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Abstract. A numerical method is developed to investigate the effects of some geometric parameters and
density variation on frequency characteristics of the circular and annular membranes with varying density.
The discrete singular convolution method based on regularized Shannon’s delta kernel is applied to obtain
the frequency parameter. The obtained results have been compared with the analytical and numerical
results of other researchers, which showed well agreement. 
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1. Introduction

Membrane structures are frequently encountered in most practical acoustical and technological

applications. Analytical and numerical studies of the free vibration of circular and annular

membranes have also received a good deal of attention. Hence, many researchers in this area have

been carried out. Free vibration analysis of annular and circular membrane has been solved by

several authors (Laura et al. 1997, Jabareen and Eisenberger 2001, Buchanan and Peddieson 1999,

2005, Buchanan 2005, Casperson and Nicolet 1968, Willatzen 2002). An analysis of the free

vibration of circular and annular membranes has been presented by Laura et al. (1997). Jabareen

and Eisenberger (2001) proposed an exact method for free vibration analysis of non-homogeneous

circular and annular membranes. Buchanan and Peddieson (1999, 2005) and Buchanan (2005) used

Ritz and finite element method respectively, for vibration analysis of circular and elliptic

membranes with variable density. An experimental study has been made for vibrations of circular
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membrane by Casperson and Nicolet (1968). Exact power series solutions for axisymmetric

vibrations of circular and annular membranes with continuously varying density were presented by

Willatzen (2002). Mei (1969) presented a finite element solution of free vibration problem of

circular membranes under arbitrary tension. Oden and Sato (1697) applied the finite element method

for static analysis of elastic membranes. Analytical solutions of the free vibration problems of

arbitrarily shaped membranes have been investigated by Kang et al. (1999) and Kang and Lee

(2000) using non-dimensional dynamic influence function. Radial basis function-based differential

quadrature method was used for free vibration analysis of arbitrary shaped membrane by Wu et al.

(2007). Some important studies concerning analysis of membranes have been carried out, namely by

Leung et al. (2003), Houmat (2001, 2006), Masad (1996), Laura et al. (1997), Ho and Chen (2000),

Pronsato et al. (1999), and Gutierrez et al. (1998). 

In the past ten years, the method of discrete singular convolution (DSC) and differential

quadrature (DQ) methods have become increasingly popular in the numerical solution of initial and

boundary value problems (Wei 1999, 2001, 2002, Zhao et al. 2002, Lim et al. 2005, Civalek 2006,

2007, Wei et al. 2002, Xiang et al. 2002, Wang and Wang 2004, Shu et al. 2000, Shu and Richards

1992, Shu and Xue 1997, 1998, Shu 1996, 1999, Shu and Du 1997). The method of DQ and DSC

can yield accurate solutions with relatively much fewer grid points. It has been also successfully

employed for different plate problems (Wang and Lee 1996, Wang et al. 2004, Hang et al. 2005,

Xiang et al. 1993, Xiang and Zhang 2005, Xiang 2003, Liew and Liu 1999, 2000, Han and Liew

1997, Liew et al. 1997, Liew and Yang 2000, Xiang 2003).

In this paper, we examine the discrete singular convolution method for free vibration problem of

circular and annular membranes with varying density. The performance of the method is tested for

free vibration analysis of membranes considering a number of problems. The results are compared,

wherever possible, with the available analytical and numerical solutions. This is the first instance in

which the DSC method has been adopted for free vibration analysis of circular membranes.

