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Abstract. This article presents the differential system that governs the mechanical behaviour of a
curved-beam element, with varying cross-section area, subjected to generalized load. This system is solved
by an exact procedure or by the application of a new numerical recurrence scheme relating the internal
forces and displacements at the two end-points of an increase in its centroid-line. This solution has a
transfer matrix structure. Both the stiffness matrix and the equivalent load vector are obtained arranging
the transfer matrix. New structural matrices have been defined, which permit to determine directly the
unknown values of internal forces and displacements at the two supported ends of the curved-beam
element. Examples are included for verification.
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1. Introduction

Traditionally, the laws governing the mechanical behaviour (applying the Euler-Bernuolli and

Timoshenko theories) of a naturally curved beam element are expressed in equilibrium and

compatibility equations (Love 1944, Timoshenko 1957). Some authors develop these equations by

means of energy theories (Moris 1968, Leontovich 1959, Kardestuncer 1974). These two

interpretations of the equations have permitted to reach accurate results, either analytical or

numerical, only for some types of curved elements; for instance, in the circular arch loaded on its

plane (Yamada and Ezawa 1977, Just 1982, Saleeb and Chang 1987, Shi and Voyiadjis 1991,

Molari and Ubertini 2006, Tufekci and Arpaci 2006), and loaded out of its plane (Lee 1969), in the

parabolic element (Marquis and Wang 1989) or in the uniformly loaded helix (Scordelis 1960).

Other authors present their curved-beam studies, in terms of a set of twelve linear ordinary

differential equations, dependent on the arch length (Banan et al. 1989, Akoz et al. 1991, Yu et al.

2002). This set of equilibrium and compatibility equations has facilitated the implementation of new

numerical procedures, thus broadening the casuistry of the models and elements to be studied

(Haktanir 1995). The analytical methods are limited by: the complexity of the shape of the centroid-

line, the cross-section of the element, the characteristics of the material, the load system applied and

the type of support fixed (Pestel and Leckie 1963).
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Being not possible to use an exact method in every structure case, approximate numerical

procedures have been resorted to. The simplest way to solve the structure problem of a curved-

beam element is to substitute the shape of its centroid-line by a polygonal line. In order not to

commit any geometrical approximation errors and to obtain accurate results, it is necessary to

employ a large number of straight elements, which configure the polygonal line, thus requiring a

considerable amount of input data. The numerical procedures to solve the mechanical behaviour of

a curved beam are limited to the resolution methods of linear ordinary differential systems with

boundary conditions. Among these can be found the so-called shooting method (Lance 1960), finite

differences method (Rahman 1991) and finite elements method (Bathe 1996), the latter being the

method most used. The finite elements proposed in the literature are generally generated from

polynomial or trigonometric approximations. In certain curved beams cases, these elements are not

as approximate as is considered to be necessary (Litewka and Rakowski 1996).

This article presents the differential system governing the structural behaviour of a curved beam

(Gimena et al. 2008) and gives the steps to be followed for using either an exact solution or a

numerical approximation. This numerical procedure does not increase the number of unknown

quantities and allows the finding of an accurate solution under the Euler-Bernuolli and Timoshenko

theories.

The solution obtained by these resolution procedures has a transfer matrix structure. With this

linear solution as a starting point, it is possible, by a rearrangement of terms using simple algebraic

operations (Gimena et al. 2003), to obtain both the stiffness matrix and the equivalent load vector of

a generic curved-beam element. By entering the values contributed by each support in the transfer

matrix expression, new matrices (boundary matrices) can be defined, which give the unknown stress

and deformation values in the two end points.

The stiffness and boundary matrices of a bar subjected to flexure load and the semi-elliptic arch

loaded into its plane have been included for verification.

2. Basic equations

A curved-beam element has been defined as that generated by a plane section which centroid runs

orthogonally through all the points of an axis line. The curve is expressed by the vector radius r =

r(s), s (arc length of the axis line) being the only independent variable of the linear structure problem.

The reference system used for annotating the known and unknown functions is the Frenet-Serret

trihedron. Its unit vectors tangent t, normal n and binormal b are 

(1)

Where,  is the derivative respect the parameter s.

The natural equations of the centroid line are expressed by the flexion curvature  and the

torsion curvature  (Sokolnikoff and Redeffer 1958).

Accepting the habitual principles and hypotheses of the strength of materials and only considering

the stresses associated with the normal section to the curve ( ), the geometric characteristics

of the section are: area A(s), shearing coefficients αn(s), αnb(s), αbn(s), αb(s), and moments of inertia

It(s), In(s), Ib(s), Inb(s). The longitudinal E(s) and transversal G(s) moduli give the elasticity

condition of the material.

t Dr; n
Dt

Dt
--------= ;  b t n×==

D d/ds=

χ χ s( )=

τ τ s( )=

σ τn τb, ,
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Applying the laws of equilibrium and kinematics on a differential element of the curve, equations

expressing the mechanical behaviour of a curved-beam element can be obtained (Gimena et al. 2008)

(2)

The first two rows of system Eq. (2) represent the equilibrium equations.

