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Abstract. A new simple relation for the estimation of modal correlation coefficients is presented. It is
obtained from the decomposition of covariances of modal responses into background and resonant
contributions, as it is commonly done for the variances. Thanks to appropriate assumptions, the modal
correlation coefficients are estimated as weighted sums of two limit values, corresponding to the
background and resonant responses respectively. The weighting coefficients are expressed as functions of
the background-to-resonant ratios, which makes the proposed formulation convenient and easily accessible.
The simplicity of the mathematical formulation facilitates the physical interpretation. It is for example
proved that modal correlation coefficients can be non negligable even in case of well separated natural
frequencies, which is sometimes unclear in the litterature. The new relation is mainly efficient in case of
large finite element models. It is applied and validated on a finite element buffeting analysis of the
Viaduct of Millau, the highest bridge deck ever built so far.

Keywords: modal correlation; correlation coefficient; CQC; SRSS; buffeting analysis; background
response; resonant response; Viaduct of Millau.

1. Introduction

The dynamic analysis of slightly damped systems subjected to random low frequency excitations

concerns a wide class of physical problems. Among them, only a typical aspect of wind

engineering, the buffeting analysis of bridge decks, is herein investigated. Similar developments

could in principle be used in other domains.

The work of Davenport (1961, 1962) is commonly recognized as the first application of

probabilistic concepts to buffeting analysis of civil engineering structures. In these very early

developments, the equations of motion were solved in a modal space and in a frequency domain. In

order to avoid heavy Monte Carlo simulations inherent to time domain simulations (Rossi 2004,

Carrassale 2006, Costa 2007) and to take advantage of the modal reduction, a similar approach is

considered in this paper.

During the following developments (Scanlan 1978, Scanlan and Jones 1990), the single-mode

approach considered by Davenport was replaced by a multi-mode approach, but without modal

coupling, nor modal correlations. Because of its effectiveness and rapidity of application, this
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method, known as the SRSS (square root of the sum of the squares) combination technique, is still

widely used today. More recently Jain et al. (1996), Katsuchi et al. (1998), Chen et al. (2000), Chen

et al. (2001), and Chen and Kareem (2006) have illustrated the necessity to account for modal

coupling and correlation, in various contexts as buffeting analysis, aeroelastic bridge analysis and

equivalent static loading. These more precise models come naturally as a strict application of the

random vibration theory. They are based on the complete quadratic combination (CQC). This

combination is used by Ding et al. (2002) in the context of large finite element models. They

illustrate the necessity to account for modal correlations, but admit that the computational effort

required for this strict application of the random vibration theory is still very heavy.

Nowadays the design of geometrically complex bridges usually relies on finite element models

having a large number of degrees of freedom (DOFs). The projection of nodal forces into the modal

space remains the most time consuming operation, especially when the CQC has to be applied (see

Section 1.2). This is due to a strict application of the random vibration theory.

Nevertheless the effects of modal coupling and modal correlation are explained and justified

exhaustively with a 2-DOF model only (e.g., Preumont 1994). From a pragmatic viewpoint, it is

thus hard to believe that such heavy computations are necessary just because of the large size of the

finite element model, i.e., the structural geometry, and not because of the complexity of the

underlying phenomena.

This paper brings another solution to the consideration of modal correlations in buffeting analyses.

It is intermediate between both extremes: (i) an unprecise but fast approach (SRSS), which neglects

these correlations and is straightforward when combined with the usual decomposition of the

response into background and resonant contributions and (ii) a time-consuming strict application of

the random vibration theory (CQC).

In section 1, the context and nomenclature are introduced through a short recall of the random

vibration theory. The innovative part of the paper is section 2 where the approached expressions for

the correlation coefficients of modal responses are developed. Before some concluding comments,

the proposed relation is validated with a buffeting analysis of the Viaduct of Millau.

2. Random vibration theory

2.1 Strict application of the random vibration theory

An N-DOF finite element model of a structure is considered. It is supposed that the power

spectral density matrix (PSDM) of the nodal forces S(F)(ω) is known. The establishment of this

input data is not the purpose of the paper. In a buffeting analysis, this matrix results from the power

spectral densities of the components of wind turbulence, the wind coherence and the geometry of

the structure. Details about the establishment of S(F)(ω) are given for example by Simiu and Scanlan

(1996) or Holmes (2007) for 2-D or 3-D wind fields.

The mass M, stiffness K (and therefore mode shape Φ) and damping C matrices result from the

finite element model (e.g., Zienkiewicz 1991). They include both structural and aeroelastic terms.

Amongst available wind loading models (e.g., Denoël 2006), a quasi-steady approach is considered.

