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Abstract. An anisotropic damage mechanics approach is introduced which models the static and
dynamic behavior of mass concrete in 3D space. The introduced numerical approach is able to model
non-uniform cracking within the cracked element due to cracking in Gaussian points of elements. The
validity of the proposed model is considered using available experimental and theoretical results under the
static and dynamic loads. No instability and stress locking is observed in the conducted analyses. The
Morrow Point dam is analyzed including dam-reservoir interaction effects to consider the nonlinear
seismic behavior of the dam. It is found that the resulting crack profiles are in good agreement with those
obtained from the smeared crack approach. It is concluded that the proposed model can be used in
nonlinear static and dynamic analysis of concrete dams in 3D space and enables engineers to define the
damage level of these infrastructures. The performance level of the considered system is used to assess
the static and seismic safety using the defined performance based criteria. 

Keywords: concrete dams; dam-reservoir interaction; damage mechanics; dynamic analysis; non-uniform
cracking; performance level.

1. Introduction

The damage mechanics approach is one of the most recent models which have been used to

consider the nonlinear behavior of mass concrete. Some of the main advantages of this theory in

comparison with the elasto-plastic constitutive model or the fracture mechanics based models such

as the smeared crack approach are given in Gunn (2001a).
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The damage mechanics theory was introduced for the first time in modeling the creep in metals,

Ju (1990). Until now, various models based on this theory have been presented to predict internal

damage in ductile and brittle materials. Also, several approaches have been developed to model the

non-process and process damage in brittle materials (Kachanov 1980, Krajcinovic and Foneska

1981, Krajcinovic 1983, Kachanov 1987, Ju 1989, Pramono and William 1989, Ju 1991). In the

field of dam analysis and performance evaluation, the damage mechanics theory has been used to

analyze concrete gravity dams under the static and dynamic loading conditions as referred in Ghrib

and Tinawi (1995a, 1995b), Mirzabozorg (2004). In the study represented by Ghrib and Tinawi

(1995a, 1995b), the damage mechanics theory was developed to model the static and dynamic

behavior of mass concrete in 2D space. 

Gunn (2001a, 2001b) used the damage mechanics theory in 3D space for analyzing concrete

structures under the static loads. The proposed model satisfies the fracture energy conservation

principle and has appropriate criteria for both of the crack initiation and the crack propagation.

Horii and Chen (2003) illustrated various methods to model the nonlinear behavior of mass concrete

in gravity dams. In their study, the problems in crack modeling, computational algorithm and

damping implementation are discussed in conjunction with safety assessment of concrete dam

against large earthquakes. They showed that the formulation for the crack-embedded element has an

analogy with that of computational plasticity. Oliver et al. (2003) presented a continuum strong

discontinuity approach to consider cracking of concrete. Criteria for onset and propagation of

material failure and specific finite elements with embedded discontinuities were sketched and some

numerical simulations of cracking in plain and reinforced concrete specimens were presented. Pekau

and Yuzhu (2004) presented a study on the dynamic behavior of the fractured Koyna dam during

earthquakes using the distinct element method. They modeled the hydrodynamic effect using the

added mass approach. 

Several investigators such as Hall (1998), Malla and Wieland (1999), Espandar and Lotfi (2003),

Lotfi and Espandar (2004) and Mirzabozorg and Ghaemian (2004) have represented models based

on the smeared crack approach to study the nonlinear behavior of mass concrete in 3D space. Some

of other investigators consider the effect of vertical construction joints on the nonlinear behavior of

arch dams as referred in Mirzabozorg and Ghaemian (2004).

Calayir and Karaton (2005) presented a paper in which the earthquake damage response of

concrete gravity dams is considered including the effect of reservoir interaction. In their work, 2D

damage mechanics approach similar to that introduced by Mirzabozorg et al. (2004) utilized to

model the nonlinear behavior of dam body in 2D space and the reservoir was modeled in the

lagrangian space. Lotfi (2005) considered the accuracy and performance of simplified one

dimensional model for fluid-foundation interaction in comparison with the rigorous approach. In his

work, it is concluded that the errors due to approximate method could be very significant both for

horizontal and vertical ground motions. Ardakanian et al. (2006) developed an anisotropic damage

mechanics approach to consider the nonlinear seismic response of concrete dams in 3D space when

the reservoir is assumed compressible. Oliveira and Faria (2006) studied the failure scenarios of

concrete dams. In their work, a Continuum Damage Mechanics model that incorporates two

independent scalar damage variables in tension and compression was adopted in which both in

tension and compression material softening is reproduced. 

