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Abstract. In this paper a procedure for Monte Carlo simulation of univariate stationary stochastic
processes with the aid of neural networks is presented. Neural networks operate model-free and, thus,
circumvent the need of specifying a priori statistical properties of the process, as needed traditionally. This
is particularly advantageous when only limited data are available. A neural network can capture the
“pattern” of a short observed time series. Afterwards, it can directly generate stochastic process
realizations which capture the properties of the underlying data. In the present study a simple feed-
forward network with focused time-memory is utilized. The proposed procedure is demonstrated by
examples of Monte Carlo simulation, by synthesis of future values of an initially short single process
record.
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1. Introduction and Motivation

Numerical simulations of stochastic processes have become quite important in many engineering
problems. Monte Carlo approaches are particularly suitable tools for these simulation purposes.
Indeed, their usefulness in diverse applications has been well established over a period of several
decades; see Schuéller e al. (2001). The major focus of current research in this field is the
improvement of the associated numerical efficiency, which is of great importance in stochastic
mechanics themes (Schuéller 2001, Ghanem and Spanos 2003, Du et al. 2005, Spanos et al. (2007).
This is particularly true when analyzing large dimension systems (Schenk ef al. 2005, Schenk and
Schuéller 2005).

Mathematically, a stochastic process is an indexed collection of random variables, which is for
engineering mechanics problems commonly considered in a real-valued environment. Given a
probability space [(2 &, P] with random events 6 €  Z(t, 6) with € D is understood as a
stochastic process defined over a real-valued domain D; see, for example, (Vanmarcke 1983).
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Generally, both # and Z can be multi-dimensional corresponding to multi-dimensional and
multivariate processes, respectively. The process parameters ¢ are usually temporal or spatial
coordinates, and the random process values Z may represent various physical or mechanical
quantities such as material strength or load intensity. Herein, attention is limited to one-dimensional
univariate processes; f, Z € R. Each process realization then represents an ordered set of real
numbers {zi, z,, z3, ...}.

For the treatment of stochastic processes within the simulation procedures models in the form of
probability distributions and spectral density functions are specified. A variety of process models are
available for diverse physical themes (Vanmarcke 1983). Also, various methods for process
simulation have been developed (Spanos and Zeldin 1998), from which the most appropriate one
can be selected in a particular case. Among the available numerical models for representing
stochastic processes, spectral approaches appear as the most popular ones. In particular, the
Karhunen-Loéve expansion and the Polynomial Chaos expansion have attracted considerable
attention (Ghanem and Spanos 2003, Schenk and Schuéller 2005, Iwan and Jensen 1993, Phoon
et al. 2002, Field and Grigoriu 2004, Sakamoto and Ghanem 2002).

An essential condition for obtaining realistic results from a simulation is the availability of a
statistically validated process description. The specification of the probabilistic model, thus, plays a
significant role; see (Schuéller 2003). For this reason, further research effort is devoted to specifying
proper models (Sakamoto and Ghanem 2002, Schuéller 2003, Yuen et al. 2002, Grigoriu et al.
2003, Cai and Wu 2004) to capture the underlying process characteristics. This includes the analysis
of the covariance function, of the spectral density function, of the distribution of the noise, of non-
stationarities, and of bounds for the process value. If sufficient information about the underlying
physics of a stochastic process is available, a numerical model for the process may be selected from
the variety of choices and used in the particular situation. However, difficulties may be experienced
in the case of limited information. If the data bank comprises only a single short process realization,
and no physical background knowledge about the process is available, the specification of power
spectra and probability distributions to a sufficient degree of reliability may be problematic. Even if
several process records exist, estimates of the process properties may be uncertain and, perhaps,
cannot be obtained with an appropriate degree of confidence.

Neural network based procedures may provide a suitable tool in these problematic cases to
analyze observed data records {zj, z, z3, ...} as realizations of a stochastic process and to simulate,
subsequently, the stochastic process. Neural networks operate model-free, learn directly from the
data observed, and generate predictions based on perceptions only. Assumptions or knowledge
beyond the data set are not required. Moreover, it can be shown that the universal function
approximation theorem is valid for neural networks which meet some minimum requirements; see
(Haykin 1999). That is, neural networks are capable of uniformly approximating any kind of
nonlinear functions over a compact domain of definition to any degree of accuracy. Specifically, for
any given real continuous function g(x) on a compact set X < R” and arbitrary £> 0, there exists
a neural network with the output f{x) such that

xsgglﬂz)—g(£)| <g (1)

Each realization of a stochastic process which can be understood as such a continuous function
g(x) can then be approximated by a neural network. Conceptually, this is related to traditional
methods (Spanos and Zeldin 1998) such as ARMA for generating process realizations. However, the
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neural network procedure does not require a model specification. An appropriate randomization of
the network-based synthesis of process realizations then allows for a Monte Carlo simulation.

Starting from fundamental properties of neural networks discussed in references such as Haykin
(1999) and Bishop (1995), an attempt is made herein to use their appealing features for addressing
problems in stochastic process simulation. In this context, it is assumed that only one short process
realization {zi, z,, z3, ...} has been observed, and no further information is available.

This endeavor is made in compliance with the basic consensus that a neural network may
represent a powerful tool whenever a model specification is problematic. From this perspective,
extensive research efforts have been undertaken in the development and application of neural
networks in various directions and in diverse fields.

