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Abstract. We performed a free vibration analysis of skew composite laminates with or without cutout
based on the high-order shear deformation plate theory (HSDT). The effects of skew angles and ply
orientations on the natural frequencies for various boundary conditions are studied using a nonlinear high-
order finite element program developed for this study. The numerical results are in good agreement with
those reported by other investigators for simple test cases, and the new results reported in this paper show
the interactions between the skew angle, layup sequence and cutout size on the free vibration of the
laminate. The findings highlight the importance of skew angles when analyzing laminated composite skew
plates with cutout or without cutout. 
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1. Introduction 

Skew plates are often used in modern structures, despite the mathematical difficulties encountered

in their analysis. Swept wings of airplanes, for example, can be idealized by introducing

substructures in the form of oblique plates. Similarly, complex alignment problems in bridge designs

are often solved by using skew plates. Numerous other applications of oblique parallelogram slabs

can also be found in buildings. With the advancement in fiber-reinforced composite material

technology, the applicability of composites to such skew members has increased greatly due to their

low density, high stiffness and high strength. In addition, cutouts are inevitable in structures made of

laminated composite materials. Cutouts in structural members may result in a change in the

dynamic characteristics for increased skew angles. 

The structural behavior of isotropic skew plates without cutout has been studied previously by

many investigators using a variety of approaches. Kennedy and Huggins (1964) derived

approximate analytical solutions of clamped isotropic oblique plates subjected to uniform lateral
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load that were subsequently modified and applied to bridge deck designs by Kennedy and Tamberg

(1969). Durvasula (1969) presented the natural frequencies of thin skew isotropic plates using the

Galerkin method with conventional beam mode function. Mizusawa et al. (1979) dealt with natural

frequencies of skew isotropic plates using a B-spline Rayleigh-Ritz method. In addition to these

analytical approaches, vibration problems using numerical methods have been attempted by many

investigators. For example, Bardell (1992) carried out a free vibration analysis of skew plates using

a hierarchical finite element method. 

All these works are limited in that they analyze only skew plate members made of isotropic

materials. Recently, techniques for analyzing laminated composite skew plates made of anisotropic

materials have evolved. Wang (1997) examined the free vibration of laminated composite skew

plates using a B-spline Rayleigh-Ritz method, which was based on the first-order shear deformation

plate theory (FSDT). Anlas and Göker (2001) used orthogonal polynomials with the Ritz method to

determine the natural frequencies of skew laminates. Reddy and Palaninathan (1999) introduced a

general high-precision triangular plate bending finite element method for a free vibration analysis of

laminated skew plates by deriving the consistent mass matrix in explicit form. Wang et al. (2000)

presented a free vibration analysis of skew sandwich plates with laminated facings. Most of these

works were based on classical plate theory (CLPT) or FSDT. In general, a linear FSDT can describe

easily and accurately the vibration characteristics of square or rectangular composite plate (Reddy

2004). However, it requires an estimation of shear correction factors; a value of K = 5/6 is normally

used (Khdeir and Reddy 1991, Kim and Park 2002). On the other hand, the nonlinear HSDT is free

of such requirements and can thus yield more accurate results under both static and dynamic

conditions. Many HSDTs exist but they are mostly applicable to rectangular isotropic or anisotropic

plates with or without cutout (Murthy 1981, Bhimaraddi and Stevens 1984, Reddy and Phan 1985,

Kant et al. 1990, Lee and Yhim 2004, Sivakumar and Iyengar 1999, Reddy and Krishnan 2001,

Kumar and Shrivastava 2005, Park et al. 2008). In this paper, we extend a finite element analysis

based on the HSDT to study the free vibration of laminated composite skew plates with cutout. To

our knowledge, rare previous reports on this topic exist in the literature; the present paper attempts

to fill this gap. 