Zhu and Pekau (2007) investigated the seismic response of concrete gravity dams in which the

major task is the treatment of dynamic contact conditions at the cracks penetrated within the dam

body. They modeled all the modes of motion along the cracks using FE and adopting incremental
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displacement constraint equations. The hydrodynamic effect was modeled using the added mass

approach. Bayraktar et al. (2008) carried out an investigation on the effects of near-fault ground

motion on the nonlinear response of dams including dam-reservoir-foundation interaction. In their

work, four different types of dams, which are gravity, arch, concrete faced rockfill and clay core

rockfill dams, were considered and the behavior of reservoir was taken into account utilizing

lagrangian approach.

In the present study, the damage mechanics model introduced in Ardakanian et al. (2006) is

developed so that the cracking within an element is non-uniform, means that cracks in the candidate

element propagate within its Gaussian points. The major efficiency of the proposed numerical

model is the ability of evaluating nonlinear seismic behavior of concrete dams in 3D space using

large elements and also, its ability of more accurate tracing crack paths within the dam body and

finally, reducing time and saving analysis requirements. It is worth noting that the main aspect of

the damage mechanics theory is defining the damage level of the cracked elements which can be

used as an index for safety assessment of concrete dams. Performance based approach and its

criteria in design of new dams and safety assessment of existing dams is one of innovative methods

which quantify the performance of the system under various loading combinations (USACE 2007). 

Various performance levels are considered when evaluating the response of concrete hydraulic

structures such as concrete dams. The performance levels commonly used are serviceability

performance, damage control performance, and collapse prevention performance.

In the Serviceability performance level the structure is expected to be serviceable and operational

immediately following earthquakes producing ground motions up to the OBE1 level (USACE 2007).

In the damage control performance level, certain elements of the structure can deform beyond

their elastic limits (non-linear behavior) if non-linear displacement demands are low and load

resistance is not diminished when the structure is subjected to extreme earthquake events. Damage

may be significant, but it is generally concentrated in discrete locations where yielding and/or

cracking occur. The designer should identify all potential damage regions, and be satisfied that the

structure is capable of resisting static loads and if necessary can be repaired to stop further damage

by non-earthquake loads. Except for unlikely MCE2 events, it is desirable to prevent damage from

occurring in substructure elements, such as piling and drilled piers, and other inaccessible structural

elements (USACE 2007). Finally, the collapse prevention performance level requires that the

structure not to collapse regardless of the level of damage. Damage may be un-repairable. Ductility

demands can be greater than those associated with the damage control performance. If the structure

does not collapse when subjected to extreme earthquake events, resistance can be expected to

decrease with increasing displacements. Collapse prevention performance should only be permitted

for unlikely MCE events. Collapse prevention analysis requires a Nonlinear Static Procedure or

Nonlinear Dynamic Procedure in accordance with the related guidance (USACE 2007).

Based on the present study, obtaining the damage indices of the cracked Gaussian points using the

damage mechanics approach can help the designer to identify the performance level of the structure

using given quantitative criteria.

1Operating Basis Earthquake
2Maximum Credible Earthquake
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2. Constitutive law

The stress-strain relationship within the pre-softening phase and also, the softening initiation

criterion are given in (Ardakanian et al. 2006). It should be noted that the softening initiation

criterion is based on the elastic uni-axial energy of the considered Gaussian point (Ardakanian et al.

2006).

During the softening phase, when a Gaussian Point initiates softening, its elastic stress-strain

relationship is replaced using the modulus matrix which is formulated based on the damage level in

each of the three principal directions. In this study, the Secant Modulus Stiffness (SMS) approach is

used for the stiffness matrix formulation in which, the constitutive law is defined in terms of the

total stresses and strains. Based on the energy equivalence principle and neglecting the coupling

between the three principal fracture modes, the modulus matrix is given as (Gunn 2001a) 

(1)

where,

(2)

(3)

in which,

(4)

where d1, d2 and d3 are the damage variables corresponding to the principal strains in the local

directions. Satisfying the principle of energy equivalence and assuming linear stress-strain curve in

the post-peak phase, di is given as

(5)
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modulus matrix includes all of the principal fracture modes. 