Particular activities in engineering can be observed in environmental fields. This is driven by a
combination of problems in model specification and a recently increasing demand for forecast in
view of natural hazards. Quite popular are applications is hydrology. An overview regarding the
basis of the recent developments in this field and beyond is provided in Govindaraju (2000) in
terms of technical network concepts, and in Govindaraju (2000) regarding applications. Generally,
the neural networks are applied to analyze observed time series to generate conclusions and
predictions. The progress in the past decade shows an increase of stochastic components
incorporated in the network solutions. In Furundzic (1998) a network-based variable selection
method is proposed as an alternative to a traditional regression analysis. Rainfall data were analyzed
under consideration of noise to identify significant input variables for a forecast. It was found that
the network possesses advantages over traditional regression techniques in the cases considered. A
superiority of neural networks with respect to traditional models was also shown in Toth et al
(2000) for the short-term rainfall forecast. This investigation included a comparison with linear
ARMA models such as the ones used in stochastic mechanics. Most recently, stochastic neural
networks have attracted increasing attention. An application for the prediction of droughts was
reported in Ochoa-Rivera (2008). A stochastic multilayer perceptron network was used to build a
non-linear multivariate prediction model. This network has shown a better performance than a
respective second order AR model.

The trend towards neural networks with stochastic components is also reflected in further
application fields. Financial market developments in form of time series are investigated with
different network concepts. These include, for example, recurrent networks Giles et al. (2001),
dynamical network methods Li and Kozma (2003), and support vector machines Cao and Tay
(2003). The forecasting horizon of these applications is rather short. The challenging issue here is
nonstationarity of the time series. As an alternative to stochastic concepts, chaotic reproduction and
forecasting schemes were considered (Shi and Han 2007). An evaluation of geological data of
several types was used in Cimino ef al. (1999) to compare the proposed neural network approach
with an ARIMA model for stationary time series prediction. It was reported that the neural network
approach can be used in a more general context than the ARIMA model and can distinguish
between deterministic, chaotic and random patterns. A neural network concept designated to long-
term predictions of traffic flow is proposed in Jiang and Adeli (2005). A recurrent wavelet neural
network with dynamic and time-delay features was developed for this purpose.

Besides neural network concepts for specific applications, a variety of more general developments
exist. For example, the treatment of seasonal effects in time series is addressed in Zhang and Kline
(2007). It was found that simpler models usually exhibit a better performance than complex models.
In Qi and Zhang (2008) a network-based modeling of the trend in time series was investigated. A
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neural network trained with a stochastic process was proposed in Sanchez and Sarabia (2002) for
statistical hypothesis testing. Properties such as convergence and stability of the network-based test
were verified successfully. Universal learning networks were examined in Hirasawa et al. (2006)
with respect to the propagation and control of stochastic signals. The goal was to control and to
identify non-linear dynamic systems interfered by noise. The method was developed in view of
investigating large-scale complex systems. The neural network-based representation and generation
of stochastic processes was examined in detail in Turchetti e al. (1998) and Belli et al. (1999).
Stochastic neural networks were selected as the basis and formulated as a generalization of
deterministic neural networks. Non-stationary processes were approximated in the mean square
sense. In the core of the method a canonical representation is applied to express the stochastic
process in terms of deterministic functions combined with stochastic noise. This corresponds to a
spectral representation as discussed in Ghanem and Spanos (2003). The deterministic functions were
approximated with a neural network, and the noise was generated in stochastic neurons. A further
development of this concept was recently reported in Turchetti e al. (2008). The extension mainly
concerned the approximation of nonlinear input-output random transformations. The Karhunen-
Loéve expansion was applied, and the process generation was realized based on an approximation
of the eigenfunctions of the covariance kernel.

In the present work the idea is pursued to generate stationary stochastic processes without any
model specification. The neural network is even supposed to identify and to reproduce the noise of
the process.

2. Network composition
2.1 General network configuration

In the present study, it is attempted to find a neural network structure that is simple and clearly
arranged, while it yields proper results. In selecting an appropriate network configuration, a broad
variety of neural network layouts are available. Basically, they consist of simple information
processing units called neurons and of information transferring links between the neurons — the
synaptic connections; see Fig. 2. The neurons are arranged in a layered structure. Input signals are
processed along a variety of paths through several neurons to compute output signals. The specific
layout of the synaptic connections and the information processing rules within the neurons must be
determined in context with the application considered.

If the generation of process realizations is treated as a problem of function approximation, use can
be made of some experience from that field. Following this experience a multi-layer perceptron
network is selected as a basis. This network kind can readily satisfy the minimum requirements for
the wvalidity of the universal function approximation theorem. Only three layers, appropriate
nonlinear activation functions ¢(.) for processing signals within the neurons, a simple feed-forward
architecture, and a sufficiently high number of hidden neurons are required (Fig. 1). The number of
output neurons is determined by the dimensionality of the problem. To consider univariate
processes, only one output neuron is sufficient.

Each neuron may receive several input signals x; only from the previous layer; see Fig. 1. These
are multiplied by the assigned synaptic weights wy; and together with a bias value b, are introduced
into a summing junction. The weights and the bias allow the neuron to be adjusted to particular
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Fig. 2 Focused time lagged feed-forward network

conditions. The summing junction generates the activation potential v, as input argument for the
subsequently called activation function ¢(.). This yields the output signal y; generated by neuron £.
Specifically

Yi = (0( ij'xj"'bk] = @(vy) ()
j=1

The activation function ¢(.) is required to be nonlinear and monotonically increasing from zero to
unity. Herein, the logistic sigmoid function

P(v) = (1+exp(-v))” (3)

is selected in view of numerical efficiency. This function possesses the advantage that its derivatives
@'(v), which must be computed millions of times during the network training, can be obtained easily
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when the functional values ¢(v) are already known. Specifically

P'(v) = o) (1-9(v)) (4)

This reduces the computational cost of the training procedure drastically; see Egs. (36) and (37).
A selection of other, commonly used, activation functions with the required properties is basically
of minor influence as these have a similar shape. Differences can be compensated mostly by a
scaling of the activation functions with respect to the activation potential v, namely by introducing a
factor £ to build ¢(f-v). Remaining differences can then be accounted for by the weight
adjustment and a modified network layout. For the hyperbolic tangent activation function

Puann(v) = tanh(v) )

which is frequently proposed as an alternative to the logistic sigmoid function, it can even be shown
that it is equivalent to the logistic sigmoid function. Normalizing the function Eq. (5) to ¢v) €
(0, 1) and introducing a scaling factor £ for the activation potential lead to

Pu(v) = 0.5+0.5-tanh(B-v) = 0.5+0.5(1 _e><p(2ﬁ+)+l)
__exp(2B-v) _ 1 (6)
Cexp(2f-v)+ 1 l+exp(=243-v)

which is equal to the expression Eq. (4) if f=0.5.