The vectors intervening in the equilibrium are:

Internal force 

Internal moment 

Load force 

Load moment 

The last two rows of system Eq. (2) represent the kinematics equations:

Rotation 

Displacement 

Load rotation 

Load displacement 

In the kinematics equations the following matrices are involved:

Rotation matrix produced by the moments 

Displacement matrix produced by the forces 

Differential system Eq. (2) can be written in vector mode

(3)

DV

t V DM+×

        M θ
M

[ ] Dθ+–

V uV[ ]   t θ× Du+ +–

q+ 0=

k+ 0=

Θ– 0=

∆– 0=

V Nt Vnn Vbb+ + σdAt
A∫

τndAn
A∫

τbdAb
A∫

+ += =

M Tt Mnn Mbb+ + τbn τnb–( )dAt
A
∫ σbAn

A
∫ σndAb

A
∫–+= =

q qtt qnn qbb+ +=

k ktt knn kbb+ +=

θ φ t θnn θbb+ +=

u ut vn wb+ +=

Θ Θtt Θnn Θbb+ +=

∆ ∆tt ∆nn ∆bb+ +=

θM[ ]

1

GIt
-------  0 0

0
Ib

E InIb Inb
2

–[ ]
----------------------------  

Inb

E InIb Inb
2

–[ ]
----------------------------

0
Inb

E InIb Inb
2

–[ ]
----------------------------

In

E InIb Inb
2

–[ ]
----------------------------

=

uV[ ]

1

EA
------- 0 0

0
αn

GA
-------- 

αnb

GA
--------

0
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GA
--------

αb

GA
--------

=

De s( ) TD s( )[ ]e s( ) q s( )+=
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where:

 is the effect of internal forces,

moments, rotations and displacements;

 with  and  represent the geometry

of the curve (infinitesimal transfer matrix), and

 is the generalized load

applied.

This general expression of the mechanical behaviour of the beam, which expresses the

relationship between the unknown effect e(s) (internal forces and displacements) produced by the

load q(s) adopted, is a unique system of linear ordinary differential equations.

3. Resolution procedures

3.1 Analytical exact

The exact solution of the mechanical behaviour of the curved element only exists if Eq. (3) is

solved analytically. In that case, the structure of the solution, linear and depending on twelve

integration constants c, can be written as follows (Zheng et al. 2000)

(4)

The first term of the addend represents the solution that depicts the system as a homogeneous one.

The second is a particular solution of the differential system.

The values of the integration constants can be expressed in terms of the initial end-point on the

axis of the curved element I

(5)

Substituting this value of the integration constants in Eq. (4) and particularizing at the end-point

of the curved element II, the transfer matrix expression is obtained.

(6)

Where,

 is the transfer matrix, and

 is the load transmission vector.

The algebraic system Eq. (6) is composed of twelve equations. Each support condition supplies

six null internal force and displacement values. With these values being known, the number of

unknown values to be determined is reduced to twelve, coinciding with the number of equations to

e s( ) V M θ u, , ,{ }
T

N Vn Vb T Mn Mb φ θn θb u v w, , , , , , , , , , ,{ }
T

= =

TD s( )[ ]

F[ ] 0[ ] 0[ ] 0[ ]

D[ ] F[ ] 0[ ] 0[ ]

0[ ] θM[ ]– F[ ] 0[ ]

uV[ ]– 0[ ] D[ ] F[ ]

= F[ ]
0 χ 0

χ– 0 τ

0 τ– 0
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0 0 0
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0 1– 0
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c T sI( )[ ]
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e sII( ) T sI sII,( )[ ]e sI( ) qT sI sII,( )+=
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1–

=
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be solved.

Having found all the internal forces and displacements values at the ends of the curved-beam

element, the following equation can be employed to obtain the solution to the problem at any point

on the element.

(7)

Where,

 is the transfer matrix at the s point, and

 is the load transmission vector at the s point.

In view of the possible difficulty of obtaining an analytical solution, it is usual to resort to

approximate solutions, based on numerical calculus.

3.2 Numerical approximate

Starting from the differential system Eq. (3), the relationship between two points i and i + 1 at a

distance of length ∆s using the fourth order Runge-Kutta approximation (Pestel and Leckie 1963) is

given 

(8)

Where,

The resulting finite system has the following expression

(9)

Where,
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[I] is the identity matrix of order 12.