2. Discrete singular convolution 

The discrete singular convolution (DSC) method is an efficient and useful approach for the

numerical solutions of differential equations. This method introduced by Wei in 1999. In the present

paper, details of the DSC method are not given; interested readers may refer to the works of (Wei

2001, Wei et al. 2002, Zhao et al. 2002, Lim et al. 2005, Civalek 2007). Since it was first

introduced by Wei (2001), the discrete singular convolution method has been applied solutions of

many problems (Civalek 2006, 2007, Wei et al. 2002, Xiang et al. 2002). Consider a distribution, T

and  as an element of the space of the test function. A singular convolution can be defined by

Wei (2001)

(1)

where  is a singular kernel. For example, singular kernels of delta type (Wei 2001)

(2)

Kernel  is important for interpolation of surfaces and curves, and  for

η t( )

F t( ) T*η( ) t( ) T t x–( )η x( ) xd
∞–

∞

∫= =

T t x–( )

T x( ) δ
n( )

x( ); n 0 1 2 …, , ,=( )=

T x( ) δ x( )= T x( ) δ
n( )

x( )=



Free vibration of circular and annular membranes with varying density 623

n > 1 are essential for numerically solving differential equations. With a sufficiently smooth

approximation, it is more effective to consider a discrete singular convolution (Wei 2001)

(3)

where Fα(t) is an approximation to F(t) and {xk} is an appropriate set of discrete points on which

the DSC (32) is well defined. Note that, the original test function η(x) has been replaced by f (x).

Recently, the use of some new kernels and regularizer such as delta regularizer (Wei et al. 2002,

Zhao et al. 2002, Lim et al. 2005, Civalek 2007) was proposed to solve applied mechanics problem.

The Shannon’s kernel is regularized as Zhao et al. (2002)

(4)

where ∆ is the grid spacing, σ is a regularization parameter. It is also known that the truncation

error is very small due to the use of the Gaussian regularizer, the above formulation given by

Eq. (4) is practically and has an essentially compact support for numerical interpolation. In the DSC

method, the function f (x) and its derivatives with respect to the x coordinate at a grid point xi are

approximated by a linear sum of discrete values f (xk) given by Wei (2001)

;  (5)

where  and superscript (n) denotes the nth-order derivative, and 2M + 1 is

the computational bandwidth which is centered around x and is usually smaller than the whole

computational domain. For example the second order derivative at x = xi of the DSC kernels for

directly given (Wei et al. 2002)

(6)

Second-order derivative in Eq. (6) is given as Wei (2001)

(7)
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3. Governing equations

Following the same notation given by Laura et al. (1997), consider a circular, annular membrane

of outer radius b, inner radius a and the radial coordinate r as shown in Fig. 1. The non-

dimensional governing differential equation for free vibration can be given as Laura et al. (1997)

(8)

Where W is the transverse deflection, ρ is the mass per unit area, ω is the circular frequency, and

T is the tension per unit length. The density of the membrane is the linear function of the x and

given in non-dimensional form written as follows

(9)

The related dimensionless quantities

(10)

Applying the discrete singular convolution to the governing equation yields

(11)

The boundary conditions are as follows

W = 0 at edges (12)

In the present study, we can’t obtain reliable results for standard grid distributions. In this study

we use the below formula for grid points in radial directions as proposed Wang and Wang (2004)

(13)
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Fig. 1 Geometry of annular membrane
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4. Numerical results

To validate the accuracy and applicability of the present formulation, the numerical results for

circular and annular membrane are compared to the results of Gutierrez (1998) by the Ritz,

differential quadrature and the exact solution (Jabareen and Eisenberger 2001). The obtained

frequency values are given in Table 1 for different radius ratio of the circular (a/b = 0) and annular

membranes. It is very clear from Table 1 that the rate of convergence is very good for both annular

and circular membranes with the increase in the grid numbers.

Table 2 summarizes numerical results of fundamental frequency of circular (a/b = 0) membranes

by DSC with different ratio of density. Frequency values obtained by DSC method are presented in

Table 2 together with the finite element solutions (Wei 1999), differential quadrature (Wei 1999)

and exact solution (Jabareen and Eisenberger 2001). The DSC results are generally in agreement with

the results produced from the analytical Jabareen and Eisenberger (2001) and the DQ results (Wei

1999). It is seen in these two tables that the present method yields accurate results.

