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Abstract. In this paper the results of a series of experimental tests upon three-point bending specimens
made of polystyrene and containing re-entrant corners are firstly described. Tests involved different notch
angles, different notch depths and finally different sizes of the samples. All the specimens broke at the
defect, as expected because of the material brittleness and, hence, the generalized stress intensity factor
was expected to be the governing failure parameter. Recorded failure loads are then compared with the
predictions provided by a fracture criterion recently introduced in the framework of Finite Fracture
Mechanics: fracture is assumed to propagate by finite steps, whose length is determined by the
contemporaneous fulfilment of energy balance and stress requirements. This fracture criterion allows us to
achieve the expression of the generalized fracture toughness as a function of the tensile strength, the
fracture toughness and the notch opening angle. Comparison between theoretical predictions and
experimental data turns out to be more than satisfactory.

Keywords: three-point bending test; V-notch; fracture toughness; tensile strength; Finite Fracture
Mechanics.

1. Introduction

Criteria assuming that failure of quasi-brittle materials is affected by the stresses acting at a finite

distance from the crack tip are widely used inside the Scientific Community. These approaches can

be grouped together under the general term of Theory of Critical Distances (Taylor 2004), in which

linear-elastic analysis is combined with a material-dependent length. Among these criteria, the most

common is the average stress criterion, which assumes as a critical parameter the average stress

over a characteristic material length ahead of the crack tip. It dates back to Neuber (1958) and

Novozhilov (1969), and, afterwards, several researchers have applied it in a wide range of

geometries and materials: see, for instance, notch analysis (Seweryn 1995, Carpinteri and Pugno
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2005) and fatigue problems (Taylor 1999). However, this kind of criteria disregards energy balance

considerations which, as well known, are the basis of the Linear Elastic Fracture Mechanics.

On the other hand, the novelty of the criterion used in the present paper and proposed by Cornetti

et al. (2007) relies on the simultaneous fulfilment of energy balance and stress requirement under

the assumption of a finite crack extension: i.e., failure is achieved whenever there is a segment of

length ∆ ahead of the notch tip over which the stress resultant is equal to σu ∆, and, contemporarily,

the energy available for that crack extension is equal to GF ∆; σu and GF are the material tensile

strength and fracture energy, respectively. Differently from the average stress criterion, the length ∆
is no more a material constant but a structural parameter, thus able to take the interaction between

the finite crack extension and the geometry of the specimen into account. Henceforth, we refer to

this criterion as the coupled Finite Fracture Mechanics (FFM) criterion. Aim of the present paper is

to present experimental results obtained testing V-notched specimens and to show that satisfactory

theoretical predictions may be obtained by exploiting the coupled FFM criterion.

The plan of the paper is as follows. In Section 2, the results of a series of experimental tests upon

three-point bending specimens made of polystyrene and containing re-entrant corners are firstly

described. Tests involved different notch angles, different notch depths and finally different sizes of

the samples. In Section 3, the basic equations of the coupled FFM criterion are briefly outlined and

its particularization to determine the strength of a V-notched specimen is recalled (Carpinteri et al.

2008). Eventually, in Section 4 it is shown that theoretical predictions are in a fair agreement with

the experimental data obtained.

2. Three-point bending tests of V-notched specimens

A series of tests with notched three-point bending specimens made of polystyrene was carried out.

Note that data about polystyrene specimens are not so common in the literature. Although brittle for

usual laboratory sizes, polystyrene is less brittle than PMMA, which is considered as the archetype

of brittle polymers, and for which a large amount of data is already available (see e.g., Carpinteri

1987, Seweryn 1994, Dunn et al. 1997).

2.1 Description of the tests

The specimen geometry is as in Fig. 1. Three kinds of tests were performed by varying the notch

angle ω (test 1), the notch depth d (test 2) and the specimen dimensions l, b and d in a proportional

Fig. 1 Three-point bending test of a V-notched specimen
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way (test 3), respectively.

Notched flexure specimens were initially obtained from a polystyrene sheet with the following

dimensions: the thickness t was equal to 3.7 mm (which is enough to get plane strain conditions);

the length l and the height b were equal to 76 and 18 mm.