The proposed modulus matrix given in Eq. (1) is in local coordinate which is corresponding to the

direction of the principal strains. This matrix should be transformed to the global coordinate as

follows

(6)

where, [T] is the strain transformation matrix. Clearly, increasing the strain of the considered

Gaussian point leads to increasing the corresponding damage variable. Finally, when the strain

reaches to the fracture strain, the Gaussian point is fully cracked in the corresponding direction and

the related damage variable sets to be unit. In fact, any change in principal strain or its direction

leads to update requirement of the global constitutive matrix, . Satisfying the fracture energy

conservation principle in the static and dynamic loading conditions, the no resistance strain is given

as

and (7)

where, hc is the characteristic dimension of the cracked Gaussian point and is assumed equal to the

third root of the Gaussian point’s contribution volume within the cracked element. The primed

quantities show the dynamic constitutive parameters. The strain-rate sensitivity of the specific

fracture energy is taken into account through the dynamic magnification factor DMFf as follows

(8)

As in Ardakanian et al. (2006), in the present study, the shear stiffness factors γ12, γ23 and γ13 in

Eq. (4) are determined based on the state of the Gaussian point in each principal direction in the

current time step. As softening within the considered element progresses, the shear stiffness factor

in the cracked Gaussian points decreases corresponding to the state of the principle strains and may

reach to zero value. Therefore, the constitutive matrices contributions of the cracked Gaussian

points and finally, the constitutive matrix of the considered element must be updated as these factors

are changed. 

In the proposed formulation, the Co-axial Rotating Crack Model (CRCM) is used to model the

behavior of the cracked Gaussian points within the cracked elements and the crack opening and

closing criterion is based on the principal strains. In addition, it has been shown that under cyclic

loading, there is residual strain in the closed Gaussian point. This concept has been used at the

element level (Ghrib and Tinawi 1995a, 1995b, Mirzabozorg 2004, Mirzabozorg et al. 2004,

Mirzabozorg and Ghaemian 2005, Ardakanian et al. 2006) and also, in the current study, in which

the total strain in each Gaussian point is decomposed into two components of the elastic and the

residual strain given as

(9)

where,  is the maximum principal strain which the Gaussian point has reached during the

previous cycles and λ is the ratio between the residual strain in the closed Gaussian point and the

maximum principal strain  and is normally given as 0.2. Fig. 1 shows the algorithm for the
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crack closing/reopening procedure which is utilized in the proposed numerical approach. In is worth

noting that the shown algorithm in Fig. 1 has been used at the element level in reference

(Mirzabozorg and Ghaemian 2005).

3. Validity and application in static and dynamic conditions

The 20-node iso-parametric brick finite element is utilized to model the structure, mathematically.

This element is recommended in 3D fracture analysis of concrete dams under static and dynamic

Fig. 1 State determination of the Gaussian Point, closing/reopening algorithm and fully crack state in the
cracked Gaussian points
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loading conditions. The requirement for integration and generation of the mass, stiffness and

damping matrices for this type of element is 27 Gaussian points in 3*3*3 order within the element. 

The main aspect of the proposed approach is in applying the cracking process on each Gaussian

point within the element instead of cracking the element. This is based on the average of all the

Gaussian point responses in which the energy dissipates within each cracked Gaussian point instead

of the entire cracked element. The validity of the proposed model and numerical algorithms are

considered using available experimental and theoretical results. 

 

3.1 Direct displacement control using simple unit element

The utilized element is the 20-node iso-parametric simple element with unit dimension in each

direction, shown in Fig. 2 (Mirzabozorg and Ghaemian 2005, Ardakanian et al. 2006, Mirzabozorg

et al. 2007). In spite of simplicity, this example is able to show the validity of the proposed

numerical model and the prepared finite element program. The modulus of elasticity, Poisson’s

ratio, the tensile strength and the specific fracture energy are assumed 20 GPa, 0, 2.0 MPa and

250 N/m, respectively. 

The incremental displacement in steps of 1*10−5 is applied on the free face. The element cracks

throughout 18 Gaussian points within its body on the two cracked parallel planes, which are parallel

with the supporting face. The first cracked plane including nine Gaussian points is in vicinity of the

loading face. The next cracked plane is in the middle plane within the element body.