Part of the damping matrix comes therefore from the aerodynamic damping. The generalized mass,

stiffness and damping matrices are given by
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(1)

where the * symbolizes generalized quantities. The off-diagonal terms of these matrices are

responsible for modal coupling. Because of these coupling terms, the response in a mode cannot be

computed independently from the responses in the other ones. As the present developments aim at

studying the effects of modal correlation only, it is supposed that the generalized matrices are

diagonal. Hence, the resulting transfer function matrix

(2)

is also diagonal (j denotes the imaginary unit).

The analysis in the frequency domain requires the discretization of the frequency space into a set

of nf computation frequencies, chosen in such a way to represent accurately the transfer function

matrix and the PSDM of the nodal forces. Essentially a uniform distribution with supplementary

computation frequencies around the natural frequencies could be sufficient (e.g., SAP2000), but

more optimized distributions could also be used (Denoël 2005). For the slightly damped civil

engineering structures, many computation frequencies are required to represent precisely the peaks

in frequency response functions. Typically nf is approximately equal to 40 times the number M of

modes (nf  40M).

The first step of the stochastic analysis in the modal space is the projection of the forces into this

space

(3)

where T represents the matrix transposition. This step is the most time-consuming operation of a

stochastic analysis because of the large size of  and the large number nf of

computation frequencies. As a consequence of coherence in wind forces and complexity of mode

shapes, the PSDM of the generalized forces  is usually not diagonal, which indicates a

certain coherence in generalized forces.

The second step consists in solving the equations of motion, i.e., computing the PSDM of modal

responses

(4)

where the upper bar denotes the complex conjugate. Because it is supposed that the transfer

function matrix  is diagonal, each element of  is expressed by

. (5)

Non zero off-diagonal terms indicate that the modal responses are not uncorrelated. Their origins

are the corresponding off-diagonal terms of the PSDM of generalized forces (Eq. (3)). A modal

correlation signifies that the maximum values of modal responses do not occur independently in

each mode. The PSDM of modal responses  is the most complete response information. It

contains however often too much information and simplified quantities are derived from it (e.g.,

Preumont 1994). For instance the covariance matrix of modal responses is obtained by its
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integration along frequencies

. (6)

The covariance matrices of structural displacements  and internal forces  are finally

obtained by

(7)

(8)

where  represents the modal matrix associated to the considered force.

2.2 CQC and SRSS combinations

As they give information about the extreme values required for the structural design (e.g., Gurley

1997), the diagonal elements of  and  are major targets of a stochastic analysis. In the

following,  only is considered, but the similarity of Eqs. (7) and (8) indicates that identical

developments also hold for . The diagonal elements of , the variances, are expressed by

(9)

where the terms involving the variances and respectively the covariances of modal amplitudes are

grouped

(10)

In this expression,

(11)

represents the correlation coefficient between the modal responses in modes m and n (ρmn ∈ [−1;

+1]). Eq. (9) results from the strict application of the random vibration theory, and is known as the

complete quadratic combination (CQC). Each term of the double summation  involves a modal
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PSDM of modal amplitudes (Eq. (6)). These would not have to be computed if  only was
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proportional to the number of terms

. (12)

2.3 Decomposition into background and resonant components

The SRSS combination method requires the estimation of the modal variances only (Eq. (6)). In

practical applications, the definite integral required for their evaluation is avoided by writing

. (13)

The second term is the product of a very sharp function in the vicinity of the circular frequency

ωm in mode m and a slowly decreasing function. It is then commonly adopted to replace this slow

varying function by a constant value, equal to the ordinate of the function at the location of the

peak . The first function (into the brackets) has to be adapted too, otherwise a non-zero

asymptotic value for , would return an infinite variance. The diagonal elements of the

PSDM of modal responses are then approached by

. (14)

This approximation is valid for slightly damped structures and provided the energy of the loading

is contained in a frequency band much lower than the natural frequencies, which is usual in case of

turbulence loading. The integration along frequencies of Eq. (14) gives

(15)

where

(16)

(17)

are the background and resonant contributions to the modal variance. The damping ratio in mode m is

symbolized by  and  denotes the variance of the generalized force in mode

m. Thanks to these analytical relations for both components, this decomposition bypasses the heavy

integration of the PSDM and hence the discretization of the frequency domain. The computation

frequencies are thus limited to the list of natural frequencies  plus one, since the covariance

matrix of the nodal forces has to be projected into the modal space too (estimation of ). 

The ratio of computational efforts is thus reduced to
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This relation justifies the reason for which the CQC approach is considered to be time-consuming

(Ding et al. 2002). The difference is now significative, even for a couple of modes.