Figs. 2-5 show the variation of fundamental frequency versus a/b for different density. In these

figures different values of n are taken into consideration. Namely, linear, parabolic, cubic and

Table 1 Convergence of fundamental frequency of circular and annular homogeneous membranes 

Methods a/b = 0 a/b = 0.4 a/b = 0.6 a/b = 0.8

Gutierrez et al. (1998) (Exact) 2.4048 5.1831 7.8284 15.6981
Gutierrez et al. (1998) (DQ) 2.4048 5.1830 7.8284 15.6981

Gutierrez et al. (1998) (FEM) 2.4049 5.1867 7.8337 15.7085
Jabareen and Eisenberger 

(Jabareen and Eisenberger (2001)
2.4048 - - -

Present DSC Results
N = M = 11

2.4058 5.1902 7.8305 15.7003

Present DSC Results
N = M = 13

2.4049 5.1856 7.8288 15.6986

Present DSC Results
N = M = 15

2.4048 5.1833 7.8285 15.6981

Present DSC Results
N = M = 17

2.4048 5.1830 7.8285 15.6981

Present DSC Results
N = M = 19

2.4048 5.1830 7.8285 15.6981

Table 2 Comparison of fundamental frequency of circular (a/b = 0) membranes 

α
Ref. 2
Exact

Ref.21
DQ

Ref.21
FEM

Present DSC results

N = 13 N = 15

0 2.4048 2.4048 2.4049 2.4048 2.4048
0.5 2.1827 2.1827 2.1828 2.1828 2.1827
1.0 2.0108 2.0108 2.0109 2.0111 2.0108
1.5 1.8731 1.8731 1.8732 1.8732 1.8730
2.0 1.7598 1.7598 1.7600 1.7599 1.7598

ρ r( ) ρ0 1 αr+( )=[ ]
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reverse proportional density cases are taken into account. In general, the values of frequency

increase with an increase in the radius ratio for membranes with different value of α. Fig. 6

Fig. 2 Variation of fundamental frequency versus a/b
for linear density (1 + αr)

Fig. 3 Variation of fundamental frequency versus a/b
for parabolic density (1 + αr2)

Fig. 4 Variation of fundamental frequency versus a/b
for cubic density (1 + αr3)

Fig. 5 Variation of fundamental frequency versus a/b
for reverse proportional density (1 + αr−1)
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Fig. 6 Variation of fundamental frequency versus a/b
for different value of n (1 + rn)

Fig. 7 Variation of fundamental frequency of circular
(a/b = 0) membrane versus α for different
value of n (1 + αrn)

Fig. 8 Variation of fundamental frequency of annular
and circular membrane versus α for different
value of a/b

Fig. 9 Variation of first three frequency values of
annular and circular membrane versus a/b for
linear density (α = 1; n = 1)
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illustrates the fundamental frequency of annular membrane versus a/b for different value of n. It is

shown that the frequencies for the annular membrane increase rapidly with radius ratio. With the

increase of a/b ratio the effect of the n value on the frequency parameter is insignificant. The

influence of the effect of the parameter α on the fundamental frequency is studied by comparing the

results for circular membranes with varying density. The result is depicted in Fig. 7. It is concluded

that, the frequency parameter is uniformly decreased when the parameter α increases. It is also

shown in this figure that the frequency increases with the increasing value of n. Fig. 8 shows the

effect of inhomogeneity parameter α on frequency for different radius ratio. As expected, the

frequency value is minimum for the circular membrane (a/b = 0). In other words, it is concluded

that the frequency parameter generally increases as radius ratio increase. It may be also noticed that

with increasing density parameter, the frequency decreases. Fig. 9 displays the effects of inner-to-

outer radius ratio on the frequency value. Linear density is considered. From Fig. 9, it is clear that

the inner-to-outer radius ratio is an effective magnitude on frequency value. The frequencies for the

annular membrane increase quickly with inner-to-outer radius ratio at any mode numbers. This

increased in the frequencies with the a/b ratio is due to an increased in the inner radius of the

annulus. Fig. 10 describes the relationship between frequency and α for first three axisymmetric

modes. The frequency parameter decreases rapidly for small inhomogeneity parameter (α ≤ 1).

Natural frequencies and corresponding mode shapes for circular membrane are depicted in

Figs. 11-13 for different value of tension. It is shown from these figures that, the frequency value

are directly related with the value of applied tension. The frequency values are rapidly increased

with the increasing value of T. Also, the applied tension is more significant effect on related mode

shapes. 