Fig. 2 Unit 20-node iso-parametric element, direct displacement on free face

Fig. 3 Stress-strain curve resulted from Gaussian
point cracking and element cracking level

Fig. 4 Dissipated energy in the Gaussian point
cracking and the element cracking level
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The resulted stress-strain curve is shown in Fig. 3. The results obtained from the damage

mechanics model coincide with those obtained from the smeared crack approach reported in

Mirzabozorg et al. (2007). 

Fig. 4 shows the energy dissipated within the element due to the fracturing process. The energy

dissipation in each Gaussian point is initiated when the applied strain on the Gaussian point reaches

0.0001 which corresponds to the softening initiation. When the Gaussian Point is fully cracked, its

total dissipated energy corresponds to its volume contribution within the element. It is found that in

the conducted analysis, the dissipated energy is 520.67 N/m, which is a little more than 2 times of

the corresponding value resulted from the element level cracking model. Obviously, this difference

is due to cracking in the two fractured plane in the proposed model. It is worth noting that the

results are the same as that obtained using the smeared crack approach (Mirzabozorg et al. 2007). 

Similar to the results obtained using the smeared crack approach in Mirzabozorg et al. (2007),

cracks cannot be localized at the Gaussian points within the element body, and their use makes

sense only if the element size is equal to the material characteristic length. In fact, quadratic

elements allow localization into a region smaller than the element. This can be shown analytically

for a one-dimensional problem; in an element with quadratic displacement interpolation and three

Gaussian points, strain is localized into two Gaussian points only and the dissipation is not captured

correctly (Bazant and Planas 1998). This phenomenon can be seen in the conducted analysis in

which there are just two parallel and adjacent fractured planes within the element body. A

suggestion to solve the problem is to use the non-local or the crack band model (Bazant and Planas

1998). 

It must be noted that the proposed numerical approach is also verified using the indirect

displacement control algorithm and the resulted crack profiles within the body of the considered

model is the same as that reported in Mirzabozorg et al. (2007). 

3.2 Seismic analysis of koyna dam

Koyna dam in India is a classic example which has been used by several investigators as a

benchmark for seismic analysis of gravity dams (Ghrib and Tinawi 1995a, 1995b, Mirzabozorg et

al. 2004, Ardakanian et al. 2006). This structure is a concrete gravity dam which was designed

based on the no-tension concept. The design seismic coefficient was 0.05 and the resulted seismic

force was distributed uniformly over the height of the dam. The dam experienced an earthquake in

1967 with the magnitude of 6.5 on Richter scale which caused serious damages in various blocks.

The tallest block experienced a crack at the upper part which passed through the entire thickness.

Geometric properties of the tallest block and the position of the crack initiation on the downstream

face of the dam can be found in Mirzabozorg et al. (2007).

The 3D unit-thickness finite element model of the tallest block includes 520 20-node iso-

parametric elements and 3858 nodes. The upstream face is assumed vertical which has a negligible

difference with the actual dam body. The modulus of elasticity, Poisson’s ratio, the unit weight, the

tensile strength and the specific fracture energy are taken as 31.027 GPa, 0.2, 25.920 KN/m3,

1.5 MPa and 150 N/m, respectively. The dynamic magnification factor applied on the tensile

strength and the specific fracture energy is 1.2. The two components of Koyna earthquake in 1967

are used to excite the system in the upstream-down stream and the vertical directions. These

components are shown in Fig. 5. 

The direct integration method presented in Mirzabozorg et al. (2003) is used to solve the problem
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under dynamic excitations. The integration parameters α, β and γ are assumed −0.2, 0.36 and 0.7,

respectively. The integration time step is 0.001s. It must be noted that the time step of Koyna

earthquake record is 0.01s. At the first step, the self weight and the hydrostatic loads are applied on

the model. There is not any cracked element at the end of this stage. In the second step, dynamic

analysis is conducted. The Quasi Linear Damping mechanism (QDM) is used in dynamic equations

Fig. 5 Ground motion recorded at Koyna dam, Koyna earthquake 1967; (a) Stream component, (b) Vertical
component

Fig. 6 Crest displacement time history of Koyna dam due to the stream and vertical excitations of Koyna
earthquake record
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in which the stiffness proportional damping matrix of the element is computed based on the current

stiffness matrix of the structure. 