The notch wedge angles were ω = 60o, 120o and 150o. A notch depth of d = 1.8 mm (d/b = 1/10)

was firstly machined for each of the three notch angles mentioned (test 1). Then, for the 120o-notch

samples, three other notch depths were machined: d = 0.2, 0.6 and 10.8 mm. These values yield d/b

ratios of 1/90, 1/30 and 6/10, respectively (test 2). Finally, keeping the notch angle ω fixed to 120o

and the relative notch depth d/b to 1/10, all the specimen dimensions (except the thickness t) were

decreased by a factor of five. This corresponds to: l = 15.2 mm, b = 3.6 mm, d = 0.36 mm (test 3,

Fig. 2).

Five identical specimens were tested for each of the seven geometries contemplated. Moreover,

five plain specimens were tested to obtain the tensile strength value σu, which was found equal to

70.6 MPa. i.e., a total of forty specimens was tested. Anyway, beyond the tensile strength, also the

fracture toughness is required to predict the failure load according to the coupled FFM criterion (see

Section 3). This was not obtained experimentally. Thus a best fit procedure exploiting the data of all

the notched specimens was used to get its value (an analogous procedure was used by Seweryn

(1995)): KIc = 2.23 MPa m.

Test 1 and test 2 were carried out at a strain rate of 10 mm/min. On the other hand, a different

machine was used to carry out test 3 because of the lower distance between the two supports:

specimens were tested under a strain rate of 1 mm/min. 

Specimens were machined in order to have a V-notch as sharp as possible. They were then

checked with a measuring microscope: the maximum notch root radius was equal to 0.02 mm for

the geometry with ω = 60o; in all the other cases, it was smaller than 10 mm, i.e., the instrument

precision. Therefore, in the theoretical analysis, we considered the notch as perfectly sharp, i.e., we

assumed that the test results are not affected by so small notch root radii.

To what concerns test 1, note that the specimen dimensions are similar to those tested by Dunn et al.

(1997). They carried out three-point bending tests on PMMA samples with notch opening angles

equal to 60o, 90o and 120o.

On the other hand, cases considered in test 2 are interesting since they represent the limit cases

for the criteria based on the generalized fracture toughness to work, i.e., very small and very large

notch depths.

Fig. 2 Three-point bending test of a polystyrene beam (test 3)
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Eventually, test 3 was carried out to catch the well known size scale effects (Carpinteri 1987), i.e.,

embrittlement of the structural response as the size increases.

2.2 Experimental results and physical considerations

Critical values of the load under which crack begins to propagate from the notch vertex, recorded

on the bending testing machine, are given in Table 1, Table 2 and Table 3 for test 1, test 2 and test

3, respectively. The divergence of the standard deviation over the average is relatively small in all

the cases, the maximum deviation being 6.3%. This highlights the good repeatability in the tests and

the small scatter experienced.

It is observed that the critical load increases as the notch angle increases and/or as the notch depth

decreases. Anyway, there is not a significant difference between the failure load for the 60o-notch

samples and the 120o-notch samples. This interesting result will be confirmed by theoretical

analysis.

The polystyrene fracture was of brittle character and no plastic strains were observed in test 1 and

2: all the specimens broke at the defect. On the contrary, a more ductile behaviour was observed

during test 3: the two pieces into which specimens used to shatter, always remained attached after

failure, revealing the presence of a plastic hinge. Anyway this is not so surprising if we refer to the

brittleness number s

Table 1 Results test 1: critical failure load [N] for polystyrene specimens with different notch opening angles
ω (d/b = 0.1) and coefficient of variation (standard deviation/average) 

ω 1 2 3 4 5 Avg. St.Dev./Avg.

60o 332.0 322.9 319.5 345.0 293.2 322.5 0.06

120o 317.7 342.2 324.7 320.2 308.7 322.7 0.04

150o 369.2 327.0 327.0 345.5 340.5 341.8 0.05

Table 2 Results test 2: critical failure load [N] for polystyrene specimens with different notch depths d/b (ω =
120o) and coefficient of variation (standard deviation/average) 

d/b 1 2 3 4 5 Avg. St.Dev./Avg.

0 751.0 779.5 809.2 739.8 775.0 770.9 0.03

1/90 592.2 520.0 507.7 518.5 526.5 533.0 0.06

1/30 456.5 453.1 414.0 446.5 445.0 443.0 0.04

1/10 317.7 342.2 324.7 320.2 308.7 322.7 0.04

6/10 60.0 60.4 57.9 62.4 63.3 60.8 0.03

Table 3 Results test 3: critical failure load [N] for polystyrene specimens with different sizes (d/b = 0.1, ω =
120o) and coefficient of variation (standard deviation/average) 

Scaling factor 1 2 3 4 5 Avg. St.Dev./Avg.