Fig. 10 Variation of first three frequency values of circular membrane (a/b = 0) versus α for linear density
(n = 1)
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Fig. 11 Natural frequencies and corresponding mode shapes for circular membrane (T = 1 N/mm2)
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Fig. 12 Natural frequencies and corresponding mode shapes for circular membrane (T = 10 N/mm2)
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Fig. 13 Natural frequencies and corresponding mode shapes for circular membrane (T = 100 N/mm2)
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5. Conclusions

The discrete singular convolution method is successfully applied to free vibration problem for

circular and annular membranes with varying density. The effects played by inner-to-outer radius

ratio, variation of density, inhomogeneity parameter, and mode number are studied. Numerical

examples illustrating the accuracy and convergence of the DSC method for free vibration problem

of circular and annular membranes are presented. It is found that the convergence of the DSC

approach is very good and the results agree well with those obtained by other researchers. In

addition, the new numerical DSC algorithm has been examined and found to be simple, accurate

and efficient.

Acknowledgements

The financial support of the Scientific Research Projects Unit of Akdeniz University is gratefully

acknowledged. 

References

Buchanan, G.R. (2005), “Vibration of circular membranes with linearly varying density along a diameter”, J.
Sound Vib., 280, 407-414.

Buchanan, G.R. and Peddieson, Jr. J.  (1999), “Vibration of circular and annular membranes with variable
density”, J. Sound Vib., 226(2), 379-382.

Buchanan, G.R. and Peddieson, Jr. J. (2005), “A finite element in elliptic coordinates with application of
membrane vibration”, Thin Wall. Struct., 43, 1444-1454.

Casperson, L.W. and Nicolet, M.A. (1968), “Vibrations of a circular membrane”, Am. J. Phys., 36(8), 669-671.
Civalek, Ö.  (2007), “Three-dimensional vibration, buckling and bending analyses of thick rectangular plates

based on discrete singular convolution method”, Int. J. Mech. Sci., 49, 752-765.
Civalek, Ö. (2006), “An efficient method for free vibration analysis of rotating truncated conical shells”, Int. J.

Press. Vess. Piping, 83, 1-12.
Civalek, Ö. (2007), “A parametric study of the free vibration analysis of rotating laminated cylindrical shells

using the method of discrete singular convolution”, Thin Wall. Struct., 45, 692-698.
Civalek, Ö. (2007), “Free vibration and buckling analyses of composite plates with straight-sided quadrilateral

domain based on DSC approach”, Finite Elem. Anal. Des., 43, 1013-1022.
Civalek, Ö. (2007), “Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by

DSC-HDQ methods”, Appl. Math. Model., 31, 606-624.
Civalek, Ö. (2007), “Numerical analysis of free vibrations of laminated composite conical and cylindrical shells:

Discrete singular convolution (DSC) approach”, J. Comput. Appl. Math., 205, 251-271.
Gutierrez, R.H., Laura, P.A.A., Bambill, D.V. and Jederlinic, V.A. (1998), “Axisymmetric vibrations of solid

circular and annular membranes with continuously varying density”, J. Sound Vib., 212(4), 611-622.
Han, J.B. and Liew, K.M. (1997), “Analysis of moderately thick circular plates using differential quadrature

method”, J. Eng. Mech., 123(2), 1247-1252.
Hang, L.T.T., Wang, C.M. and Wu, T.Y. (2005), “Exact vibration results for stepped circular plates with free

edges”, Int. J. Mech. Sci., 47, 1224-1248.
Ho, S.H. and Chen, C.K. (2000), “Free vibration analysis of non-homogeneous rectangular membranes using a

hybrid methods”, J. Sound Vib., 233(3), 547-555.
Houmat, A. (2001), “A sector Fourier p-element for free vibration analysis of sectorial membranes”, Comput.

Struct., 79, 1147-1152.



