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Analytical modeling of thin-walled box T-joints 
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Abstract. A general analytical method for computing the joint stiffness from the sectional properties of
the members that form the joint is derived using Vlasov’s thin-walled beam theory. The analytical model
of box T-joint under out-of-plane loading is investigated and validated using shell finite element results
and experimental data. The analytical model of the T-joint is implemented in a beam finite element model
using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is
compared with the corresponding shell element model. The results show close correlation between the
beam revolute joint model and shell element model.
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1. Introduction

Automotive frames consist of closed channel sections joined together to form the body structure.

Since the thin-walled channel sections are the major load carrying members, the automobile

structure can be adequately modeled using one-dimensional beam elements. As the overall stiffness

and dynamic behavior of the structure is of interest in the concept design stages, such beam element

models are of immediate use. Computation with beam finite elements reduces the order of analysis,

permits parametric study to evaluate several concept designs, and also enables optimization of body

structures (Fredrickson 2003).

While beams adequately model the channel sections, the overall behavior of the automotive

frames can be simulated only by accounting for the flexibility of the structural joints where the load

carrying members meet. The structural joint flexibility not only affects the body stiffness but also

influences the vibration and crash characteristics. Hence an important aspect in developing reduced

order models using one-dimensional elements is in accounting for the flexibility at the structural

joints. 

Borowski et al. (1973) studied the influence of joint flexibility on the dynamic response

characteristics of an automotive frame using experimental and numerical methods. It was found that

the beam element model with rigid joints predicted lower natural frequencies that were 60 percent

in error with the test results. In order to match the numerical results with the experimental data,

fictitious linear springs were introduced. Chang (1974) investigated the effect of flexible

connections on the structural response of a body frame under different in-plane loading conditions.

The author noted that if rigid connections were used in the finite element model, the computed
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deflections were only one half of the test results for the frontal loading cases. 

Lubkin (1974) determined the lower vibration modes of a H-shaped research frame by treating the

joint region as substructure with plate elements in a model otherwise composed of bar elements.

Using static condensation, the author developed a hybrid model. The fundamental frequency

predicted by the model with only bar elements was 37 percent in error with the test data, while the

hybrid model predicted the frequency within seven percent of the test results. 

Sakurai and Kamada (1988) analyzed the static behavior of a T-shaped joint and performed

parametric study to accomplish weight reduction while maintaining necessary structural joint

stiffness. El-Sayed (1989) presented a finite element formulation to calculate the torsional spring

rate for any number joints using the data obtained from tests or from shell finite elements. 

Choi et al. (1996) investigated a box channel T-joint and compared the strain energy obtained

from beam and shell models. It was noted that the difference in the computed strain energy between

the two models was mostly concentrated in the vicinity of the joint area. By changing the section

properties for the beam elements in that region, the strain energy in the beam model was matched

with the shell model. From the results of the numerical experiments, the authors concluded that

torsion mode is more important than the bending mode when considering joint flexibility. Bylund

(2003) devised a dynamic analysis method by placing lumped masses at the ends of the joint, and

by using the eigenfrequencies and eigenmodes estimated the joint stiffness. 

The available literature on automotive joints demonstrate the need for representing the joints by

finite stiffness, however the existing computational techniques require either a shell element model

of the joint or a physical prototype to determine the flexibility coefficients. Construction of shell

models requires a complete definition of the geometry, and also the joint stiffness computed is

dependent on the location where the joint is cut from the full vehicle model (Kim et al. 1995, Choi

et al. 1996). Hence in the early concept design stages of the vehicle development process, a design-

oriented analytical method for computing joint flexibility is desired.

In this paper, a general analytical method for computing the joint stiffness of box cross section is

presented. The thin-walled theory of beams due to Vlasov (1920) is employed for computing the

stiffness of T-joints under out-of-plane loading, and the computed results are compared with those

obtained using shell finite elements. A simple revolute joint technique is devised to introduce joint

flexibility in a beam finite element model, and the static structural response is compared with the

corresponding shell element model.

2. Analysis of T-joint model

The analytical expressions derived for thin-walled beam deformations can be used for estimating

the flexibility of T-joints. In this paper, a box-beam T-joint under out-of-plane loading is studied.

The T-joint is formed with three equal arms, and a normal load is applied to one of the members,

while the other two arms are fixed.

2.1 Analytical formulation

Consider the thin-walled box cross section shown in Fig. 1(a). The deformation of the beam under

a torsional load can be computed by superposing the torsional rotation , section distortion

 and warping deformation U(z). Treating these deformations as the unknowns in the problem,

Vθ z( )
Vχ z( )



Analytical modeling of thin-walled box T-joints 449

the longitudinal displacement u(z, s) and the tangential displacement v(z, s) of beam cross section

can be given as (Vlasov 1920) 

(1)

where ϕ (s),  and  are chosen functions of single argument of contour coordinate s. The

generalized internal forces corresponding to longitudinal displacement, torsion, and contour

distortion are B the longitudinal bimoment, H the torsional moment and Q the transverse bimoment,

respectively. Applying equilibrium conditions, a system of six differential equations can be obtained

and can be solved in closed form (Vlasov 1920). Since boundary conditions are known either in

terms of the displacements  or in terms of the generalized forces (B, H, Q), the system

of equations can be uniquely solved. The general solution is given in terms of arbitrary constants C1

through C6, and the products of hyperbolic functions. The details of the notation and forms of

hyperbolic functions are given in Appendices A and B.