3. Estimation of modal covariances

3.1 General developments

The covariances between modal amplitudes in different modes  present a quasi-static

contribution and two higher contributions around both resonance peaks. It is thus difficult to

rigorously justify the use of the same simplified procedure for the estimation of covariances.

Nevertheless this paper suggests to continue using only one term for both resonance peaks.

Similarly to the developments of the previous section, this resonant term is obtained by replacing

the cross-power spectral density of the generalized force by an “equivalent white noise” (whose

intensity Swn is discussed later) and decomposing the product of transfer functions

 

 

 (19)

The integration along frequencies yields the modal covariance 

(20)
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(23)

which is therefore smaller than unity, and as small as ξm and ξn are different.

3.2 Selection of the intensity of the equivalent white noise

For well-separated natural frequencies (φ <<), the resonant component Rmn is small compared to

the background component Bmn. Its estimation is useless. In this case there is no correlation due to

the resonant term and the estimation of the intensity of the equivalent white noise is irrelevant.

For closely spaced natural frequencies (and similar damping ratios), φ is approaching unity, and

the resonant contribution must be estimated accurately, i.e., the intensity of the equivalent white

noise must be chosen adequately. By considering that the limit case  has to be reproduced

correctly and that the white noise intensity should be expressed in terms of the cross generalized

force only, a mean of the ordinates at each peak has to be considered as a good approximation for

Swn. In order to simplify the subsequent developments it is decided to opt for the geometric mean

. (24)

By introducing the coherence function of the generalized forces
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Eq. (24) is rewritten

. (26)
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(29)

The combination of Eqs. (21) and (29) gives a good approximation for the covariance of modal

amplitudes, no matter the proximity of natural frequencies.

3.3 Establishment of the correlation coefficients

The approached modal correlation coefficients are estimated through the decomposition of the

variances and covariances into their respective contributions

(30)

In order to recast this relation into a more interpretable formulation, let us introduce:

• the background-to-resonant ratio in mode m

(31)

which is a dimensionless modal indicator of the importance of the background component

compared to the resonant one. A parametric study of four representative cable-stayed bridges in

China (Gu et al. 2002) stated that this indicator is typically comprised between 0.2 and 0.4 for

fundamental modes. It could be larger for stiffer or more damped bridges, and smaller for other

bearing systems (suspension bridges for example);

• the background and resonant weighting coefficients (Fig. 1)
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ratios (bm, bn)
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They both belong to the interval [0;1] and, as shown here after, quantify the dispatching of the

correlation into background and resonant contributions, for both modes. For quasi-static

responses in modes m and n (bm >>, bn >>), γB tends towards unity and γR tends towards zero.

On the contrary, for resonant responses in both modes (bm<< , bn<<), γB tends towards zero and

γR tends towards unity.

With these notations, Eq. (30) is written

(33)

in which the remaining quotients are simplified by introducing Eqs. (16), (17), (21) and (29)

. (34)

This is the proposed formulation: the correlation coefficient of modal amplitudes is estimated by a

weighted combination of the correlation coefficient of the generalized forces  and a “dynamic”

correlation coefficient . This latter one is expressed as the product of two

functions (both comprised between −1 and +1) related to the proximity of the natural frequencies

and to the coherence of the generalized forces in the frequency band around the natural frequencies

of the considered modes.

As γB, γR and γB + γR are all smaller than unity (Fig. 1), the actual modal correlation coefficient is

smaller than the maximum value of  and . The proposed relation returns

well both intuitively expected limit cases:

• background response in both modes (bm >>, bn >> ):  and , the response is mainly

quasi-static and the correlation of the modal responses is equal to that of the generalized forces.

The dynamic correlation is without any importance and the proximity of the natural frequencies

is irrelevant;

• resonant response in both modes (bm << , bn << ):  and , the correlation coefficient

of the modal responses is equal to , the dynamic correlation coefficient.

The accuracy of the proposed relation is subjected to conditions similar to those necessary for the

decomposition of the variance: it is asymptotically exact for a damping ratio and an upper limit of

the frequency content of excitation tending both towards zero. These conditions are usually met in

practical applications.

