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Passive vibration control of plan-asymmetric buildings 
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Abstract. The sealed, tuned liquid column gas damper (TLCGD) with gas-spring effect extends the
frequency range of application up to about 5 Hz and efficiently increases the modal structural damping. In
this paper the influence of several TLCGDs to reduce coupled translational and rotational vibrations of
plan-asymmetric buildings under wind or seismic loads is investigated. The locations of the modal centers
of velocity of rigidly assumed floors are crucial to select the design and the optimal position of the liquid
absorbers. TLCGD’s dynamics can be derived in detail using the extended non-stationary Bernoulli’s
equation for moving reference systems. Modal tuning of the TLCGD renders the optimal parameters by
means of a geometrical transformation and in analogy to the classical tuned mass damper (TMD).
Subsequently, fine-tuning is conveniently performed in the state space domain. Numerical simulations
illustrate a significant reduction of the vibrations of plan-asymmetric buildings by the proposed TLCGDs.

Keywords: asymmetric building; Bernoulli’s equation; gas-spring effect; sealed absorber; modal tuning;
state space optimization.

1. Introduction

The current trend towards buildings of ever increasing heights and the use of light- weight, high-

strength materials and advanced construction techniques have led to increasingly flexible and lightly

damped structures. The tuned liquid column dampers (TLCDs) as cost-effective, passive energy

substructures substitute the tuned mechanical dampers (TMDs), either of the spring-mass-dashpot or

of the pendulum-dashpot type, in order to increase the effective structural damping and reduce the

ductility demands in the response to dynamic loads like earthquakes and various kinds of wind

excitation. Such a TLCD consists of a rigid, U-shaped tube of rectangular, oval or circular cross-

section that is smoothly integrated into a building and partially filled with a liquid, preferably water.

Sakai 1989 and Hitchcock 1997 applied TLCD to tall buildings. However, the natural frequency of

a properly sized, i.e., for civil engineering applications properly sized TLCD is limited to

frequencies below 0.5 Hz. Hochrainer 2001 invented the gas-spring effect in a novel sealed design

of the TLCD, namely TLCGD to overcome this low frequency problem and mitigate wind- and

earthquake excited vibrations of tall buildings (Hochrainer and Ziegler 2006) with in-plane
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(horizontal) translational natural modes. Reiterer 2004, Reiterer and Ziegler 2004 applied the

TLCGD to mitigate coupled flexural and torsional vibrations of long-span bridges under traffic

loads. Since both vertical and torsional forcing render parametric excitation of the fluid flow,

Reiterer and Ziegler 2006 presented the cut-off values of the damping of the fluid flow to surely

avoid any undesirable disturbance of the TLCGD damping effects. The fluid stroke reaches the

meter-range for small fluid-structural mass ratios. Therefore, the frequency range of application

must be limited to keep the relative maximum fluid speed below about 10 m/s for the sake of

keeping the fluid-gas interface intact and to avoid the dynamic contact angle to reach 180°, Lindner-

Silvester and Schneider 2005. 

A real building usually possesses a large number of degrees of freedom and is actually

asymmetric to some degree even with a nominally symmetric plan. It will undergo coupled

vibrations simultaneously under purely translational excitations. The coupled, modal displacements

and the small rotation combine approximately to a rotation about the floor’s modal center of

velocity, see e.g., Ziegler 1998, page 14. If such a modal center of velocity falls outside of the floor

plan, the translation dominates. Consequently, the ideal position of the trace of the mid-plane of the

U- or V-shaped TLCGD requires its normal distance from this center to be maximum. Tuning of the

TLCGD in the design stage is performed in several steps. At first, the linearized model is tuned

with respect to a selected mode of the structure using the analogy to TMD tuning (Hochrainer

2005) with the properly transformed Den Hartog’s optimal parameters taken into account (Den

Hartog 1956). In a second step, improvements of the performance in multiple-degree-of-freedom

(MDOF) structures are achieved by subsequently considering the neighbouring modes as well in a

state space representation and minimizing the weighted squared area of the frequency response

function (FRF), with the Den Hartog parameters serving as the initial values. Such a fine-tuning

renders the optimal parameters modified. Final adjustments are easily performed in the course of in-

situ testing by adjusting the equilibrium gas pressure in the TLCGD. Optimal damping of the fluid

flow may require an orifice plate built in the piping system. The numerical simulations are

presented to demonstrate the new design procedure and lateral-torsional control effectiveness of the

spatially placed TLCGDs system with fairly small mass ratios assigned. 