In the system of differential equations derived by Vlasov (1920), it can be shown that H(z) is

constant, implying that the torsion in the beam is constant regardless of the boundary conditions of

the beam, and it can be given as 

(2)

from which C5 is evaluated. Further, as the constant C6 appears only in the equation for Vθ , hence

the constants C1 through C4 can be solved simultaneously as 

(3)

and finally, C6 can be evaluated from 

(4)

u z s,( ) U z( )ϕ s( ), v z s,( ) Vθ z( )ϕθ s( ) Vχ z( )ϕχ s( )+= =

ϕθ s( ) ϕχ s( )
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Fig. 1 a) Thin walled box-beam geometry, b) A differential element
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The analytical computations are compared with the test data obtained with corner loading of

typical thin-walled cantilever box beam available in the literature for specific boundary conditions.

The geometry of the beam and the applied loads reported by Boswell and Zhang (1985) are shown

in Fig. 2. From the clamped condition at the origin, the boundary conditions are .

Using these boundary conditions and the first two rows of the matrix in Eq. (3), the constants C3

and C4 are evaluated as 

(5)

As noted previously, the torque is constant through the length of the beam and it is given by

H = Pw, where P is the applied corner load. From the expression for torsion, C5 evaluates to

.

For the applied loads, the generalized forces are given by B(L) = 0 and Q(L) = Pw. Using these

boundary conditions and the expressions for C3 through C5 in the last two rows of the matrix in

Eq. (3), a system of equations in C1 and C2 can be obtained as 

  

(6)

U 0( ) Vχ 0( ) 0= =
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Fig. 2 Cantilever box-beam specimen with uniform wall thickness (Boswell and Zhang 1985). All dimensions
are in mm 
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where ΦiL denotes Φi evaluated at z = L. Finally, the constant C6 is obtained from the condition

 as 

(7)

The cross sectional deformation at z = L computed using the analytical method is compared with

test data in Fig. 3(a). Also shown in the figure is the numerical results obtained with shell finite

element analysis. The distributions of longitudinal displacement and cross sectional distortion along

the length of the beam are compared with the shell model and experimental data in Fig. 3(b). In all

the cases, analytical results agree well with experimental and numerical data.

It must be noted that the derivations given in Vlasov (1920) and in this subsection are valid for

rectangular cross sections only. For square cross sections, or more generally, in cases where h/w =

t1/t2, the governing equations need to be rederived as shown in Appendix C.

2.2 T-Joint

In a T-joint, the arms that have fixed end conditions undergo bending in the plane perpendicular

to the structure, and also torsion and section distortion about its axis. The warping deformation of

these members at the joint location can be taken as zero due to the presence of the central pillar.

With that assumption, the joint members can be analyzed in isolation as clamped beams with

statically equivalent loading.

Since warping of the beam at the joint is taken as zero, the longitudinal reaction forces are

unknown. Hence the solution presented in the previous section can be used here with one change:

by using U(L) = 0 instead of B(L) = 0. The expressions for C3 through C6 are same as in the

previous section. The constants C1 and C2 are obtained from solving the following equation 

Vθ 0( ) 0=

C6

b2

b1

----- C2A5 C4B5+( )=

Fig. 3 a) Deformed shape of cantilever beam cross section at z = L, b) Distribution of longitudinal
deformation and cross section rotation along the length of the beam. The experimental data are from
Boswell and Zhang (1985)
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(8)

In order to validate the assumption of zero longitudinal displacement at the joint location, the box

beam cantilever described in the previous section is modeled here with clamped end conditions as

shown in Fig. 4(a). In addition, a T-joint is formed using the box beams for comparison as shown in

Fig. 4(b); the cross section dimensions of the beams are identical to that shown in Fig. 2. The out-

of-plane load F is chosen such that it induces the same corner load on the joint members as in the

previous section. 

