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An assumed-stress hybrid element for modeling of plates 
with shear deformations on elastic foundation
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Abstract. In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped
plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress
element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which
both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as
the foundation are chosen separately. This formulation also allows a low order polynomial interpolation
functions. Numerical examples are presented to show that the validity and efficiency of the present
element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth,
interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.
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1. Introduction

Plates resting on elastic foundations have wide application in modern engineering and pose great

technical problems in structural design. As a result, numerous researches involving the calculation

and analysis approach for plates on elastic foundation have been presented. 

As is known to all, the Winkler model of elastic foundation is the most preliminary in which the

vertical displacement is assumed to be proportional to the contact pressure at an arbitrary point,

Winkler (1867), Abdalla and Ibrahim (2006). The main disadvantages of this model are the

discontinuity in the soil displacement between the soil under the structure and that outside the

structure and the necessity of determining the modulus of subgrade reaction k. In order to perform a

better model than the Winkler hypothesis Pasternak (1954), Vlasov and Leontev (1966) presented a

two-parameter model elastic foundation and analysed beams and slabs on it. Vlasov, in his model,

introduced a parameter γ to characterize the vertical displacement distribution in the elastic

foundation. Vallabhan and Das (1988) determined the γ parameter as a function of the characteristic

of the structure and the foundation using an iterative procedure and named this model as modified

Vlasov model. They emphasized that the parameters depend on the properties of the soil and the

structure as well as the type and magnitude of the loading and the depth of the soil.

Çelik and Saygun proposed an iterative method to analyze the plates on a two parameter elastic

foundation (1999), Ozgan and Dalo lu (2008) studied the effect of transverse shear strains on plates
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resting on elastic foundation and presented a four-noded quadrilateral and an eight-noded

quadrilateral plate bending element based on Mindlin plate theory which are adopted for the

analysis of thin and thick plates resting on elastic foundation using modified Vlasov model. Eratli

and Aköz (1997), using the Gateaux differential, developed the mixed element formulation for the

thick plates on elastic foundation. 

Nogami and Lam (1987) developed a two parameter model for slabs on elastic foundations where

the foundation layer is divided into a number of horizontal layers. Ayvaz and O uzhan (2008)

studied the free vibration analysis of plates resting on elastic foundations using modified Vlasov

model. Güler and Celep (1995) studied static and dynamic responses of a thin circular plate on a

tensionless elastic foundation. 

Vallabhan and Das (1988) developed an iterative procedure by minimizing the total potential

energy to obtain a mode shape parameter where the elastic constants of the beam and the mode of

loading are used as a function in addition to the thickness of the compressible layer and the elastic

constants of the foundation. They also determined the elastic bedding and shear parameter

coefficients. Wang, Tham and Cheung (2005) reviews the state-of-the-art of interaction action

between structures and supporting soil media.

In this study an efficient assumed stress hybrid finite element formulation is presented for

analysing arbitrarily shaped plates on a two parameter elastic foundation. The formulation is based

on Hellinger-Reissner variational principle in which both displacements, internal stress and subgrade

reaction fields are chosen seperately. This allows a low order polynomial interpolation functions and

avoids shear and foundation locking which are typically exhibited by alternative models based on

displacement based formulation (Gendy and Saleeb 1999). A number of numerical examples are

given to show that the validity and efficiency of the present element.

2. Governing equations and the expressions for plates on an elastic foundation

Total potential energy of the plate-soil system can be written as

(1)

C and 2Ct in the above equation are the soil parameters and can be defined as

(2)

(3)

The derivations of Eqs. (2) and (3) are given in Appendix.

The vertical displacement of the soil is assumed 

(4)
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Where w(x, y) is the deflection of the soil surface and φ (z) is the function which defines the

variation of vertical displacement in the vertical direction. The boundary conditions of mode shape

function φ (z) are 

φ (z = 0) = 1, φ (z = H) = 0 

where H is the height of compressible soil.

The field equation in the plate domain is

(5)

where D is the flexural rigidity of plate, q is the external load on the plate,  is the biharmonic

and  is the Laplace operator.