2. Modal center of velocity CV

The N-storey building is ideally modelled as a structure comprising of members connected by

rigid floors, it has three degrees of freedom at each floor using static condensation, i.e., lateral

displacements of center of mass CM with respect to the foundation and the rotational angle about the

vertical x-axis. For floor i, they are denoted vi and wi, and θi. The orthogonal modal shape vectors

 by solving the eigenvalue problem of the undamped structure are considered to determine the

position of the modal center of velocity. 

The point of a rigid body in-plan motion that instantly has zero velocity is called the center of

velocity CV. The modal displacements and rotation combine kinematically to a sufficiently small

rotation about the floor’s center of velocity. The modal center of velocity of a floor is indicated in

Fig. 1. The coordinates of the modal center of velocity of the i-th floor in the j-th mode, CVij can be

derived in terms of the components of the modal vector , Ziegler 1998, page 19,

φ

φ j
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, , (1)

where  denotes the radius of inertia with respect to the floor’s center of mass.

The position of the center of velocity falls outside of the geometrically regular floor plan in

Fig. 1, translation of the floor dominates, thus a U- or V-shaped TLCGD can be installed parallel to

the y-axis at the lower edge of the floor, , rendering the normal distance of its trace to CV

as large as possible to enhance the damping efficiency and compatible to the geometric floor plan.

If the center of velocity lies inside of the floor plan, rotation dominates the translations. A novel

(torsional) TTLCGD should be installed, but is not discussed further in this context, Ziegler and Fu

2007, Fu 2008. 

3. U- or V-shaped tuned liquid column-gas damper

A tuned liquid column-gas damper (TLCGD) is a symmetric, U- or V-shaped rigid and sealed

piping system consisting of one horizontal and two inclined ( ), partially fluid-filled

pipe sections, see Fig. 2. The ends of the piping system are sealed and filled with gas, contrary to

the classical TLCD design, such that an internal gas pressure can build up on either side of the

liquid path, denoted p1 and p2 with a common reference equilibrium pressure p0. B and H denote the

horizontal length of the liquid column and the length of the liquid column in the inclined pipe

sections at rest. Furthermore AB, AH denote the horizontal and inclined cross-sectional areas, the

fluid volume is . The relative motion of the liquid column is described by the

displacement . 

yCV ij
yCM i

rSi

φ j3i

-------φ j 3i 1–( )–= zCV ij
zCM i

rSi

φ j3i

-------φ j 3i 2–( )+= φ j3i 0≠

rSi

z b/2–=

π/4 β< π/2≤

2HAH BAB+

u t( )

Fig. 1 Asymmetric space-frame, small rotation  of the floor is understood; exaggerated in the figureθ <<1

Fig. 2 U- or V-shaped tuned liquid column gas damper, symmetric design as a framed structure. One-sided
gas volume  above fluid-gas interface 1, sealedV0 AHHa=
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3.1 The equation of relative motion of the fluid in a TLCGD, attached to the selected

floor number i

Let a TLCGD be installed on the i-th floor of the N-storey asymmetric building, its trace in the

floor is oriented by the angle γ to y-direction and the reference point . The equation of

the ideal fluid flow in the rigid pipe system is derived by the generalized non-stationary Bernoulli

equation, see Fig. 3, Ziegler. 1998, page 497.