2.2 Process specific network features

2.2.1 Network layout elements

A neural network of the selected basic kind can realize an arbitrary nonlinear mapping. However,
for being able to simulate a random process, it must additionally operate as a dynamic mapper.
Since a feed-forward network works statically, it must be provided with memory for that purpose.
Specifically, both short-term memory and long-term memory features are required.

Short-term memory is established by incorporating time into the network structure in an implicit
manner. In this paper the network development is focused on dealing with stationary processes, as a
first step. For this purpose it is sufficient to attach a focused neuronal filter to the front end of the
multi-layer perceptron; see Fig. 2. That is, account is taken of input signals not only from the
current, but also from previous time steps. A series of past input values x;, ..., X, are fed to the
network at once. They are stored in a tapped delay line memory. This network kind is called
focused time lagged feed-forward network and represents a nonlinear filter. It is capable of
recognizing temporal patterns. That is, dependencies between consecutive process values Z, which
are characteristic for the process, can be identified. This includes components of both noise and
covariance features.

Long-term memory is built by adjusting the synaptic weights wy; and biases b, of the network.
This is realized in the network training, which may be understood as “observation” of the process
pattern for one selected time sequence. In each step of the training, one more piece of information
is embedded into the weights and biases. Once the training of the network is completed, the entire
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information contained in the training data set is stored as the final adjustment of the weights and
biases. To extract local and global process features, at least two hidden layers are required.
Construed in the context of stochastic processes, the local process features concern the noise of the
process and quite high frequencies. Global process features are the medium and lower frequencies.
The first hidden layer primarily gathers information about local data fluctuations, whereas the
second one is designated as assimilating global process characteristics. The global characteristics
become apparent to the network by assembling the local information via the synaptic connections
between the hidden layers. This enables the neural network to analyze patterns that evolve over
time.

The signal flow through a network of the selected kind can be summarized as a nested sum of
weighted and combined signals. Let J* be the number of neurons j* in layer (L), Wbt
represent the weight for the signal from neuron ;" in layer (L — 1) to neuron j* in layer (L), and
b denote the bias of neuron j ) in layer (L). Then, the signal flow through the neural network in
Fig. 2 is given by

SO
y= (0[ z [Wj(4>j(3)‘ ¢(Vj<3))] +bj<4>]

],(3)= 1

e S (M
Vj(B) = Z wj(S)j(Z) . ¢) (; [Wj(z)j(]) . x_]] + bj(z) + bj(})

/= =1

In Eq. (7), the numbers j©) for the neurons are independent running indices for the separate layers

(L).

2.2.2 Signal conditioning
The neural network must be adequately sensitive to fluctuations in the input signals. That is, a
proper change in the values of the input signals to a neuron should generally lead to a noticeable
difference in the neuron output. Let Ay ,, be the differences in the output from the neurons f* in
layer (L —1). Then, ’
J(L—I)
AV_}.(L) = Z Wju)j(ul)'ij(L—U"'bj(L) (®)

j(L*l):l

is the resulting change in the activation potential Vo of neuron j) in the subsequent layer (L). This
leads to the difference '

ijm = (D(ij + AVj<L>) - (D(Avjm) ©
in the output y q, of neuron j®), for which the property
AVj(L)—Ay i # AVja) (10)
should be satisfied regularly. For the neurons of the first hidden layer (L = 2), Eq. (8) becomes

J
Avjm = z Wja)j(l)'ij"‘bj(n (11)

=1
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with Ax; being changes in the input signals x; received by the input layer (L = 1), see Fig. 2. The
property in Eq. (10) is ensured if the activation potentials v of the neurons primarily meet the
effective part V. of the activation function ¢(v). For the logistic sigmoid function from Eq. (3) this
effective part may be defined, for example, as the interval

Veff = [vmim vmax] (12)

with

Vinin = —1n(l — 1)
£

\Z

(13)
max — —Vmin

The parameter ¢ is a prescribed minimum distance of the activation function ¢(v) from its limits
zero and unity

e<p(v)Ll-¢ (14)
see Fig. 3. If g1is prescribed with £ = 0.01, the effective part V.4 is obtained as
Ve = [-In(99),1n(99)] = [-4.595,+4.595] (15)
Activation potentials v from this interval lead to neuron outputs
y(ve V) €[0.01,0.99] (16)

Fluctuations of input signals that cause values of activation potentials far outside the effective part
do virtually not affect the further signal processing. In this manner, an impact from extreme
statistical outliers is eliminated automatically. Such outliers may be caused, for instance, by severe
malfunctions of a measuring device or by specimens with severe defects. The associated extreme
values do not represent physical properties and represent conditions which do not justify further
consideration. Consequently, these outliers must be eliminated prior to a statistical evaluation. This
practice is also adopted in other application fields; see, for example, Jiang and Adeli (2005).

According to this, two quantities of influence can be controlled to achieve a proper sensitivity of
the network: first, the weights and biases, and second, the input signals x;.