Outside the plate domain

(6)

The mode shape function can be expressed as (See Appendix)

(7)

where γ denotes the mode shape parameter. The derivation of Eq. (7) is given in Appendix.

The soil parameters, C is the bedding coefficient and 2Ct is the shear coefficient parameter, can be

obtained as follows

(8)

 (9)

where Es, Gs, νs are the elastic constants of soil.

The mode shape parameter γ yields as follows

(10)

 

D∇4
w 2Ct∇

2
w– Cw+ q=

∇4

∇2

2Ct∇
2
w– Cw+ 0=

φ z( )
sinh γ 1

z

H
----–⎝ ⎠

⎛ ⎞

sinhγ
------------------------------------=

C Es

1 νs–( )
1 νs+( ) 1 2νs–( )

--------------------------------------
∂φ

∂z
------⎝ ⎠

⎛ ⎞
2

zd Es

1 νs–( )
1 νs+( ) 1 2νs–( )

--------------------------------------
γ

H
----

sinh2γ 2γ+( )

4sinh
2
γ

-------------------------------=

0

H

∫=

2Ct Gsφ
2

zd

0

H

∫ Gs
H

γ
----

sinh2γ 2γ–( )

4sinh
2
γ

-------------------------------= =

γ
2

H
2 1 2νs–( )
2 1 νs–( )
--------------------

∂w

∂x
-------⎝ ⎠

⎛ ⎞
2 ∂w

∂y
-------⎝ ⎠

⎛ ⎞
2

+ x ydd
∞–

∞

∫
∞–

∞

∫

w
2

x ydd
∞–

∞

∫
∞–

∞

∫

--------------------------------------------------------------=



576 Kutlu Darilmaz

It should be noted that γ depends on the deflection shape of the plate-soil system and needs an

iterative solution for obtaining. 

3. Finite element formulation

The Hellinger-Reissner variational principle in which stresses and displacements are assumed

independently is used. The Hellinger-Reissner functional of linear elasticity allows displacements

and stresses to be varied separately. This establishes the master fields. Two slave strain fields

appear, one coming from displacements and one from stresses, (Pian and Chen 1982, Washizu

1982).

The general form of Hellinger-Reissner functional can be written as

  (11)

Where  is the stress vector,  is the compliance matrix relating strains, , to stress ( ), 

is the differential operator matrix corresponding to the linear strain-displacement relations ( )

and V is the volume of structure.

The approximation for stress and displacements can be incorporated in the functional. The stress

field is described in the interior of the element as

(12)

and a compatible displacement field is described by

  (13)

where P and N are matrices of stress and displacement interpolation functions, respectively, and β

and q are the unknown stress and nodal displacement parameters, respectively. Intra-element

equilibrating stresses and compatible displacements are independently interpolated. Since stresses

are independent from element to element, the stress parameters are eliminated at the element level

and a conventional stiffness matrix results. This leaves only the nodal displacement parameters to be

assembled into the global system of equations.

Substituting the stress and displacement approximations Eq. (12), Eq. (13) in the functional

Eq. (11)
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(17)

Substitution of β in Eq. (14), the functional reduces to 

(18)

where

  (19)

is recognized as a stiffness matrix.

For a plate element on a two parameter elastic foundation the functional can be written as

(20)

The first term in the above equation is the internal strain energy for the plate element, the second

and third terms are foundation effect, including bedding and shear effects respectively, the term W

denotes the work of external forces. 

Differential Eq. (6) is mathematically equal in form to the differential equation of a plate which

exhibits only shear behavior (Gh’ = 2Ct) and having a bedding coefficient C. By using this analogy,

an assumed stress soil finite element is developed, combined with an assumed stress plate element

and used in the plate domain. Outside the plate domain is idealized by using soil finite elements.

3.1 Soil finite element 

While using assumed stress hybrid finite element, the Hellinger-Reissner, two field variational

principal in which stresses and displacements are assumed independently is utilized. For a typical

soil element the Hellinger-Reissner functional can be written as

(21)

Where F1 and F2 are subgrade forces, Ds1 and Ds2 are the differential operator matrices related to

bedding and shear effects, respectively.