1 317.7 342.2 324.7 320.2 308.7 322.7 0.04

0.2 107.8 109.1 106.0 113.2 102.0 107.6 0.03
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(1)

where b is a characteristic length of the structure, e.g., the specimen height in the present case. The

brittleness number s is a non-dimensional quantity, introduced by Carpinteri (1981), which describes

in a unitary and synthetic manner the embrittlement of the structural response as the size increases.

Brittle structural behaviours are generally expected for low brittleness numbers (Carpinteri et al.

2003). In the next sections, predictions will refer to a brittleness number s = 0.236 for samples of

test 1 and test 2 and s = 0.503 for samples of test 3.

3. Coupled finite fracture mechanics criterion

As stated in the introduction, the average stress criterion disregards energy balance. To overcome

this shortcoming, a criterion according to which fracture propagates when the energy available for a

finite crack advance reaches a critical value was recently proposed (Pugno and Ruoff 2004, Taylor

et al. 2005). This approach was named Finite Fracture Mechanics and represents the energy

counterpart of the average stress criterion. It should be noted that FFM bypasses the stress

requirements for crack growth. However the two approaches, i.e., the energetic and the stress

criterion, can be satisfied contemporaneously by removing the assumption that the finite crack

extension is constant (Leguillon 2002, Cornetti et al. 2007). According to the coupled FFM

criterion, failure takes place whenever (Cornetti et al. 2007)

(2)

where x is the direction of crack growth and x = 0 corresponds to the notch tip (see, e.g., Fig. 1),

σy(x) is the stress normal component directed along the y-axis, a the crack length, KI(a) the stress

intensity factor (SIF) and ∆ the finite crack extension. The first equation is the stress requirement

for crack propagation and, provided that ∆ is no more a material constant, it coincides with the

average stress criterion. On the other hand, the second equation represents the energy balance, since,

dividing both sides by the Young modulus in plane strain condition E', the integrand function at the

left hand side is the strain energy release rate and, at the right hand side, the fracture energy appears

according to Irwin’s relationship (GF = KIc
2/E').

Eq. (2) represents a system of two equations in the two unknowns: σf i.e., the failure load

(implicitly embedded in the functions σy(x) and KI(a)), and ∆, i.e., the crack extension. While each

single equation represents only a necessary condition for failure, the fulfilment of both of them

represents a necessary and sufficient condition for fracture to propagate. From a physical point of

view, the criterion expressed in Eq. (2) is equivalent to state that fracture is energy driven but a

sufficiently high stress field must act in order to trigger crack propagation.

In this Section the coupled FFM criterion is applied to the strength prediction of TPB specimens

with a V-notch at a mid-span. Let us consider the specimen geometry of Fig. 1. By means of
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dimensional analysis it is possible to write the generalized SIF as:

(3)

where f is the so-called shape function and λ is an exponent which depends on the angle ω

according to the classical Williams’ analysis: λ = λ(ω). In order to compute the values of the shape

function f, the value of the generalized SIF KI
* for unit load is needed. Therefore a FEA was

performed by using the LUSAS ® code for each tested geometry. Then, by means of the H-

integrals (Sinclair et al. 1984), the relative SIFs were evaluated leading to the values of f (Tables 4

and 5) to be inserted into Eq. (3). 

Because of structural brittleness, the governing failure parameter is expected to be KI
*, i.e., the

coefficient of the dominant term of the stress field at the notch tip. In other words, we assume that

failure takes place whenever KI
* = , where  is the generalized toughness. Therefore, in

critical conditions, Eq. (3) becomes

(4)

and, if ω = 180o, yields

(5)

where  and  are the failure loads for a notch opening angle equal to ω and to 180o,

respectively. For the sake of simplicity, the dependence of the shape function on the specimen

slenderness l/b is not given explicitly, since it was kept constant in all the tests. Moreover, note that

the value of f corresponding to ω = 180o can be found in structural mechanics classical books (it

provides the maximum normal stress for an un-notched TPB specimen, whose height is b-d).