Free vibration of circular and annular membranes with varying density 633

Houmat, A. (2006), “Free vibration analysis of arbitrarily shaped membranes using the trigonometric p-version
of the finite element method”, Thin Wall. Struct., 44, 943-951.

Jabareen, M. and Eisenberger, M. (2001), “Free vibrations of non-homogeneous circular and annular
membranes”, J. Sound Vib., 240(3), 409-429.

Kang, S.W. and Lee, J.M. (2000), “Application of free vibration analysis of membranes using non-dimensional
dynamic influence function”, J. Sound Vib., 234, 455-470.

Kang, S.W., Lee, J.M. and Kang, Y.J. (1999), “Vibration analysis of arbitrarily shaped membranes using non-
dimensional dynamic influence function”, J. Sound Vib., 221, 117-132.

Laura, P.A.A., Bambill, D.V. and Gutierrez, R.H. (1997), A note on transverse vibrations of circular, annular,
composite membranes”, J. Sound Vib., 205(5), 692-697.

Laura, P.A.A., Rossi, R.E. and Gutierrez, R.H. (1997), “The fundamental frequency of non-homogeneous
rectangular membranes”, J. Sound Vib., 204(2), 373-376.

Leung, A.Y.T., Zhu, B., Zheng J. and Yang, H. (2003), “A trapezoidal Fourier p-element for membrane
vibrations”, Thin Wall. Struct., 41, 479-491.

Liew, K.M. and Liu, F.-L. (2000), “Differential quadrature method for vibration analysis of shear deformable
annular sector plates”, J. Sound Vib., 230(2), 335-356.

Liew, K.M. and Yang, B. (2000), “Elasticity solution for free vibrations of annular plates from three-dimensional
analysis”, Int. J. Solids Struct., 37, 7689-7702.

Liew, K.M., Han, J.-B. and Xiao, Z.M. (1997), “Vibration analysis of circular Mindlin plates using the
differential quadrature method”, J. Sound Vib., 205(5), 617-630.

Lim, C.W., Li, Z.R. and Wei, G.W. (2005), “DSC-Ritz method for high-mode frequency analysis of thick
shallow shells”, Int. J. Numer. Meth. Eng., 62, 205-232.

Lim, C.W., Li, Z.R., Xiang, Y., Wei, G.W. and Wang, C.M. (2005), “On the missing modes when using the exact
frequency relationship between Kirchhoff and Mindlin plates”, Adv. Vib. Eng., 4, 221-248.

Liu, F.-L. and Liew, K.M. (1999), “Free vibration analysis of Mindlin sector plates: Numerical solutions by
differential quadrature method”, Comput. Meth. Appl. Mech. Eng., 177, 77-92.

Masad, J.A. (1996), “Free vibrations of a non-homogeneous rectangular membrane”, J. Sound Vib., 195, 674-
678.

Mei, C. (1969), “Free vibrations of circular membranes under arbitrary tension by the finite element method”, J.
Acoust. Soc. Am., 46(3), 693-700.

Oden, J.T. and Sato, T. (1697), “Finite strains and displacements of elastic membranes by the finite element
method”, Int. J. Solids Struct., 3, 471-488.

Pronsato, M.E., Laura, P.A.A. and Juan, A. (1999), “Transverse vibrations of a rectangular membrane with
discontinuously varying density”, J. Sound Vib., 222(2), 341-344.

Shu, C. (1996), “Free vibration analysis of composite laminated conical shells by generalized differential
quadrature”, J. Sound Vib., 194, 587-604.

Shu, C. (1999), “Application of differential quadrature method to simulate natural convection in a concentric
annulus”, Int. J. Numer. Meth. Fluids, 30, 977-933.

Shu, C. and Du, H. (1997), “A generalized approach for implementing general boundary conditions in the GDQ
free vibration analysis of plates”, Int. J. Solids Struct., 34, 837-846.

Shu, C. and Richards, B.E. (1992), “Application of generalized differential quadrature to solve two-dimensional
incompressible navier-stokes equations”, Int. J. Numer. Meth. Fluids, 15, 791-798.