1oAY =eX) I
- 034 effective part

x,. 40 20 00 20 40 x,. X

min

Fig. 3 Effective part of the activation function
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1) Weights and biases. The final values of the weights and biases of a network are primarily
determined by the particular underlying problem. The network is adjusted to this problem during the
network training; see Section 4. The weights and biases represent the network perception of the
observed data in form of a process realization {z;, z,, z;3, ...}. For a feasible and effective training,
however, the weights w and biases » must be properly initialized. With respect to Eqgs. (3) and (4)
activation potentials v that are close to zero are most effective; see Fig. 3. Further, the first
derivative of the selected activation function, which appears as a factor in the weight adjustment in
the network training, is symmetric to v = 0; see Eq. (4). It is thus reasonable to limit the initial
values w and b to some interval 4 symmetric to zero. Specifically,

A=[-a,+a], a=1 17

has been found adequate. Moreover, each synaptic connection should contribute its own individual
portion w - y with y € (0,1) (see Egs. (2) and (3)) to the combined signal v. These contributing
signals w - y are supposed to be non-zero to prevent the synaptic connections from inactivity, and
they should be different from one another to ensure individuality. This motivates the initialization of
the weights and biases with the aid of a continuous uniform distribution over the interval A4

X~U4)) > {Wj(L>j(L—l), bj(u} (18)

Initializations using narrower or wider intervals or random specifications of the weights and biases
according to other distributions did not lead to improved results.

1I) Input signals. The input signals x; must lie within a reasonable value range to be processed
properly. The raw data are thus preconditioned with the aid of a normalizing data transformation.
Common methods make use of the extreme values of the training data set to define a possible range
of signals and subsequently transform that range linearly to the effective part V. (see Eq. (15)) of
the activation function. Though this is reasonable for analyzing data with a bounded value range,
for example, for controlling purposes in automation, it may cause problems when processing
statistical data. If the data bank consists of a small random sample, as considered herein, there exists
a non-negligible probability that further sample elements may lie moderately beyond the extreme
values of the sample. According to the statistical estimation theory, these probabilities must be taken
into account. They are of importance, in particular, in safety assessment. When applying those
common transformations, these input signals, however, lead to activation potentials v that lie outside
the effective part V.4 and, consequently, may be virtually effectless. Thus, a common normalization
is too rigorous in these cases. A less restrictive and problem specific data transformation rule can be
formulated by incorporating some statistics. Due to the small sample size only the first two
statistical moments of the sample are employed. From the original (raw) data values z;, the mean
value z and the standard deviation o, are computed. Subsequently, the z; are transformed into the
input signals x; using the equation

zZi—Z .
xj = -;V] (19)
Oz

In terms of probability, this circumvents ignoring input information from a reasonable
neighborhood of the input data set. This can be expressed numerically by means of the probability
P, with which the effective part V. of the activation function in the neurons of a network is met
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Table 1 Probability P.g for meeting the effective part of the activation function

Number of simultaneously Probability Pg(/*?)
considered input signals x; for neuron j*?
1 0.99999777
6 0.995743
12 0.9708
24 0.8891
Py = P(v € Vegr) (20)

The following example gives representative values of these probabilities. Again, the effective part
of the activation function is defined by Eq. (15). According to Egs. (17) and (18), the weights and
biases are assumed to be uniformly distributed in [-1, +1]. The probability P (“~?) for a neuron
J&2 of the first hidden layer (L =2) is estimated roughly by evaluating the summing junction in
Eq. (2) with standard normal random variables for numerically producing the x;. Neurons 72 in the
subsequent layers (L > 2) are only very slightly affected by the conditioning of the input signals and
are thus not considered here. Table 1 shows the result of this investigation in dependence on the
order of the tapped delay line memory, which specifies the number of input values simultaneously
fed to the network. These results indicate that the network can process the input data records
properly.

According to the definition of the activation function ¢(.), see Section 2.1, the neuron output and
hence the neural network output are restricted to the value range y € (0,1). The network output
must thus be back-transformed into the original scale of the particular problem. For the generation
of process realizations, a back-transformation of the network output y into the scale of the original
process values z; (observed process realization) is required. That is, the back-transformation is
inverse with respect to transformation of the original process values z; into the network input signals
x;. To ensure a proper scale matching between input and output signals and to avoid a bias caused
by the transformation rules, the back-transformation is formulated as follows.

In a first step, the network output y is brought into the standardized network input structure. The
inverse function of the standard normal distribution function is applied to the output y, o™ ).
The result is then introduced in a rewritten form of Eq. (19) to scale the generated values based on
the original data record. That is, the generated process values p are determined using the equation

p=0" (y)-oy+z 1)
This back-transformation does not restrict the generated process values p to lie within artificially
prescribed bounds.
3. Generating process realizations
3.1 Network operation mode

The composed neural network must be supplemented with a suitable operation mode for being
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Fig. 4 Process value prediction

able to perform a process simulation. The starting point is the following basic situation, see Fig. 4,
involving univariate processes. The process realizations consist of ordered sequences of real
numbers z,. The order is given by the time axis. The network input signals x;, ..., x;_,, see Fig. 2, are
thus the transformed process values at the previous » = m + 1 successive points in time ¢, ,, ..., Z,.
That is, the tapped delay line memory of the network is of order » = J. Specifically,

Zn—l =Z(tn—l) _)xj
Zyoicy =2(ly_i1) DX (22)
Zn—r :Z(tn—r) _)xj—m

The single network output y then yields the predicted value p, of the process at the present time #,
(xj—m)xj—i)--"xj)_)y_)pn (23)

An elementary application of this prediction scheme leads to the operation mode of a one-step
prediction. This is generally initiated by the last observed sequence of process values as input
Vector, (Z,_,,+esZ,-1) = (Zy_yst1s oo Zy) = (Xj_pp ..., X;) , In Which N is the size of the observed
process realization. Exclusively, observed values are fed to the neural network to predict only one
subsequent process value, see Haykin (1999). That is, the neural network generates the process
value p, = py+ for the time step #, = #y+1. And the subsequent prediction p,+; for 7, is made not
until the observation z, at ¢, is available. The time horizon of this network prediction is only one
step. The accuracy of one-step predictions is quite high. Applications may be found, for example, in
the forecasting of financial market developments, see Giles er al. (2001) and Li and Kozma (2003).
Also, attempts to exploit the capability of this procedure for short-term process prediction in
engineering have been made. For instance, in More and Deo (2003) a neural network model is
presented for the prediction of maximum wind speeds for one day, one week, and one month.