The coupled FFM criterion is now applied to determine the values of the generalized toughness as

a function of the notch opening angle ω. To this purpose, it is necessary to find the expressions for

the stress field σy(x) and for the SIF KI (a) to be inserted into the system (2). If the crack

advancement ∆ is small enough with respect to the other geometrical quantities, the stress field

σy(x) can be sufficiently well described by its asymptotic expansion

(6)

On the other hand, the SIF KI(a) can be obtained from the weight functions providing the SIF for
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Table 4 Values of the shape function f (Eq. (4)) for different notch opening angles ω (d/b = 0.1) 

ω 0o 30° 60° 90° 120° 150° 180°

f 0.8250 0.8356 0.8761 0.9749 1.1618 1.4453 1.7819

Table 5 Values of the shape function f (Eq. (4)) for different notch depths d/b (ω = 120°)

d/b 1/90 1/30 1/10 3/10 6/10 9/10

f 0.5438 0.8046 1.1617 1.9129 4.8526 46.408
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a crack at a V-notch tip of an infinite plate loaded by a pair of forces acting on the crack lips (see

Fig. 3). Note that this geometry is not the actual one. Nevertheless, assuming a brittle structural

behaviour (low brittleness number), the finite crack extension is much shorter than the other

specimen geometrical quantities: the two geometries tend, hence, to coincide. 

The SIF for a pair of forces P is (Tada et al. 1985) 

(7)

with

(8)

where α = π − ω/2 (see Fig. 3). The expressions of the functions  and  are as follows

(9a)

(9b)

(9c)

with

(10)

Eq. (7) can be seen as a weight function, since it allows to determine the SIF for any stress field

σy(x) acting on the crack faces

(11)

The principle of effects superposition is then invoked (Carpinteri et al. 2008). The geometry we

are dealing with (Fig. 4(a)) can be seen as the sum of the two cases of Figs. 4(b) and 4(c), where
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Fig. 3 Crack at a V-notch tip loaded by a pair of forces P
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the crack faces are subjected to the stress field of the un-cracked specimen, i.e., Eq. (6). In the

former scheme (Fig. 4(b)) the stresses cause crack closure and it is evident that the SIF is null. In

the latter one (Fig. 4(c)) the stresses tend instead to open the crack lips; the SIF coincides with the

SIF of the geometry we are interested in (Fig. 4(a)). By substituting the stress field (6) into Eq. (11)

(12)

where

(13)

and B is the classical Beta function. The function ψ depends on the notch opening angle ω through

λ and α and its values are reported in Table 6.

Concerning the dependence on the crack length, it is worthwhile to observe that Eq. (12)

encompasses the limit case of an edge crack,  (ω = 180o, λ = 1) and a pre-existing crack,

, i.e., constant (ω = 0o, λ = 0.5). This last result is coherent with the assumption a << d. 

KI a( ) ψ ω( )
KI

*

2π( )1 λ–
------------------a

λ 1/2–

=

ψ ω( ) 2/π f̃ α( )B λ 1/2,( ) g̃ α( )B λ 1 1/2,+( ) h̃ α( )B λ 2 1/2,+( )+ +[ ]=

KI a∝
KI a0∝

Fig. 4 Principle of effect superposition to determine the SIF of a crack at a notch tip. The SIFs of the
schemes (a) and (c) are equal and the stress distribution of schemes (b) and (c) are given by Eq. (6).
Observe that the geometry (b) coincides with the un-cracked case of Fig. 1

Table 6 Singular exponents λ and non-dimensional functions ψ and ξ according 
to Eqs. (13) and (15), respectively 

ω λ ψ ξ

0° 0.5000 2.5066 1.0000

30° 0.5014 2.5304 0.9901

60° 0.5122 2.5399 0.9827

90° 0.5445 2.5125 0.9828

120° 0.6157 2.4231 0.9938

150° 0.7520 2.2514 1.0109

180° 1.0000 1.9870 1.0000
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It is now possible to solve the system (2) by substituting Eqs. (6) and (12) into the system (2). Its

solution yields the value of the finite crack extension

(14)

and of the generalized fracture toughness (Carpinteri et al. 2008) 

(15)

where the function ξ has been introduced for the sake of simplicity. From Eqs. (14) and (15) it is

clear that the finite crack extension ∆ and the generalized toughness  are both function of the

material parameters and of the notch opening angle ω (through ψ and λ) and, hence, structural

properties. Moreover, note that  is intermediate between strength and toughness, being the

function ξ equal to 1 for ω equal to 0o and 180o (Table 6).

Once  is known, the failure load is easily obtained; taking the ratio side by side of Eqs. (4)

and (5) and using the expression (15) of the generalized fracture toughness, yields

(16)

i.e., the ratio between the failure loads for a notched and an un-notched specimen is function only

of the geometry and of the brittleness number s (Eq. (1)). 