The finite element mesh for the beam with fixed ends and the T-joint are constructed using 4-

noded shell elements. The in-plane nodal displacements of the end cross section are extracted from

the finite element results and the deformed profile of the cross section is constructed. The deformed

shape of the cross section at z = L is shown in Fig. 5 along with that obtained using analytical

results. The theoretical computations correlate well with the results obtained from the shell model of

the T-joint and the beam with fixed ends. The distributions of longitudinal deformation and cross

section distortion along the length of the joint members are shown in Fig. 6. The analytical results

are in close agreement with the shell element results. The displacements of the T-joint computed

using the boundary condition B(L) = 0 instead of U(L) = 0 are also shown in the figure for

reference. 
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Fig. 4 a) Beam with fixed ends, b) T-joint formed using box beams 
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3. Beam element model

The joint flexibility can be introduced in the finite element analysis of vehicle structures in several

ways. Special beam finite elements can be formulated by including extra degrees of freedom to

account for the distorsional and shear effects (Zhang and Lyons 1984, Paavola 1992, Prokic 1993).

The higher order elements provide an accurate representation of the thin-walled beam, but such

elements cannot be directly implemented in the standard finite element packages used in the

engineering analysis. A much simpler alternative would be to account for the additional deformation

due to contour distortion using discrete elements such as revolute joints, linear springs, etc.

In this paper, a revolute joint element is used to account for joint flexibility in the beam model.

The beams are connected through a revolute joint as shown in Fig. 7(a), with the direction of

rotation along the z-axis. The rotational stiffness of the revolute joint is computed from the T-joint

model presented in the previous section. A point load F is applied at the free end of the T-joint

frame as shown in Fig. 7(a), and the out-of-plane displacements of the center pillar are computed

using the beam joint model, and the shell element model shown in Fig. 7(b). The deflected profile

Fig. 5 Deformed shapes of the beam cross section at z = L 

Fig. 6 Distribution of longitudinal deformation and cross section rotation along the length of the beam with
fixed ends and the section of the T-joint (Dashed line represents the case U(L) ≠ 0)
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of the free arm of the T-joint is compared with that obtained with the shell model in Fig. 8. The

deflected shape of center arm obtained with rigid joint is also shown in the figure for reference. The

bending deflection obtained from the beam joint model is in good agreement with the shell finite

elements, albeit with a small offset. The offset is due to the deformation of the plate section from

the centroid of the T-joint to the location where the joint arm originates as shown in Fig. 8(b).

4. Conclusions

Analytical expressions are derived using thin walled beam theory to estimate the joint stiffness of

box beams from the cross sectional deformation of connecting members. The analytical results

match well with shell finite element model and experiments at the basic beam level. The validated

analytical model is employed to analyze a T-joint under out-of-plane loading. The joint flexibility is

incorporated in a beam finite element model of the T-joint using revolute joint elements. The out-of-

plane displacement computed using the beam model is in good agreement with that obtained using

shell finite elements.

Fig. 7 Beam joint model and the corresponding shell finite element model 

Fig. 8 Distribution of bending deflection of the center arm of the T-joint
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Appendix A. Notation

h : height of beam cross section
s : contour coordinate
t : thickness
u : longitudinal displacement
v : tangential displacement
w : width of beam cross section
z : length coordinate
B : longitudinal bimoment
E : Young’s modulus
F : transverse load
G : Shear modulus
H : torsional moment
J : moment of inertia
L : beam length
M : bending moment
P : corner load
Q : transverse bimoment
U : warping function
Vθ : section rotation function
Vχ : distortion function
θ : torsion angle
ϕ : generalized warping coordinate
ψθ : generalized torsion coordinate
ψχ : generalized distortion coordinate
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Appendix B. Joint parameters

The hyperbolic functions used in Section 2.1 are given by 

Φ1(z) = cosh(αz) sin(βz); Φ2(z) = cosh(αz) cos(βz);

Φ3(z) = sinh(αz) cos(βz);  Φ4(z) = sinh(αz) sin(βz); (B.1)

where α and β are the real part and the imaginary part of the four conjugate complex roots of the characteris-
tic equation of the differential equation.

The coefficients A1 through A5, and B1 through B5 are given by 

(B.2)

The parameters m and n are given by 

(B.3)

The geometric parameters are given by 

(B.4)

where , , correspond to the moments of inertia per unit length of the side of the cross
section; E and G are Young’s modulus and shear modulus respectively.

Appendix C. Beams with square cross section

In the case of square cross sections, or more generally, in the case where , the coefficient b2 is
zero. Hence the coupled differential equations for the special case are given by 

(C.1)

By virtue of Eq. (C.1)2, the longitudinal variation of angle of rotation has to be linear and it can be given as

(C.2)

The first expression in Eq. (C.1) is identically zero for the new function g(z) if the following equations are
satisfied 
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(C.3)

where the functional term (z) is dropped for clarity. The internal forces can be given in terms of the new
function as 

(C.4)

Substitution of Eq. (C.3) into Eq. (C.1)3 leads to the differential equation, 

(C.5)

which can be put in the following form 

(C.6)

The general solution of the differential Eq. (C.6) can be obtained as 

(C.7)

Eq. (C.4)2 shows that the torsion is constant regardless of the end conditions and it can be used to evaluate
C5. From the boundary conditions of the problem and Eq. (C.2), C6 can be determined. The constants C1

through C4 can be determined from 

 (C.8)
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