Shu, C. and Xue, H. (1997), “Explicit computations of weighting coefficients in the harmonic differential
quadrature”, J. Sound Vib., 204(3), 549-555.

Shu, C. and Xue, H. (1998), “Comparison of two approaches for implementing stream function boundary
conditions in DQ simulation of natural convection in a square cavity”, Int. J. Heat Fluid Flow, 19, 59-68.

Shu, C., Chen, W. and Du, H. (2000), “Free vibration analysis of curvilinear quadrilateral plates by the
differential quadrature method”, J. Comp. Phy., 163, 452-466.

Wang, C.M. and Lee, K.H. (1996), “Deflection and stress-resultants of axisymmetric Mindlin plates in terms of
corresponding Kirchhoff solutions”, Int. J. Mech. Sci., 38(11), 1179-1185. 

Wang, C.M., Xiang, Y., Watanabe, E. and Usunomiya, T. (2004), “Mode shapes and stress-resultants of circular
Mindlin plates with free edges”, J. Sound Vib., 276(3-5), 511-525. 



634 Hakan Ersoy, Lütfiye Özpolat and Ömer Civalek

Wang, X. and Wang, Y. (2004), “Re-analysis of free vibration of annular plates by the new version of differential
quadrature method”, J. Sound Vib., 278(3), 685-689. 

Wei, G.W. (1999), “Discrete singular convolution for the solution of the Fokker-Planck equations”, J. Chem.
Phys., 110, 8930-8942.

Wei, G.W. (2001), “A new algorithm for solving some mechanical problems”, Comput. Meth. Appl. Mech. Eng.,
190, 2017-2030.

Wei, G.W. (2001), “Discrete singular convolution for beam analysis”, Eng. Struct., 23, 1045-1053.
Wei, G.W. (2001), “Vibration analysis by discrete singular convolution”, J. Sound Vib. 244, 535-553.
Wei, G.W., Zhao Y.B. and Xiang, Y. (2002), “A novel approach for the analysis of high-frequency vibrations”, J.

Sound Vib., 257(2), 207-246.
Wei, G.W., Zhao Y.B. and Xiang, Y. (2002), “Discrete singular convolution and its application to the analysis of

plates with internal supports. Part 1: Theory and algorithm”, Int. J. Numer. Meth. Eng., 55, 913-946.
Willatzen, M. (2002), “Exact power series solutions for axisymmetric vibrations of circular and annular

membranes with continuously varying density in the general case”, J. Sound Vib., 258(5), 981-986.
Wu, W.X., Shu, C. and Wang, C.M. (2007), “Vibration analysis of arbitrarily shaped membranes using local

radial basis function-based differential quadrature method”, J. Sound Vib., 306, 252-270.
Xiang, Y. (2002), “Exact vibration solutions for circular Mindlin plates with multiple concentric ring supports”,

Int. J. Solids Struct., 39, 6081-6102.
Xiang, Y. (2003), “Vibration of circular Mindlin plates with concentric elastic ring supports”, Int. J. Mech. Sci.,

45(3), 497-517.
Xiang, Y. (2003), “Vibration of circular Mindlin plates with concentric elastic ring supports”, Int. J. Mech. Sci.,

45, 497-517.
Xiang, Y. and Zhang, L. (2005), “Free vibration analysis of stepped circular Mindlin plates”, J. Sound Vib., 280,

633-655.
Xiang, Y., Liew, K.M. and Kitipornchai, S. (1993), “Transverse vibration of thick annular sector plates”, J. Eng.

Mech., 119, 1579-1597.
Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002), “Discrete singular convolution and its application to the analysis of

plates with internal supports. Part 2: Applications”, Int. J. Numer. Meth. Eng., 55, 947-971.
Zhao, Y.B., Wei, G.W. and Xiang, Y.  (2002), “Discrete singular convolution for the prediction of high frequency

vibration of plates”, Int. J. Solids Struct., 39, 65-88.
Zhao, Y.B., Wei, G.W. and Xiang, Y. (2002), “Plate vibration under irregular internal supports”, Int. J. Solids

Struct., 39, 1361-1383.