Using the previous Eq. (9), it is possible to relate the internal forces and displacements at the

initial end I of the curve to those of the generic point i + 1, obtaining

(10)

Both extreme ends can be related in the same way. For a number n of intervals, II being the final-

end, the Eq. (10) gives

(11)

Where,

 is the transfer matrix, and

 is the load transmission vector.

The system Eq. (11) always contains twelve algebraic equations, regardless of the number of

intervals adopted. The six null internal forces and displacements values provided by each support

are identified with the boundary conditions. Thus, the number of unknown quantities to be

determined is reduced to twelve, coinciding with the number of equations to be solved.

Having found all the stress and deformation values at the ends of the curved element, Eq. (10)

can be employed to obtain the solution to the problem in any other point on the directrix of the

element.

4. Structural matrices

4.1 Transfer matrix

Either from the analytical exact Eq. (6) or numerical approximate Eq. (11) system of equations,

the transfer matrix can directly be determined
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(12)

Expressed in a compact form it can be written as follows

(13)

The structural transfer matrix equation is annotated.

4.2 Stiffness matrix

With the exact Eq. (6) or approximate Eq. (11) transfer matrix formulas, as a starting point, its

stiffness equivalent notation can be expressed (Gimena et al. 2003).

The former terms of the above Eq. (12) are subsequently arrayed, yielding

(14)

Where [I] is the identity matrix of order 3.

Finally, the stiffness matrix expression is determined, extracting the vector of the reactions from

Eq. (14)

(15)

Expressed in a compact form it can be written as follows

(16)

Being f and u the vectors of reactions and of displacements at both ends, [K] the stiffness matrix,

and qK the equivalent load vector, in the stiffness matrix equation.
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4.3 Boundary matrices

This article denotes as boundary matrices those, which multiplied by the load transmission vector,

give the unknown values of the effect vectors associated with the supports. The exact Eq. (6) or

approximate Eq. (11) transfer annotation is rearranged in such a way that the effect vectors of the

curved element end-points are in the first term of equation

(17)

The support structure conditions are applied on the previous Eq. (17), i.e. the null values

contributed by these conditions are entered and the unknown effect vector values  of the

end-points of the curved element are found:

(18)

where [B] is the boundary matrix annotated in the boundary matrix equation.

5. Examples

5.1 Structural matrices of a bar under flexure

The differential system that governs the mechanical behaviour of a bar under flexion, with

isotropic homogeneous material, constant section, principal axes of inertia coinciding with those of

the section, and neglecting the shearing deformation, is given by Eq. (19) 

(19)

A bar under a generalized flexure load is selected Fig. 1 and the sequence of operations used to

obtain, transfer, stiffness and boundary matrices is presented:

The analytical solution of differential system Eq. (17) is

(20)

T sI sII,( )[ ]e sI( ) e sII( )– qT sI sII,( )–=

e sI sII,( )

e sI sII,( ) B[ ]qT sI sII,( )=
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                θy
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1
                                       p1 x( )+

My x( ) = C1x     C2                        p2 x( )++

θy x( ) C1

x
2

2EIy
-----------= C2

x

EIy
------- C3           p3 x( )++ +

w x( ) C1

x
3

6EIy
-----------–= C2

x
2

2EIy
----------- C3x– C4 p4 x( )+ +–



Structural matrices of a curved-beam element 315

Where,

Transfer matrix

Particularizing the general solution Eq. (20) for the initial end-point I on the bar in x = 0 and for

the final end-point II in x = l the transfer annotation is obtained 

(21)

p1 x( ) qz x( ) xd
0

x

∫–=

p2 x( ) p1 x( ) ky x( )–[ ] xd
0

x

∫=

p3 x( ) Θy x( )
p2 x( )
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------------+ xd

0

x

∫=

p4 x( ) ∆z x( ) p3 x( )–[ ] xd
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x
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θy l( )
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1 0 0 0
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------- 1 0

l
3
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-----------–
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3

2EIy
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Vz 0( )

My 0( )
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p1 l( )

p2 l( )

p3 l( )

p4 l( )

+=

Fig. 1 A bar subjected to a flexion load
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Stiffness matrix

The terms of Eq. (21) are rearranged in accordance with the criteria indicated in section 4.2.

(22)

The stiffness matrix is determined by finding the reaction vector

(23)

It should be noted that to determine the equivalent load vector the multiplication operation pointed

out in the previous Eq. (23) has to be done.

Boundary matrices

The terms of Eq. (21) are rearranged in agreement with the criteria described in section 4.3.

(24)

The support structure conditions are applied on this Eq. (24). Two cases of support are considered

in this example: first, a bi-fixed bar under a flexion load and then a bi-articulated one.