In Fig. 6, the time history of the crest displacement in the upstream-downstream direction is

compared with that resulted from the smeared crack approach (Mirzabozorg et al. 2007) and the

linear response of the system. No numerical instability was noted during the conducted dynamic

analysis. The resulted crack profiles within the three parallel planes through the thickness of the

model are shown in Fig. 7. There is excellent agreement between the resulted crack profiles with

that obtained from the experimental work and the other available reported theoretical results

(Mirzabozorg et al. 2007).

As discussed in USACE 2007, the acceptance criteria for linear-elastic time-history analysis of

gravity dams is based on Demand-Capacity Ratios (DCRs) and cumulative inelastic duration. DCR

Fig. 7 Crack profiles within the dam body; (a) Damage mechanics approach, (b) Smeared crack approach
(Mirzabozorg et al. 2007)
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for plain concrete structures are computed as the ratio of stress demands to static tensile strength of

the concrete. A systematic interpretation and evaluation of the results of time history analysis in

terms of the demand-capacity ratios, cumulative inelastic duration, spatial extent of overstressed

regions, and consideration of possible modes of failure form the basis for estimation of probable

level of damage or acceptable level of nonlinear response. The dam response to the MDE1 is

considered to be within the linear-elastic range of behavior with little or no possibility of damage if

the computed stress demand-capacity ratios are less than or equal to 1.0. The dam would exhibit

nonlinear response in the form of cracking of the concrete and/or opening of construction joints if

the estimated stress demand-capacity ratios exceed 1.0. The level of nonlinear response or cracking

is considered acceptable if demand-capacity ratios are less than 2.0 and limited to 15 percent of the

dam cross-sectional surface area, and the cumulative duration of stress excursions beyond the tensile

strength of the concrete falls below the performance curve given in USACE (2007). 

Generally, a nonlinear time-history analysis might be required to estimate the damage more

accurately. Using the proposed numerical approach, the damage index for each cracked Gaussian

point is obtained and finally, the damage index of the dam body can be extracted more accurately

than a linear analysis and therefore, judgment about the safety of the system is more precise. 

3.3 Nonlinear seismic analysis of morrow point arch dam

The Morrow Point dam is used to show the applicability of the proposed approach in modeling

the nonlinear dynamic behavior of arch dams. The considered dam was constructed on Gunnison

River in Colorado in a U-shape valley during 1963 to 1968. The height of the dam, the radius

curvature at the crest level and the crest length of the dam are 145.74 m, 114.3 m and 220.67 m,

respectively. The thickness of the central block is 3.66 m at the crest level and 15.85 m at the

foundation level. Fig. 8 shows the considered system which includes the finite element model of the

dam body and the reservoir with the length of about five times of the height of the dam. It is worth

noting that the considered model has been used in Mirzabozorg and Ghaemian (2005), Ardakanian

et al. (2006), Mirzabozorg at al. (2007).

The dam body is modeled using 40 20-node iso-parametric solid elements and the reservoir model

includes 1000 8-node fluid elements. The modulus of elasticity, Poisson’s ratio, the unit weight, the

true tensile strength and the ratio of the apparent to the true tensile strength, the specific fracture

energy and the dynamic magnification factor are 27.604 MPa, 0.2, 24027.15 N/m3, 2.5 MPa, 1.25,

1Maximum Design Earthquake

Fig. 8 FEM of the dam-reservoir system with rigid foundation; (a) Dam body, (b) Coupled dam-reservoir
system
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200 N/m and 1.30, respectively. The pressure wave propagation speed within the reservoir and the

unit weight of the water are 1436 m/s and 9807 N/m3, respectively. The wave reflection coefficient

is taken as a conservational value of 0.8. The system is excited using the three components of the

Taft earthquake in 21 July 1952 recorded at the Lincoln Tunnel School, shown in Fig. 9.

Applied loads on the system are the self weight, the hydrostatic pressure and the seismic load.

The system is analyzed using the staggered displacement method (Mirzabozorg et al. 2003). The

direct integration parameters α, β and γ are assumed −0.2, 0.36 and 0.7, respectively. The time

integration step is 0.001s and the quasi linear damping mechanism is used to model the energy

dissipation due to the damping. 

At the first step, the dam body cracked at the heel due to the self-weight and the hydrostatic load

as shown in Fig. 10. The initial crack profile, resulted from applying the static loads, propagates on

the upstream face when the system excited using the three components of the earthquake record. At

Fig. 9 Ground motion recorded at Taft Lincoln School Tunnel, California earthquake 1952; (a) Stream
component, (b) Cross stream component, and (c) Vertical component
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the end of the analysis, there are just two positions on the upstream face in which cracks propagate.