The numerical results are compared to results found in the open literature using simple cases to

demonstrate the validity of the approach. For composite skew laminates, the skew angles and layup

sequences could play a dominant role in determining the vibration characteristics (Hosokawa et al.

1996, Han and Dickinson 1997). Thus, the study is extended to investigate the influence of skew

angles and fiber orientations for various boundary conditions. The signicance of the HSDT in

analyzing laminated composite skew plates is enunciated in this paper. Then, skew laminates with

cutout is presented to explain the complicated effects of the interaction between skew angles and

cutout sizes on the free vibration. 

2. Theoretical formulation 

The HSDT used to analyze composite laminates reviewed in this study is derived from the high-

order laminate formulation (Reddy 2004). The theory was based on the same assumptions as those

of classical and first-order plate theories, except that we no longer assume that the straight lines

normal to the middle surface remain straight after deformation but it is assumed that they can be

expressed in the form of a cubic equation. Fig. 1 schematically shows the different deformation
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kinematics of the FSDT and HSDT. For the FSDT, the following linear relationship with five

degrees of freedom per node was used: 

(1)

For the HSDT, the following non-linear relationship with seven degrees of freedom per node was

used 

(2)

where c0 and c1 are the parameters referred to as tracers. The condition c0 = 1,  and

 in Eq. (2) yields the same displacement field as that of the classical lamination theory

(CLPT). The displacement field becomes identical to that of FSDT for c1 = 0 as shown in Eq. (1).

Note that c0 = 1 for HSDT. 
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Fig. 1 Assumed deformation normal to the mid-surface of a plate 

Fig. 2 Geometry of a laminated composite skew plate with cutout
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The governing equation of composite skew plates can be obtained conveniently by introducing an

oblique coordinate system, as shown in Fig. 2 (Szilard 1974). The coordinates of the rectangular

(X1, X2, X3) and oblique (Ξ1, Ξ2, Ξ3) systems are related by 

,  (3)

The shear deformation theory and the relevant formulas in the finite element analysis of skew

plates are reviewed below. A nonconforming element for skew plates have seven degrees of

freedom (DOF) per node, that is, the mid-plane displacements in the Ξ1, Ξ2, and X3-directions

( ), the respective derivatives , and the rotations  are transformed

from the rectangular to oblique coordinate system shown in Fig. 3. The generalized displacements

can be approximated over an element Ωe by the expressions 

(4)
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Fig. 3 Mode shapes of the lowest modes for [45o/-45o]s free-clamped composite skew plates without cutout
(a/h = 10.0) 
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where [I2] is a 2 × 2 identity matrix, Ψj are the Lagrange interpolation functions and  and

 are the Hermite interpolation functions, and their first derivatives, respectively. 

The stiffness matrix [K]e of a plate element is assumed to be 

(5)

where a and b are the dimensions of a skew plate, [B] is the strain-displacement matrix, and [Ds] is

a stiffness matrix in the global coordinates. Alternatively, Eq. (3) can be rewritten in the natural

coordinates  as 

(6)

where |J | is the determinant of Jacobian matrix. The 13 × 28 strain-displacement matrix  in the

 coordinates is given by 

(7)

and the 13 × 13 stiffness matrix [Ds] could be expressed as 

(8)
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, (9)

,  (10)

Here,  denotes the stiffnesses of the kth layer and the positions of the top and bottom faces of

the kth layer  and . 