The nodal unknowns of the soil element are shown in Fig. 1.
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Fig. 1 Node numbering and nodal unknowns of the Soil finite element 
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The stress field is described in the interior of the element as

(22)

(23)

where {βs} is the unknown stress parameter. Stress interpolation functions are chosen as

(24)

(25)

Since stresses are independent from element to element, the stress parameters are eliminated at the

element level and this leaves only the nodal displacement parameters like displacement based

elements.

Differential operator matrices for bedding and shear effect parts are as follows

(26)

(27)

Compatible displacement field is described by

{w} = [N]{d} (28)

where [N] is the shape function matrix.

Substituting the stress and displacement approximations in the functional and imposing stationary

conditions on the functional with respect to the stress parameters the bedding and shear effect part

of the soil element can be obtained as

(29)

(30)

where 
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3.2 Plate element

The plate element, is taken from a previous study presented by the author, Dar lmaz (2005), and

corresponds to the Mindlin/Reissner plate theory. Only the assumed stress field which satisfies the
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(33)

The nodal displacements for the plate are chosen as

(34)

Finaly the equilibrium equation of a plate on a two parameter elastic foundation can be written as 

(35)

Where [K] is the stiffness matrix of the plate element, [C] and [Ct] is the elastic bedding and

shear effect matrices of soil element, {P} is the applied equivalent load vector of the system. 

4. Computation of mode shape parameter

The mode shape parameter γ can be obtained iteratively by using Eq. (10). The terms used in

Eq. (10) can be obtained as given in Eq. (36) and Eq. (37). 
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(37)

Where n denotes number of elements.

5. Numerical examples

Some numerical examples have been used for assessing the accuracy of the element. The results

obtained are compared with other researchers’ solutions.

Example 1
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concentrated load is analyzed compared with those of Vallabhan et al. (1991); Çelik and Saygun

(1999); Ozgan and Dalo lu (2008).
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performed for four depth of the soil, H = 3.048, 6.096, 9.144 and 15.240 m. 

Results for uniformly distributed load and concentrated load are given in Table 1 and Table 2. The

results for the presented element are in a good agreement with the reference results. As it can be

seen from tables, the parameter C decreases as the depth of the soil, H, increases while the

parameter 2Ct increases with H. The values for displacements, bending moments get closer to each

other for both cases as the depth of the soil increases. An increase in the soil depth does not affect

the results after certain value of H.

The deformed of the system for two different loads are given Fig. 2.

Table 1 Results for uniformly distributed load 

H (m) Reference C (kN/m3) Ct (kN/m) γ wmax (cm) Mx (kNm/m)

3.048

Çelik, Saygun 27192 13413 0.5766 0.0853 0.0445

Vallabhan et al. 27206 13452 0.5724 0.0872 0.0529

Ozgan, Dalo lu 27208 13421 0.5750 0.0876 0.0465

Present study 27207 13423 0.574 0.0865 0.0553

6.096

Çelik, Saygun 13757 25205 0.9194 0.1526 0.2880

Vallabhan et al. 13757 25141 0.9297 0.1524 0.3113

Ozgan, Dalo lu 13744 25307 0.9010 0.1541 0.2546

Present study 13751 25249 0.9113 0.1522 0.2902

9.144

Çelik, Saygun 9377 35293 1.2064 0.1893 0.4109

Vallabhan et al. 9430 34753 1.2644 0.1890 0.4224

Ozgan, Dalo lu 9339 35681 1.1640 0.1917 0.3296

Present study 9409 34999 1.2382 0.1883 0.4057

15.24

Çelik, Saygun 5954 52332 1.6193 0.2212 0.4671

Vallabhan et al. 6366 47366 1.9419 0.2070 0.4892

Ozgan, Dalo lu 5928 51374 1.5850 0.2247 0.3228

Present study 6045 51187 1.6923 0.2176 0.4591

Table 2 Results for concentrated load

H (m) Reference C (kN/m3) Ct (kN/m) γ wmax (cm) Mx (kNm/m)