The known end values supplied by the bi-fixed support are

(25)

The null values are deleted from Eq. (24) thus yielding
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(26)

Therefore, the unknown values of the effect are

(27)

where the boundary matrix of a bar under a flexion load with a bi-fixed is annotated.

The procedure developed in 4.3 is applied analogously with other support conditions. For

instance, the known values at the endpoints given by the bi-articulated support are

(28)

The null values are eliminated from Eq. (24) giving 

(29)

Therefore, the unknown values of the effect at the end-points for this support are
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where the boundary matrix of a bar under a flexion load with a bi-articulated support is annotated.

For each support structure there is a boundary matrix, which, multiplied by the load transmission

vector offers the unknown values of the effect in the end-points of the curved element. This is a

useful procedure for the determination of the statically indeterminate unknown values.

5.2 Structural matrices of the semi-elliptic arch

A semi-elliptic arch has been selected to obtain the structural matrices. It has an axis z

perpendicular to its plane, its centre is the origin of the coordinates, minor axis a and major axis b

Fig. 2.

The parametric equations of the ellipse directrix are 

The derivative of the arc length s with respect to parameter λ is 

The Frenet-Serret reference system vectors are 

The flexion curvature of the elliptic arch directrix is 

x acosλ; y bsinλ; z 0= = =

ds

dλ
------ a

2
sin

2
λ b

2
cos

2
λ+=

t
asinλ– bcosλ 0, ,( )

a
2
sin

2
λ b

2
cos

2
λ+

----------------------------------------------;  n
acosλ– bsinλ 0, ,( )

a
2
sin

2
λ b

2
cos

2
λ+

----------------------------------------------;  b= 0 0 1, ,( )= =

χ λ( )
ab

a
2
sin

2
λ b

2
cos

2
λ+( )

3/2
----------------------------------------------------=

Fig. 2 Diagram of a semi-elliptic arch 
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The torsion curvature is null .

Assuming the product of inertia and the shearing deformations to be null, the system expressed by

the mechanical behaviour of the elliptic arch is

(31)

                

Where,  and 

Fig. 2 presents the calculus of a semi-elliptic arch with a constant section and material, with a

uniformly distributed load force in projection q = −1 kip/ft. The starting data are as follows:

Axes of the ellipse directrix a = 17.9 ft, b = 26 ft.

Rectangular section with width c = 6.6 ft and thickness  h = 2 ft.

Modulus of longitudinal elasticity of the material E = 105 kip/sq ft.

Transfer matrix

Following the approximate procedure described in section 3.2, the transfer-matrix expression is

obtained 

(32)

Stiffness matrix

Using the procedure given in section 4.2 on Eq. (32), the stiffness matrix is obtained
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(33)

Boundary matrices

With the transfer-matrix expression Eq. (32) as a starting point, considering the bi-fixed support

structure and using the procedure in 4.3, the annotation of the boundary matrix is 

(34)

In this case of bi-fixed support structure, the unknown values of the effect in the endpoints of the

curved element coincide, in an absolute value, with the reaction values obtained by means of the

stiffness matrix, which are 

(35)

Having found all the values of the effect (stress and deformation) at the ends of the bi-fixed semi-

elliptic arch, Eq. (9) can be employed to obtain the solution to the problem at any other point on the

directrix of the curved element.

The graphs of the effect are plotted in the following Fig. 3:

Following the same process in 4.3 for a bi-articulated support, the expression of the boundary

matrix is obtained

(36)

The graphs of the effect are shown in Fig. 4, as follows:
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Fig. 3 Graphs of the effect components of a bifixed semi-elliptic arch

Fig. 4 Graphs of the effect components of a bi-articulated semi-elliptic arch 
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6. Conclusions

The structure behaviour of a curved element has been expressed in a system of twelve linear

ordinary differential equations. This is the most efficient expression for applying the resolution

procedures described in this article. The law of recurrence used in the numerical procedure relates

the two end-points of an increase in the curve by means of the fourth order Runge-Kutta

approximation. By applying this law of recurrence, the internal forces and displacements values of

the end-points of the curved element can be related and the transfer matrix obtained directly,

regardless of the number of increases used in the calculus. The stiffness matrix and equivalent load

vector are obtained directly by some algebraic operations starting from the transfer matrix, this

being an advantage over other methods. Similarly, using the transfer matrix expression and applying

the support structure conditions, facilitates the determination of boundary matrices. These have the

characteristic of being able to supply the unknown values of internal forces and displacements at the

two supported endpoints. The method shown does not distinguish between determinate or

indeterminate structures. The procedure evolved is considered to be suitable for matrices

determination of a curved-beam element, as well as illustrative for educational purposes.
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