The equations of motion for the laminated composite skew plate based on the high-order theory

can be written as follows  

(11)

where , and  are the normal and shear force resultants, , and  are

the moment resultants,  and  are the transverse force resultants, F is the distributed load, and

, (12)

(13)

, , , (14)

where m is the total number of layers, ρ(k) is the mass density of the kth layer, h is the wall

thickness, and  and  denote the higher-order resultants respectively given

as 

, (15)

Eq. (11) can be rewritten in compact form as 

(16)

where {S}, [µ], and {A} are respectively the force vector, inertia matrix, and the acceleration vector.
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 (17)

where  is a matrix consisting of Lagrange and Hermite interpolation functions. For a free

vibration, the equation of motion is written in the form 

(18)

where  and  are assembled matrices of  and [K]r in the plate. In order to understand

the dynamic behavior of a system, we often need to know only a few low order eigenvalues of the

system. In this study, the subspace iteration method (Bathe 1996) is adopted to extract the

eigenpairs representing the low order natural frequencies. This method selects a subspace whose

dimensions, determined by the desired number of eigenvalues to be obtained, are the same as those

of the entire matrix. Then, the Jacobi iteration method is carried out on the selected matrix using the

Ritz’s base vector as an initial vector. This method has the advantages to effective memory

management and computational efficiency compared to other methods that carry the entire matrix in

the computation (Bathe 1996). 

3. Numerical results 

This study is focused on the free vibration characteristics of composite skew plates based on the

HSDT. The material properties used in the present analysis are listed in Table 1. All the layers were

of equal thickness and the skew plates, which were clamped and simply supported on all sides,

were considered separately. For a simply supported edge

SS-1: (19)

SS-2: 

(20)

For a clamped edge 
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Table 1 Mechanical and physical properties of the materials used in this study. The units of E1, E2, G12, G23,
G13 are GPa and that of ρ is kg/m3, respectively. Note that the properties of Material I and II are
normalized by E2

Material  E1 E2 G12 G23 G13 ν12 ν21 ρ 

Material I 40E2 - 0.6E2 0.5E2 0.6E2 0.25 0.25 -

Material II 25E2 - 0.5E2 0.2E2 0.5E2 0.25 0.25 -

Material III 130.0 10.0 5.0 3.3 5.0 0.35 0.35 1500.0 
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3.1 Skew plates without cutout 

It was shown from our previous study (Lee and Wooh 2004) that the results obtained using

different composite plate theories could be significantly different for rectangular or folded plates,

depending on the given boundary conditions. In addition, Table 2 shows the effect of the length-to-

thickness ratio on the normalized natural frequencies of antisymmetric cross-ply square plates ([0o/

90o]n, b/h = 5.0, 10.0). The parallel edges on the side of the plate were simply supported (SS-2) and

three different boundary conditions were considered for the other two edges of the same plate. As

expected, the exact solutions and numerical results obtained from this study are in good agreement

with those reported by Reddy (2004). On the other hand, the results obtained using the FSDT and

HSDT could be noticeably different depending on the given boundary conditions and length-to-

thickness ratio. Difference of about 9.5% for moderately thick plates (b/h = 5.0) with a C-C

boundary condition are shown in the table. The differences are much less at lower values of b/h. 

Fig. 3 shows the mode shapes of [45o/-45o]s composite skew plates with two clamped and two

free edges. The HSDT was used here to obtain better computational accuracy. It is interesting to

observe that the first mode shape is antisymmetric for a skew angle of 60o as shown in Fig. 3(g).

This is clearly due to the effect of bending and shear couplings resulting from the increased skew

angle. The extent of the effect is determined by the fiber orientation and the length-to-thickness

ratio. 

Table 3 shows the normalized natural frequencies of [45o/-45o/45o/-45o/45o] simply supported

square and skew plates made of material I. In this case, the use of different theories make little

difference to the composite plate results regardless of the skew conditions, because the length-to-

thickness ratio of the plate is relatively low (b/h = 1000.0). On the other hand, for the thicker plate

Table 2 Normalized frequencies of a square [0o/90o]2 antisymmetric cross-ply laminate made of Material I.
Letters F, S and C denote free, simply supported (SS-2), and clamped conditions, respectively.