(2)

where x1, x2, g and ρ denote the geodesic height of the free surface 1' and 2' in Fig. 2, the constant

of gravity g = 9.81 m/s2 and the liquid density, e.g., of water ρ = 1000 kg/m3.  denotes the

relative streamline’s tangential direction. The absolute acceleration of a fluid particle  is

delineated into the guiding acceleration, the Coriolis component and the relative acceleration. Since

the Coriolis acceleration  is orthogonal to the relative velocity , it does not at all

contribute to the Eq. (2). The relative acceleration  is the relative rate of the relative

velocity and with respect to the moving frame can be expressed as .

The guiding acceleration in tall buildings reduces,  is the horizontal component of the relative

position of a fluid particle  with respect to point Ai, see Fig. 3,

, (3)

The absolute acceleration of the reference point  projected in -direction is given

by, Fig. 4,

, (4)

If the piping system is sealed, the gas is quasi-statically polytropically compressed, Ziegler 1998,

page 88 by the liquid surface in sufficiently slow motion (piston theory). Hence, the gas pressure

difference  in Eq. (2) in the range of linearized gas compression, i.e., if the maximum fluid-

stroke is limited by , is approximated by
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Fig. 3 TLCGD in horizontal general motion. Unit vector  in direction of its trace. Instant position of the
fluid mass center Cfi marked 
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(5)

Ha denotes the effective height of the symmetric left and right gas volumes at rest, Fig. 2.

Performing the integration of the non-stationary term in Eq. (2), and considering the guiding

acceleration as of Eqs. (3) and (4) assigned, and further, adding the experimentally observed

averaged turbulent damping  to the right hand side of Eq. (2) yields the equation of relative

fluid motion in a TLCGD under the base excitation, where  is the head loss coefficient,

for detailed derivations see Fu 2008,

(6)

Where the geometry dependent excitation influence factors κ, κ1 and the effective length Leff of

the liquid column are defined by 

(7)

The undamped linear natural circular frequency of TLCGD includes the gas-spring effect due to

sealed tubes and is given by

 , ,  (mathematical pendulum) (8)

The natural frequency of the “open” TLCD is dependent on the geometry (angle of inclination β

and effective liquid column length Leff). Obviously the natural frequency of the TLCD is thus

practically limited to frequencies below 0.5 Hz, see Hochrainer 2001. Nevertheless, to extend the

frequency range of application a sealed piping system with gas pressure in the equilibrium state is

properly adjusted. Equilibrium gas pressure p0 and the polytropic exponent n are combined in the

pressure head h0, the new most important frequency tuning parameter. In some applications the

atmospheric pressure p0 = 1000 hPa might be still a suitable choice. Similarly to the equivalent

(linear) mathematical pendulum of length L0, we can determine the parameters of the gas-spring for

the same linear absorber frequency, . 
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Fig. 4 TLCGD under general in-plane acceleration of the floor:  and . Resulting force components
FAiy, FAiz and moment MAix, indicated in the instant configuration
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In the course of the tuning procedure, the nonlinear turbulent damping term  in Eq. (6) has to

be transformed into the equivalent linearized viscous damping ζA. Demanding equally dissipated

energy during one cycle  is given in Eq. (9). Rotational angles are assumed to

be small, , thus Eq. (6) takes on its linearized form,

(9)

The vertical floor acceleration, expected to be present in seismic excitation and commonly equals

the vertical component of the ground acceleration, , adds parametric forcing in Eq. (6) in

addition to the rotational excitation indicated, . However, with sufficient damping

understood, parametric resonance does not occur, for detailed experimental and numerical

investigations see Reiterer and Ziegler 2004. If this linear damping coefficient of the relative fluid

flow,  exceeds the cut-off value of critical parametric resonance at double frequency, the

influence of parametric excitation apparent in Eq. (6) becomes fully negligible, with respect to the

vertical seismic excitation  and torsional motion.