Note that a formula analogous to Eq. (12) providing the energy required for creating a small crack

at a V-notch tip has been recently derived by Leguillon (2002). He exploited a different technique

(i.e., the theory of asymptotic matching); however, he has not provided an analytic expression for

the SIF of a crack at a notch tip as we have done here by means of Eqs. (12) and (13). Other

fracture criteria successfully applied to notched structures have been introduced by Sih (1991),

exploiting his strain energy density theory, and by Lazzarin et al. (2001), assuming the strain energy

surrounding the notch tip as the critical parameter.

4. Comparison with experimental data

The coupled FFM criterion has been applied to the data obtained experimentally and presented in

Section 2, in order to have an estimate of its effective predictive capability. Based on the values of

the tensile strength, of the fracture toughness and of the values of the functions ψ and ξ provided in

Table 6, the generalized fracture toughness and the finite crack extension (Eqs. (14) and (15)) are

plotted vs. notch opening angle in Figs. 5 and 6, respectively.

To what concerns test 1, wishing to have a more complete description of the effect of the notch

opening angle, a FEA was performed by using the LUSAS ® code to get the values of the shape

function f (Table 4) also for geometries that were not tested i.e., for ω equal to 0o, 30o and 90o

(d/b = 0.1). Results are presented in Fig. 7, where the relative failure load (Eq. (16)) is plotted vs.

the notch opening angle ω, together with experimental data: as it can be seen, the coupled FFM

criterion yields satisfactory results. Note that it provides a minimum for notch opening angles larger

than zero: this trend is in agreement with experimental data from the literature (see, for instance,

Carpinteri 1987, Seweryn 1994).

∆ 2

λψ
2

---------
KIc

σu

-------⎝ ⎠
⎛ ⎞

2

=

KIc
*

λ
λ 4π

ψ
2

------
1 λ–( )KIc

2 1 λ–( )

σu

1 2λ–

---------------- ξ ω( )
KIc

2 1 λ–( )

σu

1 2λ–

----------------==

KIc
*

KIc
*

KIc
*

Pcr

ω

Pcr

π
------- ξ ω( ) f d/b π,( )

f d/b ω,( )
----------------------s

2 1 λ–( )
=



618 Alberto Carpinteri, Pietro Cornetti, Nicola Pugno, Alberto Sapora and David Taylor

About test 2, Eqs. (4) and (5) can be exploited to obtain the ratio between the failure load for a

given notch depth d/b, , and for a null one, , the opening angle ω being fixed

(17)

Also in this case, a FEA was performed to achieve some values of the shape function f (Table 5)

for geometries that were not tested: d/b = 3/10 and 9/10 (ω = 120o). Theoretical predictions based

on Eq. (17) are plotted in Fig. 8, together with the experimental data of test 2. As it can be seen,

results for intermediate geometries are in very good agreement with the experimental ones, the

Pcr

d/b
Pcr

0

Pcr

d/b

Pcr

0
--------- ξ ω( ) f 0 π,( )

f d/b ω,( )
---------------------s

2 1 λ–( )
=

Fig. 5 Finite crack extension ∆ vs. notch opening
angle ω for the polystyrene specimens

Fig. 6 Generalized toughness  vs. notch opening
angle ω, according to the coupled FFM
criterion for the polystyrene specimens

KIc

*

Fig. 7 Relative failure loads of the three-point bending
polystyrene specimens vs. notch opening angle:
experimental data and theoretical predictions
(d/b = 0.1)

Fig. 8 Relative failure loads of the three-point bending
polystyrene specimens vs. relative notch depth:
experimental data and theoretical predictions
(ω = 120o)
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maximum percentage error keeping below 3%. On the other hand, for the extreme cases d/b = 1/90

and 3/5, it rises up to 22%. Less good results for very small and very large notch depths were

expected, since, in such cases, the finite crack extension tends to exceed the region of validity of the

asymptotic stress field.

Eventually, test 3 shows a brittleness number s which is so high (i.e., a more ductile behaviour)

that criteria based on the generalized SIF are no more applicable. 

5. Conclusions

In this paper the results of a series of three-point bending tests on V-notched specimens made of

polystyrene have been presented. Tests involved different notch angles, different notch depths and

different sizes of the samples. Hence, a large amount of experimental data concerning different

geometries is now available. The coupled FFM criterion presented in (Cornetti et al. 2007) is then

taken into account and applied to the geometry under examination. It has been stressed that this

fracture criterion derives from an energy balance and is therefore more physically sound with

respect to the classical average stress criterion. In order to check its validity, predictions by the

coupled FFM criterion are compared with tests results: the agreement between theory and

experiments is more than satisfactory.
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