3.048

Çelik, Saygun 31898 9456 1.9478 0.0818 15.047

Vallabhan et al. 31610 9565 1.9018 0.0480 12.544

Present study 31709 9534 1.9217 0.0866 15.665

6.096

Çelik, Saygun 24256 11798 3.5249 0.0845 14.563

Vallabhan et al. 23918 11959 3.4737 0.0975 12.544

Present study 24124 11865 3.5039 0.0907 15.341

9.144

Çelik, Saygun 23737 12017 5.2434 0.0846 14.510

Vallabhan et al. 23376 12193 5.1669 0.0975 12.544

Present study 23531 12124 5.1973 0.0909 15.418

15.24

Çelik, Saygun 23710 12030 8.7369 0.0846 14.510

Vallabhan et al. 23350 12205 8.6079 0.0975 12.544

Present study 23516 12130 8.6627 0.0909 15.394

g
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Example 2

The interaction between closed plates can change not only the soil coefficients but also the internal

forces which depend on the deformed shape of the plate-soil system. In order to numerically

demonstrate this, two similar plates on an elastic soil is analyzed. The geometric properties of the

system is given in Fig. 3, dimensions and load values of the columns are given in Table 3.

The properties of the plate-soil system are as follows. The modulus of elasticity of the subsoil is

Es = 80000 kN/m2, Poisson ratio of the subsoil is νs = 0.25, the modulus of elasticity of the plate is

Ep = 2 × 107 kN/m2, Poisson ratio of the plate is νp = 0.16, the thickness of the plate is taken as

h = 0.6 m. The depth of the soil is H = 5 m. 

Results at y = 0 are compared with the solutions given by Çelik and Saygun (1999) and are found

Fig. 2 Deformed shape of the system a) uniform load b) concentrated load

Fig. 3 Two plates on an elastic foundation

Table 3 Dimensions and load values of the columns

b×h Load Value (kN)

S1 0.60 m×0.60 m 1200

S2 0.80 m×0.60 m 2000

S3 0.80 m×0.80 m 3200
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to be in a good agreement, Fig. 4. Vertical deflection of the system at y = 5.8 and x = 2.4 are also

given in Fig. 5 and Fig. 6, respectively.

The calculated soil parameters are as C = 19657 kN/m3, Ct = 23167 kN/m. The obtained mode

shape parameter γ = 1.071 is closed to previos study result γ = 1.066, Çelik and Saygun (1999). The

plate is also analyzed by assuming Winkler hypothesis with obtained bedding coefficient C. It can be

observed that the settlements are obtained higher in Winkler soil solutions since Winkler model

idealized the soil medium by a number of mutually independent spring elements and two parameter

Fig. 4 Vertical Deflection of the system at y = 0

Fig. 5 Vertical Deflection of the system at y = 5.8 m

Fig. 6 Vertical Deflection of the system at x = 2.4 m
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models permits interaction among the springs. Deformed shape of the entire system is given in Fig. 7.

Example 3

In this example a circular foundation which is also investigated by Vallabhan and Das (1991),

Saygun and Çelik (2003) is solved, Fig. 8(a). The properties of the plate-soil system are as follows.

Radius of the plate is R = 3.05 m, modulus of elasticity of the plate is Ep = 22700000 kN/m2,

Poisson’s ratio of the plate νp = 0.2, thickness of the plate h = 0.24 m, depth of the soil foundation

H = 3.05 m, modulus of elasticity of the soil Es = 22700 kN/m2, Poisson’s ratio of the soil νs = 0.2.

The plate is solved for two diferent load cases, subjected to a uniformly load 26.3 kN/m2 and

16 kN/m edge load, Fig. 8(b), Fig. 8(c).

The mode shape parameter γ obtained and given in Table 4 comparatively with the results of

reference solutions. As can be seen, the results are in good agreement. The calculated soil

parameters are as C = 8382 kN/m3, Ct = 4326 kN/m for uniform load case, C = 8977 kN/m3,

Ct = 3666 kN/m for uniform edge load case.

Fig. 7 Deformed shape of the system

Fig. 8 Circular foundation and loads
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The deformed shapes for both load cases are given in Fig. 9 and Fig. 10. The results are found to

be in good agreement with previous studies.