3.2 Control forces of TLCGD

To couple the TLCGD with the main structure it becomes important to know the interface

reactions. Assuming that the dead weight of a rigid piping system has been added to the

corresponding floor mass, only the interaction forces and moment between the massless, rigid,

liquid filled piping system and the supporting floor are determined. Conservation of momentum of

the fluid mass mf, locate Cf in Fig. 3 can be successfully applied to determine the reaction forces

FAiy and FAiz, they are simplified under the condition  and the essential linear parts become

(acting on the piping system),

 (10)

The following additional geometry coefficients are given by

(11)

In Eq. (10)  defines the total mass of the moving liquid, and L1 is a length dependent

from the cross section, which becomes equal to Leff in the case of . Conservation of the

angular momentum with respect to the accelerated reference point Ai renders the undesired axial

moment, after linearization,  is assumed, it becomes (acting on the piping system),

(12)

where the geometry coefficient  due to rotation is given by 

(13)

The components of the control forces should be statically reduced to the center of mass CMi,

, for the neglected nonlinear parts see Fu 2008.
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4. Den Hartog tuning in analogy to mechanical damper

Since the modes of the main structure seem to be sufficiently separated, modal tuning of TLCGD

is performed by a transformation of the classical Den Hartog formulas by means of the analogy

between TMD and TLCGD. This procedure needs to approximately isolate a single mode of the

structure, with TLCGD (or TMD) added, a two-DOF system results subjected to optimization. The

analogy to TMD tuning is properly worked out.

Optimal TMD design parameters, frequency ratio and damping coefficient, are determined

subjected to the harmonic excitation. The optimum tuning frequency ratio between the equivalent

mechanical absorber and the main structure for minimum total acceleration is, see Den Hartog 1956,

page 97 and 101,

(14)

and the corresponding optimum linear viscous damping coefficient is given by

(15)

The same parameters apply also in case of time harmonic forcing and minimizing the dynamic

displacement magnification factor of the main system.

4.1 TMD attached to floor numbered i

Considering the passive spring-mass-damper at the same position in the same floor attached,

sketched in Fig. 5 renders by the standard analysis Eqs. (16) and (17). All parameters are denoted

by an asterisk to refer to the tuned mechanical damper.
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,  (17)

Eqs. (16) and (17) are the TMD counterparts of Eqs. (9), (10) and (12). 
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Fig. 5 TMD under general in-plane acceleration of the floor:  and  v··ti w·· ti, θ
·
i



346 Chuan Fu

4.2 Substructure synthesis of TLCGD/ TMD to the main system 

Preparation of the linear tuning procedure requires the linearized equation of the projected main

system with the absorber synthesized. The modal matrix of the main system is assumed known and

the absolute floor displacements of the selected mode numbered j, 

, are substituted in the control forces of the resulting system and in the absorber

Eqs. (9) and (16) as well, assuming the natural frequencies to be well separated. The approximated

modal matrix equation of motion for the coupled system considering the multi-storey building with

the TLCGD/TMD becomes, forced by an oblique single point base excitation  and by

wind forces ,

(18)

(19)

(20) 

where  and  are the generalized mass ratio, the light modal structural damping

( ), the circular natural frequency of the main structure and the TLCGD’s circular natural

frequency, respectively.  and  are the alternative mass ratio, the circular natural

frequency of the equivalent structure and the equivalent TMD’s circular natural frequency. 

and  denote the mass of the floor number n and the modal mass, possibly unit. The modified

participation factor   and the effective wind load ,  are identified. 

vi qjφ j 3i 2–( )=  wi qjφ j 3i 1–( ), =,
uTi rSiθi qjφ j3i= =

x g v··g w·· g,[ ]T=

F t( )