Because of the estimation of , the new relation still requires the full projection of the PSDM

of nodal forces into the modal space. Compared to the CQC method, it just spares time thanks to

the limitation of the number of computation frequencies. The ratio of computational times is thus

given by 
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which makes the new method much faster than the strict application of the random vibration

theory.
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4. Example

The influence of modal correlations is illustrated and the new relation is validated with a finite

element analysis of the famous Viaduct of Millau (Barre 1999, Virlogeux 2003). With its pylons

dominating the Tarn valley about 350 m above the ground, this exceptional 7-span cable-stayed

bridge (approx. 2.5 km long) is the highest bridge ever built. The famousness of this bridge is not

only dedicated to its final shape and design but also to the erection technique. Indeed in order to

limit the risks undertaken during its construction, it was decided to opt for a deck launching on

temporary piers.

The bridge is modelled with a finite element software for structural applications (FineLg 2003).

The structure is represented with 2439 3-D beam finite elements (de Ville de Goyet 1995) (1425

nodes with 6 degrees of freedom each, leading thus to N = 8550 degrees of freedom). The particular

design, with seven spans of equal lengths, generates many close natural frequencies. And, because

of the flexibility of the bridge, this eigen mode demultiplication leads to 40 modes between 0.17 Hz

and 1 Hz! Table 1 gives a brief description of the major modes.

The proximity of natural frequencies and the similarity of mode shapes (see Fig. 2) for modes 17

and 19 let guess a susceptibility to high modal correlation, which is discussed in the following.

The statistical characteristics of the wind model are listed in Table 2. They have been identified

from on-site measurements. According to codes ruling the design of bridges subjected to wind

Fig. 2 Modes 17 and 19 have close natural frequencies and mode shapes. The correlation between these
modes is studied in the example 

Table 1 Natural frequencies and brief description of major modes 

Mode  [Hz] Description of mode

1  0.174 Out of plane bending of piles (and pylons) 2 and 3

2  0.199 In-plane bending of the deck and of the piles

3  0.221 Out of plane bending of piles (and pylons) 2, 3 and 4

4  0.250 In-plane bending of the deck

17  0.531 In-plane bending of pile 3

19  0.534 In-plane bending of pile 3 and of the deck

f
m

ω
m

2π
------=
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forces (e.g., Eurocode 1), these characteristics are defined for a central zone (B) and two backside

zones (A and C). Based on these data and on wind tunnel measured aerodynamic coefficients, the

PSDM of the wind forces are established (Cremona 2002). Together with the structural mode shapes

resulting from the structural analysis, these are the necessary data to strictly apply the random

vibration theory (see Section 1). A reference result (CQC) is obtained by following the steps

presented in Section 1 and integrating numerically the PSDM of modal responses. The SRSS and

proposed methods are both compared to this reference result.

Fig. 3(a) represents the modal damping ratios. They are the sum of:

• a structural damping common to each mode (ξ = 0.3%),

• an aerodynamic damping obtained from the mean wind velocity and aerodynamic coefficients

(quasi-steady wind model). This damping is evaluated in a modal space and depends thus of the

mode shapes. For example, it can be seen that in-plane bending modes are aerodynamically

Table 2 Statistical characteristics of the wind loading

Zone A Zone B Zone C

Reference Mean wind velocity [m/s] 38 34 36

Std of turbulence components [m/s] 6.5 / 6.5 / 4.5 5.5 / 5.5 / 4.0 5.5 / 5.5 / 4.0

# Longitudinal turbulence

Length Scales (Lx, Ly, Lz) [m] 250 / 90 / 90 250 / 90 / 90 250 / 90 / 90

Coherence Coefficients (Cy, Cz) 12 / 12 12 / 12 9 / 9

# Vertical turbulence

Length Scale (Lx, Ly, Lz) [m] 70 / 100 / 100 70 / 100 / 100 70 / 100 / 100

Coherence Coefficients (Cy, Cz)  12 / 12 12 / 12 9 / 9

# Transverse turbulence

Length Scale (Lx, Ly, Lz) [m] 30 / 40 / 40  30 / 40 / 40 30 / 40 / 40

Coherence Coefficients (Cy, Cz) 12 / 12 12 / 12 9 / 9

Wind profile Measured on site

Power Spectral density  Measured on site

Fig. 3 Modal characteristics of the structure 
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more damped than the other ones (upper dashed line).

Fig. 3(b) represents the standard deviations of the modal responses in the first 40 modes. Two

results are presented. The rigorous approach provides numerically integrated results (circles) used

for the CQC method. Because of the important sharpness of PSDs, a non uniform distribution of the

integration points is used to reduce the number of computation frequencies (Denoël 2005). Values

represented by crosses result from the decomposition into background and resonant contributions

(Eq. (15)). They are used for the SRSS and the proposed methods. The good matching between

both results is due to the low damping and the low frequency content of the loading. The error is

lower than 1% except for modes 17 to 19 (3% to 5%). This plot indicates also that modal

convergence can be considered to be reached with 40 modes.