The restriction to a time horizon of one step, however, is critical and does not exploit the
capabilities of a neural network by far. To extend the time horizon, the following two approaches
may be pursued. First, the envisaged time horizon may be incorporated directly into the neural
network by furnishing the output layer with several neurons. The number of output neurons then
determines the time horizon. This is advantageous for predicting short data sequences. It has been
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applied, for example, for the prediction of the development of the concrete strength over the first 28
days; see Lee (2003). The second approach involves a recursive application of the network from
Fig. 4. The network prediction for the process value p, at ¢, is used as an input signal z, for
predicting the process value p,.. at 7,4+

Z, = P2y s ensZp_1), B=r+1Lr+2,r+3,... (24)

That is, the network predictions are fed back to the input layer instead of using observed process
values. A step-by-step progression in this manner then yields a long sequence of predicted process
values as a first advancement. The time horizon is not limited a priori. This meets the requirements
for a Monte Carlo simulation, and is, thus, chosen as a basis herein. The associated operation mode
is a progressive prediction.

3.2 Single process realizations

In a first step, the progressive prediction mode is used to generate a single process realization. It
is assumed - under the awareness of overfitting - that the network predictions p, coincide with the
observations z, for all time steps ¢,

z,—p, = 0Vn (25)

This justifies feeding the network predictions back to the input layer of a feed-forward network
according to Eq. (24). The feed-back of the network output is not activated until the network
training is finished. The training of the network in Fig. 4 is performed until the network prediction
error is eliminated, see Sect. 4. An application of a recurrent network (Haykin 1999), which
provides a feed-back of the network output in a network-internal fashion, is not pursued. This
would decrease the transparency of the network and complicate the training procedure.

With regards to a neural network-based function approximation, the selected procedure represents
an exceptional case. Ordinarily, it is intended to approximate a discrete data set by a smooth
function that reflects the essential properties of the data but does not reproduce subordinated,
unimportant, disturbing, or even spurious data fluctuations. The minimum requirements according to
the universal function approximation theorem then depend on the desired degree of smoothness of
the approximation function. According to the statistical estimation theory, however, each particular
data point is important and contributes to the result of an estimation. Thus, the considered
simulation must not be performed with smoothed process realizations, which would lead to
erroneous results, for example, in reliability assessment. Also, the option of using smooth network
outputs in combination with a separate noise generator is not pursued herein. This approach would
follow the concept of traditional models such as ARMA and does not open new perspectives. A
prescription of a degree of smoothness by some predefinition of network parameters, such as the
number of neurons, would, further, introduce some subjectivity and would require a model for
reproducing the noise of the process. It would, further, require the specification of a model for noise
generation. This is, however, supposed to be circumvented with the present approach. Herein, it is
assumed that no background information is available about the underlying process, which is needed
for those external specifications. Consequently, a pure neural network procedure, which operates
model-free, is considered. It is intended to generate the process realizations including noise, directly.
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Hence, the minimum requirements according to the universal function approximation theorem are
determined by the requirement that the network must be able to reproduce the observed process
realization with no deviations. This is checked when training the network. The number of neurons
in the hidden layers is increased until the network prediction error can be brought to zero by
adjusting the weights and biases. The problem of overfitting, which is significant in function
approximation, is thus not relevant in the proposed network-based process simulation.

A neural network with a prediction error of zero can reproduce the complete observed process
realization except the first » values. The first » values are needed as initial network input. For each
particular sequence of process values (z,_,,...,z,_;) at the time steps #,, to #,, the network
generates the process value z, = p, at #,. The observed process realization is so reproduced as z,.; =
DPr+1s - Zy = Py, With N being its length. For the last sequence of the observed process realization
(zy_ps1»---»2y) at the time steps #y .+ to ty as input, the network predicts the first unknown process
value zyy; = py+1 at ty11. A progressive prediction

Z, = PZu_ysesZp 1), B=N+1,N+2,N+3,... (26)

started at the end of the observed process realization then yields a prognosis for the future behavior
of a single process realization, see Section 5.2.

3.3 Monte Carlo simulation

A Monte Carlo simulation of random processes requires the generation of a sufficiently high
number of process realizations running over a proper period of time. For this purpose, the algorithm
for generating process realizations must be capable of numerically reproducing the process
characteristics. According to the statistical estimation theory, all information which may be gathered
about the process is contained in the data. Once the neural network is trained, this information is
stored in the adjustment of the weights and biases. That is, the numerical algorithm for generating
process realizations is defined. A variety of process realizations can only be produced by starting
the generation with different initial conditions.