Other sections through the thickness of the dam body experience no cracks. Clearly, because of few

cracked Gaussian points within the dam body, the cracked elements do not affect the crest response

of the dam body and the crest displacement time history is the same as that resulted from the linear

analysis. In addition, as shown in Fig. 10, there are just negligible differences between the results

obtained from the damage mechanics approach and the smeared crack approach proposed by the

authors (Mirzabozorg et al. 2007).

Fig. 10 Cracked elements on the upstream face of dam body including cracking sequence, (a) Damage
mechanics approach, (b) Smeared crack approach (Mirzabozorg et al. 2007)

Fig. 11 Cracked Gaussian points within the dam body due to only the seismic loads including cracking
sequence, (a) Damage mechanics approach, (b) Smeared crack approach (Mirzabozorg et al. 2007)
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Fig. 11(a) shows the resulted crack profiles at the three layers of Gaussian points through the

thickness of the dam body when the system is analyzed just under the seismic load (excluding any

static loads). This analysis is conducted to consider cracking due to only dynamic loads and in

addition, to consider the effect of static loads on the cracking pattern within the dam body.

Comparing the crack profiles shown in Figs. 10 and 11, all the cracked Gaussian points at the

higher levels of the dam body and the cracked points on both the middle plane and the downstream

plane of the dam body are eliminated when the static loads are applied because of the stress

distributed within the dam body resulting from the arch action of the structure. This phenomenon is

common in arch dams. In Fig. 11(b), the results are compared with the crack profiles reported in

Mirzabozorg et al. (2007) and there is excellent agreement between the obtained crack profiles

using both the damage mechanics and the smeared crack approaches. 

In the last step, the system is excited using the earthquake components scaled by a facor of 1.7

after applying the static loads, to compare with the same analysis reported in Mirzabozorg et al.

(2007). Fig. 12(a) shows the resulted crack profiles in detail within the dam body and Fig. 12(b)

shows the crack profiles obtained from the smeared crack approach. As shown, the resulted crack

profiles for both models are in excellent agreement and both of them are in good agreement with

the common seismic behavior of arch dams. 

Similar to the gravity dams, there are acceptable criteria for safety evaluation of arch dams which

Fig. 12 Cracked Gaussian points within the dam body including cracking sequence, due to applying the static
and the scaled seismic loads by 1.7, (a) Damage mechanics approach, (b) Smeared crack approach
(Mirzabozorg et al. 2007)
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are based on the Demand-Capacity Ratios (DCRs) and cumulative inelastic duration within the dam

body (USACE 2007). Using the damage mechanics approach, the overstresses regions can be

estimated more accurately and therefore, judgment about the safety of the considered system can be

more realistic. 

4. Conclusions

A 3D damage mechanics model was developed which is able to simulate cracking at the Gaussian

point level. The validity of the proposed model due to the static and dynamic loading conditions

were considered using available experimental and numerical results and also, using the smeared

crack model proposed by the authors, in Mirzabozorg et al. (2007). It was found that the proposed

model gives reasonable results using the direct and indirect displacement algorithms in the static

conditions and the results are reasonable in comparison with the available data. In addition, dynamic

analysis of Koyna dam using the proposed method shows that the pertinent numerical algorithms

and the proposed model is stable in the dynamic conditions and gives excellent results compared

with the experimental and the other numerical results. Finally, the Morrow Point dam was analyzed

under static and dynamic loads. The conducted analysis includes the dam-reservoir interaction. It

was found that using the proposed method, the resulted profiles within the dam body can be studied

in detail and the crack propagation can be traced within the three layers of each element. Clearly,

tracing cracks through the thickness of the dam body in arch dams is a major step in terms of both

the dam safety evaluation and the dam design stage. It is worth noting that the results obtained form

the proposed approach are similar to those obtained using the smeared crack approach introduced by

the authors (Mirzabozorg et al. 2007). 

The main aspect of the proposed method is the ability of tracing crack propagation within the

mass concrete using coarse meshing of the finite element model. In addition, the stability of the

proposed method is excellent because of gradual change in the stiffness matrix of the finite element

model due to Gaussian point cracking instead of element cracking. The other aspect of the proposed

damage mechanics approach is its ability to identify a damage index to the cracked dam body

which is a significant factor in dam safety assessment based on the safety criteria. 
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