1 µj+  κ vAijcosγ wAijsinγ+( )mfj /mj

κ vAijcosγ wAijsinγ+( ) 1

q··j

u··
=

 
2ζSjωSj 0

0 2ζAjωAj

q· j

u·

ωSj

2
 0

0 ωAj

2

qj

u
+ +

L j

T
/mj

κr S
T

x g

··

φ j

T
F t( )/mj

0

+=

1 µj

*
+  vAijcosγ wAijsinγ+( )mAj

*
/mj

*

vAijcosγ wAijsinγ+( ) 1

q··j

u··
*

=

 
2ζSj

*
ωSj

*
 0

0 2ζAj
*
ωAj

*

q· j

u·
*

ωSj
*2 0

0 ωAj
*2

qj

u
*

+ +
L j

*T
/mj

*

r S
T

x g

··

φ j

T
F t( )/mj

*

0

+=

µj mfjVij

2
/mj 6%, µj

*< mAj

*
Vij

*2
/mj

*
, Vij

2
Vij

*2
κ

3
φ j3iH/rSi( )2+= = =

Vij

*2
vAij

2
wAij

2
, vAij+ φ j 3i 2–( ) φ j3i zAij zCM i

–( )/rSi–= =

wAij φ j 3i 1–( ) φ j3i yAij yCM i
–( )/rSi, r S

T
+ cosγ  sinγ[ ], L j

T
Ljy Ljz[ ]= = =

Ljy mSnφ j 3n 2–( )

n 1=

N

∑ mfjvAij, Ljz+ mSnφ j 3n 1–( )

n 1=

N

∑ mfjwAij, L j

*T
Ljy

*
 Ljz

*[ ]=+= =

Ljy

*
mSn

*
φ j 3n 2–( )

n 1=

N

∑ mAj

*
vAij, Ljz

*
+ mSn

*
φ j 3n 1–( )

n 1=

N

∑ mAj

*
wAij+= =

µj, ζSj, ωSj ωAj

ζSj<<1

µj
*, ωSj

* ωAj
*

mSn, mSn
*

mj, mj
*

L j, L j
*

φ j
T
F t( )/mj φ j

T
F t( )/mj

* vAij



Passive vibration control of plan-asymmetric buildings using tuned liquid column gas dampers 347

and  denote the modal displacements of the reference point Ai in y- and z-directions,

respectively.  must be regarded as the dead fluid mass, thus slightly reducing the natural

frequency of the main structure. The dead mass of the piping system at this stage of the tuning

procedure is neglected. It is taken into account during the fine tuning in state space.

4.3 Modal tuning by analogy to the equivalent TMD

Comparing the right hand side of the second equations in Eqs. (18) and (19), u* turns out

proportional to u considering the same excitation, . The mass ratio of the equivalent TMD-

modal system by inspection of the first equations of Eqs. (18) and (19) and the TLCGD frequency

ratio by the general transformation are identified, j refers to the mode number,

 (21)

Thus, the optimal frequency ratio  of the TLCGD turns out slightly lowered. The optimal

damping coefficient remains unchanged. 

5. Optimization in the state space domain, in case of earthquake excitation

The asymmetric structure when subjected to wind forces, in-wind loading by wind gusts and lateral

loading by vertex shedding etc., requires separate investigations in the state space. In this section the

parameter optimization in state space for structure with several absorbers installed and considering a

single point oblique base excitation is performed. The MDOF main system, a 3N-degree of freedom

space frame building (with a number of N floors) considered, now with a number of n << 3N

TLCGDs at proper locations tuned to a consecutive number of low frequency modes, the linearized

control forces at i-th storey produced by several TLCGDs takes on the matrix form, 
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where  is the total mass of the installed TLCGDs on the i-th floor. In case there no TLCGDs

installed the control forces are zero. 

The equations of motion for TLCGD-main structure system by substituting the control force and

rearranging terms, can be given as, single point excitation of the base understood,

, (23)

 denotes the diagonal mass matrix, containing three lumped mass elements per floor.  and 

are light damping (even non classical) and stiffness matrices of the main system. =

 means the displacement vector in the center of mass of the N-storey

building, . ,  in  are the components of the

obliquely incident ground acceleration , while soil-structure interaction is neglected.  and

 are the linearized damping matrix and the “stiffness” matrix of TLCGDs, 

samples the relative fluid displacements of n TLCGDs.