The new method is based on the background-to-resonant ratio to interpolate between two limit

correlations. They are represented in Fig. 3(c). These ratios (bn) are in good accordance with the

order of magnitude reported by Gu et al. (2002).

Fig. 4 shows both limit correlations:

Fig. 4 (a) Correlation coefficients of the generalized forces, (b) Dynamic correlation coefficients, (c)
Correlation coefficients of modal responses obtained by numerical integration of the corresponding
PSDM (CQC approach), (d) Correlation coefficients of modal responses obtained with the simplified
proposed relation
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• (a) the correlation coefficients of the generalized forces. They are equal to zero (in practical

application, very small) when the mode shapes correspond to vibrations in orthogonal planes;

and they are larger when the mode shapes are similar (e.g., 17, 19). If the structure is very stiff

or highly damped, the correlation coefficient of the generalized coordinates is equal to this

value.

• (b) the dynamic coefficients defined by Eq. (34). They are related to the relative (influenced by

damping ratios) proximity of the natural frequencies (φ) and to the coherence of generalized

forces at natural frequencies . Both aspects are important. For example, the dynamic

correlation coefficient (b) is larger for modes 17 and 19 than for modes 17 and 18. This could

not be explained by considering the proximity of natural frequencies only; the reason is a higher

coherence in the generalized forces for modes 17 and 19 than for modes 17 and 18. If the

structure was very flexible (and slightly damped) the response would be mainly dynamic and the

modal correlation coefficients would be equal to these quantities.

Real structures are not perfectly stiff or perfectly flexible. The actual modal correlation

coefficients lie somewhere between or below these two extremes, since γB + γR is slightly smaller

than 1. Fig. 4(d) represents the correlation coefficient obtained with the proposed relation. They

have to be compared to those of Fig. 4(c), resulting from the strict application of the random

vibration theory. The good matching indicates that the simplified procedure gives a very good

representation of the exact correlation coefficients, with significantly lighter computational efforts.

The highest discrepancy concerns modes 17 to 19, for which even the decomposition of the

variance into background and resonant contributions is the less accurate. Fig. 5 represents the

absolute value of the difference between these results. The shaded representation (left) indicates that

the difference remains very small. The correlation between modes 17 and 19 is the worst

represented couple. The histogram of the difference of correlation coefficients (right) shows that the

deviation from the exact result is usually smaller than 0.05. The mean deviation is

(36)

Γmn( )

1

M
2

------- ρmn ρ̂mn–

n 1=

M

∑
m 1=

M

∑ 0.0148=

Fig. 5 Diffierence between the correlation coefficients obtained with the CQC approach and the proposed
method - Shaded representation of all values (left) and histogram obtained for the first 40 modes (right)
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Even if it does not give an accurate value of the correlation coefficient in modes 17 and 19, the

simplified method predicts a high correlation between them. Since these modes involve the bending

of the third pile, some differences can be expected in this part of the structure when the correlations

between modal responses are considered or not. This is illustrated in Fig. 6 which represents the

standard deviations of the in-plane bending, with and without modal cross-correlations (CQC and

SRSS) and with the proposed method. The computational efforts are also schematically represented.

In the bridge deck, all three methods give approximately the same result. At the foot of the pile, the

bending moments obtained with each method are 

MCQC = 1.20 108 Nm 

MNEW = 1.11 108 Nm (−7.5%)

MSRSS = 1.78 108 Nm (+48%) (37)

which quantifies rigorously the difference between the different methods. The result provided by the

proposed method is a worst case scenario, since the modal correlation between modes 17 and 19 is

the less accurate. This example demonstrates that the proposed method is a good compromise

between accuracy and computation time.

Fig. 6 In-plane bending moment diagram (standard deviations) obtained with the CQC, SRSS and the
proposed method
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5. Conclusions

The classical decomposition of the variances of modal responses into background and resonant

contributions is used to give a convenient estimation of modal correlations. They are represented by

a simple mathematical relation (Eq. (34)) and give therefore an interesting physical explanation to

the origin of the modal correlation. The modal correlations can come from the background or

resonant component, considered as extreme cases. In the first case, the modal correlation

coefficients are equal to those of the generalized forces, whereas they are equal to a defined

dynamic correlation coefficient in the second case (Eq. (34)).

The proposed relation provides an affordable access to a combination technique including

correlation. It is however much more computationally efficient than the CQC because it avoids the

discretization of the frequency space with a large number of frequencies. The proposed relation has

to be seen as an intermediate solution between the CQC and SRSS techniques, as a compromise

between accuracy and flexibility.
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