different points of densification. Two types had fine
mesh. The results are in Table 4 and the relative differences are also plotted in Fig. 8. The FE
meshes are introduced in Fig. 9. The FE area belongs to the finite element at the bottom from
which we obtain the stress value.

5. Conclusions

The FEM numerical analysis results have proved to be in a good agreement with presented
analytical solution. Although the relative differences are dependent on the chosen type of the FE

Fig. 8 Relative differences for different types of FE mesh and FE type and detail

Fig. 9 Types of FE mesh and FE type
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and the shape of FE mesh, they do not exceed 2% of the analytically estimated values. From the
practical point of view, such value is negligible compare to the uncertainties in the soil parameters.

From the obtained results can be concluded that optimal width of the model B is B ≥ 4H, i.e.,
model width equals four times influence zone depth. Otherwise (B < 4H) the numerical response is
a little bit stiffer, as it can be seen in Table 3. From the results is also clear that for too narrow
model increasing number of FE (denser mesh) do not increase the accuracy of results significantly. 

Seven node triangle and nine node quad seemed to be the most suitable types of FE. Unlike the 4,
7 and 9 node FE the 3 node elements give higher values of stress than analytical solution. From the
Fig. 7 it is evident that some FE mesh settings are more suitable for some FE types. For example
type 3 mesh gives very good results for 7 and 9 node element but less accurate results for 3 nodes
FE. It is also clear that the choosing the appropriate type of mesh will improve the results accuracy
more than just creation of denser mesh even in case as simple as this one (elastic solution, plane
strain, no contact, etc.).

The derived formulas for influence zone depth present a useful tool for any numerical analysis of
settlement of strip footings. The differences between results from FEM numerical analysis and
presented analytical solution are negligible. The derived formulas can be considered as verified. 
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