To make the tools of control theory applicable, this system of second order differential equation

can be lastly converted to a first order state space representation by introducing the state hyper

vector 2(3N + n),  and its time derivative, see e.g., Ziegler 1998, page 438

(24)

where, in a hypermatrix notation, the system matrix remains separated, 

,
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and  must have positive valued diagonal elements to ensure passivity and stability of the system.

Assuming the ground excitation to be time-harmonic

, (26)

The complex time-harmonic solution simply becomes, α is the angle of attack of the earthquake,

(27)

The optimal natural frequencies and the damping ratios of the absorbers are calculated by

minimizing the following performance index, corresponding to the minimum of the area under the

resonance curve,

(28)

where  represents the state vector 6N ×1  of the main structure. The positive semidefinite

weighing matrix  is chosen e.g., to pronounce displacements.  is the excitation vector. 

is consequently the solution of the algebraic Lyapunov matrix equation,  =

, see Hochrainer 2001. The latter is numerically evaluated by means of the software MATLAB

2002. The minimization of J is performed numerically by calling the function fminsearch of the

Matlab Optimization Toolbox. fminsearch finds the minimum of the scalar function J of several

variables quickly when Den Hartog’s modal tuning parameters are substituted for the initial

estimates. Especially, the dividing of a TLCGD with a much too large cross-sectional area into

smaller units in parallel action, requires fine tuning for practical applications, Fu 2008.

6. Applications of passive TLCGD to buildings

Since an impressive increase of the effective modal damping over the light structural damping by

the action of the TLCGD, the reduction of the response to wind excitation seems to be quite

naturally given. The full simulations of the linearized system (structure with TLCGDs attached)

are given for seismic excitation. There is no explicit need to repeat such simulations for the wind

load.

6.1 Single-storey asymmetric space-frame

The commonly uniformly distributed mass of the floor with rectangular plan  is

 and an eccentric point mass  is considered placed in the corner

A1 (4, 2, 0) in Fig. 1. The common anisotropic stiffness of column in each corner in y- and z-

directions are ky = 981.2 kN/m and kz = 350 kN/m. The natural frequencies are 1.16, 1.96 and

2.37 Hz. With the three modal centers of velocity considered, all are outside of the floor plan, Fig. 6

shows the arrangement of the three TLCGDs (constant cross-sectional area of the pipe is assumed),

tuned with respect to the corresponding natural frequencies. 

The fluid mass is chosen as mf1 = 770 kg, mf2 = 320 kg and mf3 = 180 kg of water. Dimensions of

the three TLCGDs are summarized in Table 1. They are at first modally tuned by means of the
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Table 1 Layout of the modally tuned TLCGDs, gas volume selected and gas equilibrium pressure assigned,
Fig. 6

TLCGD 1 TLCGD 2 TLCGD 3

Horizontal length of the liquid column B [m] 3.00 2.50 3.00

Inclined length of the liquid column H [m] 1.40 0.86 0.60

Cross-sectional area of the pipe [m2] 0.1330 0.0760 0.0430

Effective length [m] Eqs. (7) (11) 5.80 4.22 4.20

Angle of the inclined pipe section β [rad] π /4 π /4 π /4

Geometry factor  Eqs. (7),(11) 0.86 0.88 0.92

Geometry factor  Eq. (13) 1.20 1.77 3.83

Equilibrium pressure head h0, [m] , Eq. (8) 36.70 45.26 46.50

Gas volume  [m3] Eq. (5) 0.340000 0.110000 0.044000

Natural frequency  [Hz]
Den Hartog Eq. (14) 1.13 1.92 2.33

Fine tuning Eq. (28) 1.13 1.90 2.33

Optimum linear damping %
Den Hartog Eq. (15) 8.96 7.37 6.68

Fine tuning Eq. (28) 7.51 5.72 4.91

Leff L1 2H B+= =

κ κ=

κ 3

n 1.2=

V0 AHHa=

fAopt

TMD analogy, Eq. (21), and by substituting Den Hartog’s formulas, see again Eqs. (14) and (15).