Results compared with the solutions given by Saygun and Çelik (2003) and are found to be in a

good agreement. The plate is also analyzed by assuming Winkler hypothesis with obtained bedding

coefficient C. It can be observed that the settlements are obtained higher in Winkler soil solutions.

Example 4

In this example an arbitrarily shaped shaped foundation is solved. The geometrical properties of

the plate-soil system is given in Fig. 11. Modulus of elasticity of the plate is Ep = 20000000 kN/m2,

Table 4 Mode shape parameter values for uniform and edge loading

γ 
(Uniform Load)

γ 
(Edge Load)

Vallabhan and Das (1991) 0.915 1.49

Saygun and Çelik (2003) 0.915 1.52

Present Study 0.918 1.55

Fig. 9 Uniform load

Fig. 10 Edge load
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Poisson’s ratio of the plate νp = 0.2, thickness of the plate h = 0.2 m, depth of the soil foundation

H = 10 m, modulus of elasticity of the soil Es = 70000 kN/m2, Poisson’s ratio of the soil νs = 0.25.

The plate is subjected to a uniformly load 25 kN/m2.

The calculated shape and soil parameters are as γ = 6.2417, C = 26217 kN/m3, Ct = 11213 kN/m.

The deformations at x = 9 m for both two-parameter and Winkler hypothesis are given in Fig. 12.

Again it can be observed that the settlements are obtained higher in Winkler soil solutions.

6. Conclusions

In this study an assumed stress hybrid four-node finite element is presented for modeling of plates

Fig. 11 Arbitrarily shaped foundation 

Fig. 12 Displacements at x = 9 m and deformed shape of arbitrarily shaped foundation
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with shear deformations on elastic foundation. The formulation is based on Hellinger-Reissner

variational principle which leads to lower order polynomial interpolation functions. The plate

domain is idealized with superposition of a hybrid plate and a hybrid soil element where out of the

plate domain is idealized with only soil elements. Numerical examples with different loading types

and soil depths are solved. It is observed that the parameter C decreases as the depth of the soil, H,

increases while the parameter 2Ct increases with H. An increase in the soil depth does not affect the

results after certain value of H. Interaction between closed plates is also investigated and showed

that this type of interaction can change not only the soil coefficients but also the internal forces

which depend on the deformed shape of the plate-soil system. 

A comparison is made between two parameter elastic foundation hypothesis and Winkler

hypothesis. It is observed that the settlements are obtained higher in Winkler soil solutions since this

hypothesis ignores interaction among the soil springs which can be taken into account in two

parameter elastic foundation hypothesis.

The results obtained are compared with other researchers’ solutions and are found to be in good

agreement. 
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Notation

Ep : modulus of elasticity of the plate 
Es : elasticity of the subsoil
h : thickness of the plate 
H : depth of the soil
νs : Poisson ratio of the subsoil is 
νp : Poisson ratio of the plate equals to 
γ : mode shape parameter 
{d} : nodal displacements
[K] : stiffness matrix of the plate
[C] : bedding matrices of soil element,
[Ct] : shear effect matrices of soil element
[N] : shape function matrix
{P} : load vector 

 : stress vector
: strain vector
: differential operator matrix
: compliance matrix

β,βs : stress parameters
{w} : displacement

σ
ε̃
D̃
S̃
˜
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Appendix

Derivation of the formulation

Using variational principle and minimizing the total potential energy of Eq. (1) by taking variations in w
and φ yields

(A.1)

The terms in the parentheses and boundary conditions must be equal to zero since δw and δφ are not equal
to zero.

So the field equation in the domain of the plate can be written as

(A.2)

The second and third expressions in (A.1) is the field equation for the deformation pattern of the soil in the
vertical direction.

(A.3)

By using the boundary conditions φ (z = 0) = 1, φ (z = H) = 0, solution of Eq. (A.3) with the given boundary
conditions yields mode shape function

(A.4)

The soil parameters, C is the bedding coefficient and 2Ct is the shear coefficient parameter, can be obtained
by using mode shape function given in Eq. (A.4) 

(A.5)

(A.6)

 

 

 

 

 

 

 