For initializing the neural network-based process generation the starting input vector (z,,...,z,)
for the tapped delay line memory must be defined. For this purpose, the empirical first-order
distribution function F(e)(z) is built from the observed process realization. Specifically

e) _ 1 al
Fo0) = L1 27)
with the indicator function
1 if
Iz,) = { boEeE (28)
0 otherwise

The function F(e)(z) is then interpolated linearly between the points (z,, F(e)(z”)) to obtain
FO(z) without jumps. The starting input vector for each simulation of a process realization is then
drawn from F%(z)

(Z~FO(z))>z,,....2, (29)
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4. Network training

The network training is accomplished based on the standard method of error back-propagation,
see, e.g., Haykin (1999). An observed process realization is used as training data. The aim is to
adjust the free values of the neural network (weights and biases) so that the network is capable of
reproducing the training data with a sufficient precision. That is, for each sequence of process
values (z,_,,...,z,_;) the network is intended to generate a prognosis p, for the subsequent process
value z, with a minimum prediction error

e, =z,~p,~>Min Vn|r<n<N (30)

To be independent of the absolute scale of process values, this error minimization is realized in a

standardized form. With the data transformations in Eqgs. (19) and (21)

ey =x(z,)- 0" (y,)=Min Vnlr<n<N (31)

is obtained. According to the back-propagation procedure the error energy

1 2
@:E(Q) (32)
is used to formulate the error minimization as
N SN 2 .
x(z,) - ,)) = Min
3 (2 -0 (1) =M (33)

n=r+1

with N being the length of the observed process realization (training data) and » denoting the order
of the tapped delay line memory. Mathematically, Eq. (33) represents the objective function of an
optimization problem in a multi-dimensional space, in which the weights and biases are the design
parameters. The search for the optimum adjustment of the weights and biases is realized with the
aid of a gradient descend method operating with a generalized delta rule, see Haykin (1999). For
each predicted process value, the prediction error of the neural network is retraced through the
complete network (back-propagation) to compute changes of the weights and biases. This is done
iteratively until the prediction error approaches the global minimum. The training starts with
randomly initialized weights and biases uniformly distributed in the interval [-1, +1] according to
Egs. (17) and (18). This ensures that the training data meet the effective part of the activation
functions of the neurons to a high percentage, see Section 2.2.2.

A sequence of r+ 1 successive process values (z,_,,...,2,_1,2,) are randomly selected from the
training data with the aid of a discrete uniform distribution over the N —r possible choices

(Z~U(1,2,....N=r)) >z, ., > (Zy_ps -1 Z4_1,2) (34)

Then, the local gradients 0E,(q)/0w o «-1,(g) in the weight space are determined for the current
. . . .S . .
iteration step ¢g. The weights and biases are changed proportional to these local gradients. The
computation of the gradients is usually based on the error signal ey(g) from the direct network
output y, € (0, 1). In the present approach, however, the standardized error signal ej”(q) as defined



A neural network approach for simulating stationary stochastic processes 85

in Eq. (31) and £, from Eq. (32) are used instead of ¢y(g), without changing the computation rules.
That is, in contrast to the standard version of error back-propagation, a weighted error signal is
employed. Due to the computation of ein(q) with respect to predictions @V (y,) this makes the
training procedure much more sensitive to errors in process values farther away from the process
mean. The (weighted) error signal e[S,”(q) is then traced back through the network to compute the
new weights and biases for the next iteration step. Let vjm(q) be the argument of the activation
function (pjm(') in neuron ;) of layer (L) and yjufn(q) denote the output of neuron ;™ in the
previous layer (L — 1). The new weights for the next iteration step ¢ + 1 are then

Wj<L>j<L—1>(q +1) = ijj(kn(q +)+a- Wj<L>j<L—1>(q_ D+n- @(L)(Q) 'yj(LfU(Q) (35)
with
5(@) = €,(4) Pl (V@) (36)
for the neuron j©) = 1 in the output layer, and
J&D
5}@)(61) = §0j?u (Vj<L>(CI)) ) Z 5;.@“)((]) : Wj<L+1>j<L>(f]) (37)
j(L+ 1) -1
for the neurons /) in layer (L). In this procedure, the biases b, are treated as weights Wi for
constant signals Yoo = +1 from the previous layer (L — 1). Specifically
bj(w(q +1) = bju.)(‘]) +a- bj(w(q— D+n- 5}(0@) (38)

with 6 (q) from Egs. (36) and (37), respectively. The derivative of the activation function in
Eqgs. (316) and (37) is computed according to Eq. (4). The parameters ¢ and 7 are introduced to
control the numerical behavior of the iteration. Whereas the learning rate 7 > 0 determines the
degree with which the actual error gradients effect the weight change, the momentum factor
ae[0,1) acts as a delay parameter in the weight adjustment.

When the weight adjustment in iteration step ¢ is completed, the next sequence of 7+ 1 successive
process values (z,_,,...,Z,_1,2,) is randomly selected according to Eq. (34) to proceed with the
weight adjustment in iteration step g + 1. This procedure of iteratively adjusting the weights and
biases is referred to as sequential training mode, which possesses the advantage of being stochastic
in nature. This induces a good performance in the search for the global minimum of the objective
function Eq. (33).

To assess the network training results, various termination criteria may be defined. For example,
the training may be terminated when the relative weight change or the prediction error becomes
sufficiently small. Herein, the prediction error is selected as termination criterion as this is intended
to be zero for process simulation. For an optimal network configuration, the prediction error
approaches zero asymptotically with progressive training,

lim(e,) =0 Vnlr<n<N (39)
q—>o

This justifies the assumption in Eq. (25) as a basis for applying the trained network with a
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progressive prediction mode.

The determination of a particular appropriate structure of the network is problem dependent. The
number of layers, neurons in each layer, and the order » of the memory have to be specified
iteratively, too. Depending on the training result and the quality of the network prediction of the
trained neural network, the suitability of the particular network structure may be assessed. This
network synthesis is generally an interactive procedure. Strategies and algorithms for an automated
synthesis of a neural network such as discussed in Haykin (1999) may be used to support the search
for a solution. The self-organization of a neural network may, however, limit the variety of network
solutions and may preclude the identification of the optimum configuration. Respective strategies
are developed for certain problems; see, for example, Su and Chang (2001). These research efforts
concern not only complex networks but feed-forward networks as well, with a single hidden layer
Teoh et al. (2006). A general solution for all cases does not exist.