Subsequently, a fine-tuning process in state space is performed, Eq. (28). Optimal frequencies

remain nearly unchanged and damping is dramatically lowered. By the action of the three TLCGDs,

the effective modal damping coefficients of the system in each mode are increased from 1% to 5.9,

4.77 and 4.34%. Varying the angle of attack of the time harmonic base acceleration, strength 0.1 g,

the weighed sum of the frequency response functions of the original and the optimized system was

calculated using MATLAB 2002. The maximum gain from all three TLCGDs is exemplarily made

visible with a selected simulation (α = π /6) in Fig. 7. It is obvious that the parameter optimization

reduced the vibration amplitude at the resonant peaks tremendously. The maximum relative fluid

strokes for all cases are within the design limits, Fig. 8. The maximum relative fluid speed is well

below the limit given in Lindner-Silvester and Schneider 2005, , . The

detailed TLCGDs design and the simulation results see Fu 2008.

The seismic acceleration record of the 1940 NS-El Centro earthquake (a0 = 0.35 g) with the angle

of attack α is applied to this structure. The three TLCGDs with fine-tuning parameters are

considered in their linearized modal damping assigned. One illustrative result of the simulations is

ωAj umax j 10 m/s< j 1 2 3, ,=

Fig. 6 Installation of three TLCGDs in a single-storey asymmetric building. • indicates the centers of velocity
CVj
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shown in Fig. 9. However, the maximum accelerations, peaking at early times within the strong

motion phase, are hardly affected. Their reduction requires active control rendering the TLCGD

hybrid, the ATLCGD, see Hochrainer 2001 for a design proposal.

6.2 Four-storey asymmetric building

The same mass of each floor 16 × 103 kg with the different point mass (6 × 103 kg, 8 × 103 kg,

10 × 103 kg and 6 × 103 kg) orderly placed in the corner causes the centers of mass of the floors not

on vertical axes. The common stiffness of columns are increased from section 6.1 to kyi =

5874.4 kN/m and kzi = 2021.9 kN/m. The computed first four natural frequencies are 0.97, 1.61, 2.01

and 2.88 Hz. With the first four modal centers of velocity considered, the possible arrangements of

Fig. 7 Weighed sum of amplitude response functions
for the 3-DOF, linearized, single-storey,
asymmetric space frame, without/with three
linearized TLCGDs attached. Angle of attack
of the time-harmonic base acceleration,
a0 = 0.1 g, α = π /6. Maximum gain 30 dB

Fig. 8 Amplitude response curves of the relative
fluid motion in three TLCGDs attached to the
single-storey, asymmetric space frame. Angle
of attack α = π /6. Larger relative fluid strokes
result after fine-tuning as a consequence of
the lowered optimal damping

Fig. 9 Relative floor displacements of center of mass, v, w, and rotation . 1940 El
Centro earthquake, strong motion phase 20s, angle of attack: α = π/6  without TLCGDs,  with
TLCGDs

uT rSθ  rS, 2.97 m= =

--- __
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absorbers are illustrated in Fig. 10. The top floor is suitable to host all modally TLCGDs. For the

fourth mode, the second floor with the largest modal displacement becomes suitable. The fluid mass

mf1 = 2030 kg, mf2 = 810 kg, mf1 = 250 kg and mf4 = 400 kg of water are selected for four TLCGDs.

Dimensions of the TLCGDs are summarized in Table 2. The effective modal damping coefficients

of the system are increased from 1% to 5.6, 4.67, 4.2 and 3.1%.

Numerical studies have been performed for various angles of attack of the ground motion

a0 = 0.1 g, with a selected simulation shown, α = π/6. The maximum gain from all TLCGDs is

exemplarily made visible in Fig. 11 with the relative fluid strokes plotted in Fig. 12. The resonance

curves with fine-tuned optimal parameters understood, have broader peaks. The gain due to the

increase of the effective structural damping is impressive.

One illustrative result of the simulations of the four-storey asymmetric space frame under the NS-

El Centro earthquake is shown in Fig. 13, where the relative floor displacements with respect to the

base and the relative floor accelerations in terms of the root mean square (RMS) values are

displayed. The RMS value is defined by 

Fig. 10 Installation of TLCGDs,  the centers of velocity of second floor,  the centers of velocity of fourth,
top floor. Scaled figures

•○ •

Table 2 Layout of the modally tuned TLCGDs, gas volume selected and gas equilibrium pressure assigned,
Fig. 10

TLCD 1 TLCD 2 TLCD 3 TLCD 4

Horizontal length of the liquid column B [m] 3.00 3.00 3.00 3.50

Inclined length of the liquid column H [m] 2.40 1.40 1.40 0.50

Cross-sectional area of the pipe [m2] 0.2600 0.1400 0.0480 0.0880

Effective length  [m] Eqs. (7) (11) 7.80 5.80 5.80 4.50

Angle of the inclined pipe section β [rad] π /4 π /4 π /4 π /4

Geometry factor  Eqs. (7),(11) 0.82 0.859 0.876 0.935

Geometry factor  Eq. (13) 0.665 1.198 1.623 6.485

Equilibrium pressure head h0, [m] n = 1.2, Eq. (8) 56.28 69.72 86.88 88.08

Gas volume  [m3] Eq. (5) 1.040000 0.330000 0.100000 0.110000

Natural frequency fAopt [Hz]
Den Hartog Eq. (14) 0.945 1.585 1.982 2.86

Fine tuning Eq. (28) 0.941 1.552 1.893 2.86

Optimum linear damping %
Den Hartog Eq. (15) 8.50 7.16 6.35 4.08

Fine tuning Eq. (28) 7.81 5.75 5.81 3.62

Leff L1 2H B+= =

κ κ=

κ 3

V0 AHHa=
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Fig. 11 Weighed sum of amplitude response functions
for the four-storey, asymmetric space frame,
without/with four linearized TLCGDs attached
(angle of attack of the time-harmonic base
acceleration: a0 = 0.1 g, α = π /6). Maximum
gain 30.7 dB

Fig. 12 Amplitude response curves of the relative
fluid motion in four TLCGDs attached to the
four-storey, asymmetric space frame. Angle
of attack α = π /6

Fig. 13 RMS response of the relative floor displacement and of the relative floor acceleration of the four-
storey asymmetric building (El Centro, 0.35 g, angle of attack α = π /6)
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(29)

where tS is the strong motion phase of the NS-El Centro earthquake record. 

The rotation displacement about x-axis is , where rS1 = 2.97 m, rS2 = 2.98 m,

rS3 = 2.97 m, rS4 = 2.97 m. It is seen that the RMS response is impressively reduced by the increased

effective structural damping. Thus, it is concluded that the optimally tuned absorbers are adequate

for effective damping of asymmetric buildings in seismic active zones.

7. Conclusions

The tuned liquid column gas damper (TLCGD) is well suited to mitigate wind- and earthquake

excited dominating horizontal vibrations of plan-asymmetry buildings assumed a three DOF at each

floor, equally as well as an increase of the modal structural damping. Its optimum installation

location requires the largest allowable normal distance to the modal center of velocity in the floor

with large modal displacements, when this center lies outside of the floor plan. The equation of the

relative fluid flow in a sealed TLCGD uses the extended non-stationary Bernoulli equation for

moving reference systems. The interaction force and moment between TLCGD and the main

structure are assigned. Starting from the linearized equations a geometric analogy between TMD

and TLCGD is worked out which allows the transformations of the optimization parameters (Den

Hartog formula) of the TMD to TLCGD. The gas-spring effect in the sealed TLCGD extends the

frequency range of application. The adjustable equilibrium gas pressure becomes an easily

accessible tuning parameter. A sufficient condition based on the cut-off damping coefficient of

parametric resonance allows neglecting the effects of the vertical or rotational motion. In order to

keep the fluid-gas interface intact, the allowable relative speed of the fluid must be limited by about

10 m/s. Consequently, it is pointed out the first time that for a given maximum fluid stroke the

frequency range of application becomes equally limited. 
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