5. Examples
5.1 Numerically generated time series

The capabilities and the features of the neural network-based process simulation are first shown in
a numerical example. A numerically generated time series of a random process with defined
properties is taken as the basis. This enables an evaluation of the network simulation result not only
with respect to the statistical properties of the input data record, but also with respect to the actual
process characteristics.

An ARMA model of order 25 is applied to generate a long realization {z;, z, z3, ...} of a
stationary ergodic Gaussian process Z(¢, ¢) with the filtered noise power spectrum

S(w) = — 2““""2 . (40)
(wn_w )+(2{COCO”)

The parameters are selected as
a=5, (=025, w,=10rad/s (41)

The curve of this spectrum is plotted as a normalized target spectrum in Figs. 7 and 8. The step
width for the process values is

At = 0.0628 s (42)

For the neural network-based simulation a subsequence of only N = 50 successive values z, from
the generated time series is taken as the basis. An appropriate network architecture is found with a
tapped delay line memory of order » = J" =12 and two hidden layers with J® =13 and J® =7
neurons, respectively. The network possesses one output neuron, J* = 1. This network thus contains
a total of

23: P +1). S =275 (43)



A neural network approach for simulating stationary stochastic processes 87

free values (weights and biases), which are adjusted iteratively via error back-propagation during the
network training. Learning rate and momentum factor are chosen as

n=10, a=0.7 (44)

The development of the prediction error eﬁn with proceeding network training is shown in Fig. 5.
After g = 80,000 iteration steps the error remains under 107°. The trained network is then applied to
generate long process realizations initialized by randomly generated “seed” vectors according to
Eq. (29).

The quality of the generated realizations is evaluated by a statistical comparison with the training
record as well as with the actual, underlying, process. Mean value and standard deviation show a
good agreement, see Table 2. Also, the empirical first-order distribution functions run close to each
other with a smooth curve from the network prediction, see Fig. 6. The deviation from the

prediction error (moving average over 100 steps)

1.25

1.00

0.75

0.50 \fh\\l\

025 w\"\%

0.00 B e L A
R 1.000 2,000 3.000 4.000 5000

iteration step

Fig. 5 Prediction error decrease during network training

Table 2 Comparison of mean values and standard deviations

Mean value u Standard deviation o
Training record —-0.001 0.169
Network prediction —-0.007 0.176
Underlying process 0.000 0.174
F(z)
1.00 training =T
record (|~
network >
 prediction — /
= .
_—~F— underlying
0.00 Gaussian
-0.329 distribution 0.427

process value z

Fig. 6 First-order distribution functions
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Table 3 Rejection probabilities of the H, hypothesis

. Underlying
Neural network prediction Gaussian distribution
Kolmogorov-Smirnov test 0.024 0.000
Chi-squared test (six classes) 0.028 0.217
S(w) (normalized) S(w) (normalized)
A /TN 1.00 /f\
// \\ trainin JHA ini
g traiming
[T VY record j/ \\ records
) [\
network i} W7 ~ network
\ o prediction I\ K\ /_ predictions
[V N N e N IR =/ N == I
0.00 1L tareet mESSs- 0.00 (L target B s e e
0 spectrum 50 0 spectrum 50

 [rad/s]  [rad/s]

Fig. 7 Spectral density estimations — one network  Fig. 8 Spectral density estimations — averaged over
based simulation ten network based simulations

underlying distribution at the left end of the curves results from a concentration of process values in
this range in the training record, which is reflected in the network prediction. The figure shows the
complete value range of the network prediction. Homogeneity tests and goodness-of-fit tests yield
small rejection probabilities for the H, hypothesis, according to which the training data and the
generated data originate from the same population, see Table 3. Even the underlying Gaussian
distribution does not lead to significantly better results.

Further, spectral density estimations are generated from the training record and from the network
prediction via averaged periodograms over several subsequences of 10 successive time steps. Again,
the curves for the network prediction and for the training record show a good agreement, see Fig. 7.
A comparison with the target spectrum shows reasonable deviations owing to the short training
record.

In an enhanced study, ten different, non-overlapping training records of N = 50 values each are
taken from the original process realization from the initial ARMA application. For each of these
training records a neural network based simulation is carried out. As above, spectral density
estimations are generated for each training record and for each prognosis record via averaged
periodograms over subsequences of 25 process values. Then, the obtained ten spectral density
estimations for the training data and for the prognosis data are again averaged, see Fig. 8. The
resulting, averaged spectral density curves document an adequate quality of the network prediction
with regard to the training data. Moreover, the deviations from the target spectrum are now much
smaller. This indicates that the neural network has recognized the essential characteristics of the
underlying process and that the network prognosis possesses features of convergence towards the
exact solution in mean sense.
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5.2 Measurement series

In this example the network-based process prediction is applied to a real series of measurements
of material strength. Data are provided as an ordered sample of 250 measured values of the
compressive strength of a building material. It is stated that this sample represents an observed
realization {z, z,, z3, ...} of a stochastic process Z(¢#, €). A physical or mechanical background of
the process, however, is not disclosed. Even the process parameter ¢ remains unknown. The data are
analyzed blindly.

In the first part of the example, the entire observed process realization is used for training the
network, N = 250. An appropriate network architecture has been found with »=J" =12, J@ =25,
JY =21, and J¥ = 1. Again, the training procedure is performed until the prediction error
approaches zero. Then, the network-based Monte Carlo simulation is carried out with randomly
specified “seed” vectors as described by Eq. (29).

For evaluating the results, the process is assumed to be ergodic. Table 4 shows the comparison
between training data and network prognosis by means of their mean values and standard
deviations. There is reasonable matching in the mean values and a moderate difference in the
standard deviations. To assess the differences, two-sided interval estimations are applied based on
the assumption of a Gaussian distribution, which was suggested as common for modeling the
investigated material strength. For a confidence level of 98% both parameters of the network
prognosis lie within the intervals, see Table 4.

The empirical first-order distribution functions of the training data and of the network prediction,
and an estimated Gaussian distribution are compared in Fig. 9. Only minor deviations appear. The
curve from the network prediction exhibits a noticeable smoothness. Homogeneity tests and
goodness-of-fit tests lead to acceptable rejection probabilities for the H, hypothesis, see Table 5.
The estimated Gaussian distribution, which represents the common treatment of such measurement
series, does not reach the quality of the network prognosis. In the present case, it would even be

Table 4 Mean values and standard deviations

Mean value u Standard deviation o
Training record 53.17 7.23
Network prediction 53.15 6.57
Confidence intervals on the level of 98% [52.10, 54.24] [6.55, 8.07]
F(z)
L netv‘vork ‘ =
prediction\/
| measurement
N estimated
/A Gaussian
7 distribution
4/
=
0.00
36.57 80.22

material strength z [N/mm?]

Fig. 9 Comparison of first-order distribution functions
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Table 5 Rejection probabilities

_ Estimated
Neural network prediction Gaussian distribution
Kolmogorov-Smirnov test 0.81 0.85
Chi-squared test (14 classes) 0.57 0.98

S(w) (normalized)

1.00 N N
ll/ \\/ network prediction
/AN 1]
| \\\\ ~ measurement
v
| N\
/ LS
0.00 —
0 50

 [rad/s]

Fig. 10 Comparison of spectral density estimations

rejected. In comparison with the first example in Section 5.1, the absolute values of the rejection
probabilities are significantly higher. This, however, is caused by the larger size of the training
record with N = 250 in comparison to N = 50 in Section 5.1 and does not indicate a worse result in
general.

To generate spectral density estimations from the training record and from the network prediction,
a fictitious time scale is introduced. The time period Ar = 27 seconds is assigned to a process
sequence of 125 measured value. The spectral densities are then determined by averaging
periodograms over non-overlapping subsequences of 25 successive time steps. The resulting curves
show again a reasonable matching, see Fig. 10. The network prediction yields a slightly smoother
curve.

The second part of the example is devoted to the prediction of the future behavior of a single
process realization. For demonstration, only the first half of the measured values is used for training
the network, N = 125. Then, a progressive prediction of the measurement process is generated and
compared with the actually measured values. In contrast to the previous cases, a reasonable network
structure is now found with three hidden layers. Specifically, » =JV =21, =30, S =20, JY=
10, and J® =1.

After the training of the network, the prediction is started with last sequence of training data
according to Eq. (26). That is, the network generates data

2, = D2y e eenzy 1), 1= 126,127,128, ... (45)

This prediction is compared with the actual further behavior of the measurement series; see
Fig. 11. The curves show a reasonable matching. The essential process behavior has been
recognized by the network. This becomes even more obvious in Fig. 12 showing the two-sided
moving average over seven process values. The average error in this prediction is only 5.15%.
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]0 compressive strength z [N/mm?] 30 compressive strength z [N/mm?]
30 measurement| - prediction 30 measurement| - prediction
T 125 250 1 125 250
number of measurement number of measurement
Fig. 11 Prediction of a single process realization Fig. 12 Moving average of the single realization
prediction

6. Conclusions

Neural networks may represent a viable approach for simulating stochastic processes in various
engineering fields. They can be particularly helpful in cases in which various properties of the
process cannot be identified or specified precisely. Compared to traditional methods, a model
specification is not required. Moreover, neural networks possess a greater intrinsic complexity
compared to the traditional simulation models. It may, thus, be expected that they are suitable in
capturing process behavior for complex problems.

On the downside, a proof for the appropriateness of a network-based stochastic simulation does
not yet exist to the authors’ best knowledge and may be difficult to achieve in general terms.
Further, a network solution is not unique with respect to both the network configuration and the
weight adjustment. The determination of a suitable network configuration includes a trial-and-error
component. And the error surface in the network training may possess several local minima of
comparable quality. Nevertheless, the examples in this paper, and general other applications of
neural networks in engineering have demonstrated their capabilities and usefulness.

Further developments associated with the presented procedure may focus on extensions aiming at
applicability to non-stationary and multivariate problems. The development of an automated
generation of a suitable network configuration for process simulation may also be achievable.
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Notation

The following symbols are used in this paper:

: real number, parameter

: interval, set

: bias

: partial derivative

: real valued domain of definition of a stochastic process
: prediction error

: error energy

: functions of x

: empirical distribution function

: indicator function

: number of neuron in layer (L)

: number of a layer

: size of observed process realization
: network prediction

: probability measure

: iteration step counter

: order of tapped delay line memory
: power spectrum

: o-algebra

: process parameter (e.g., spatial or temporal coordinate)
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U() : uniform distribution over some domain
v : activation potential

Ve : effective part of the activation function
w : weight

X : network input signal

X, Z : random variable

y : neuron and network output signal

At, 6) : stochastic process

{z1, 2o, z3, ...} :process realization

z :mean of Z

o : momentum factor

o : local error gradient

£ : small real number

n : learning rate

g/)(.‘)vl : activation function

o (7)) : inverse function of the standard normal distribution function
e Q : elementary event

oy : standard deviation of Z

w : angular frequency

Q : space of elementary events

g : real number, parameter

[Q G, P : probability space
O : derivative