Normalized frequency, ω

Source b/h Theory Solution F-S S-S S-C C-C 

Reddy (2004) 5 HSDT Exact 6.387 9.087 10.393 11.890 

FEM 6.192 9.103 10.582 12.053 

FSDT Exact 6.213 8.833 9.822 10.897 

FEM 6.219 8.837 9.899 10.906 

CLPT Exact 7.450 10.721 13.627 17.741 

FEM 7.279 11.192 15.357 18.694 

This study HSDT FEM 6.083 9.194 10.435 11.972 

Reddy (2004) 10 HSDT  Exact 7.277 10.568 12.870 15.709 

FEM 7.134 10.594 13.180 15.914 

FSDT Exact 7.215 10.473 12.610 15.152 

FEM 7.222 10.480 12.791 15.181 

CLPT Exact 7.636 11.154 14.223 18.543 

FEM 7.345 11.383 14.828 19.053 

This study HSDT FEM 7.489 10.573 12.885 15.745 

ω ωb2 ρ/E2/h=
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Table 3 Normalized values of low order natural frequencies for free vibration of five-layered [45o/-45o/45o/
-45o/45o] simply supported (SS-1) square and skew plates made of Material I ( ;
a/b = 1 ; a/h = 1000.0) 

Normalized frequency, ω

Skew angle 
ψ

Mode This study (HSDT) This study (FSDT) 
Wang (1997) 

(FSDT) 
Singha and Ganapathi 

(2004) (FSDT) 

0o

(Square plate) 
1 2.4284 2.4181 2.4339 2.4339 

2 4.9905 4.9678 4.9865 4.9859

3 6.1367 6.1394 6.1818 6.1814 

4 8.5183 8.4275 8.4870 9.4849 

5 10.2214 10.2528 10.2536 10.2506 

6 11.4669 11.5682 11.6464 11.6433 

30o

(Skew plate) 
1 2.6040 2.5942 2.6119 2.6118 

2 5.6476 5.6622 5.6902 5.6890

3 6.7934 6.7971 6.8316 6.8308 

4 9.3342 9.3931 9.4773 9.4737 

5 11.7903 11.8545 11.8900 11.8828 

6 13.0764 13.2505 13.2355 13.2258 

ω ωb2/π
2

h ρ/E2=

Table 4 Normalized values of low order natural frequencies for free vibration of five-layered [45o/ -45o/45o/
-45o/45o] simply supported (SS-1) and clamped (CCCC) skew plates made of Material I
(  ; a/b = 1 ; a/h = 10.0)

Normalized frequency, ω

SS-1 CCCC 

Skew angle 
ψ

Mode 
This study 
(HSDT) 

Wang (1997) 
(FSDT) 

This study 
(HSDT) 

Wang (1997) 
(FSDT) 

0o 1 1.8431 1.8792 2.3086 2.2857 

(Square plate) 2 3.2909 3.3776 3.7482 3.7392 

3 3.6663 3.6924 4.0569 3.9813 

4 4.7888 4.9682 5.1631 5.1800 

5 5.4066 5.4835 5.7649 5.7019 

6 5.5992 5.6002 5.9499 5.8455 

30o 1 2.0605 2.0002 2.6260 2.6626 

(Skew plate) 2 3.6023 3.6269 4.0636 4.1367 

3 4.1902 4.2830 4.6501 4.7227 

4 4.9952 5.0708 5.4037 5.4950 

5 5.9986 6.2499 6.3307 6.5410 

6 6.4766 6.5351 6.8075 6.8830 

45o 1 2.5238 2.4788 3.2951 3.3523 

(Skew plate) 2 4.1432 4.2214 4.7067 4.8079 

3 5.4112 5.5857 5.9581 6.0520 

4 5.5012 5.5981 5.9649 6.1029 

5 5.9392 7.0029 7.2176 7.4169 

6 7.4251 7.6255 7.7490 7.9276 

ω ωb2/π
2

h ρ/E2=
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(b/h = 10.0), the difference between the FSDT and HSDT increases with the increased skew angle

because of the effect of the high order terms in Eqs. (9) and (10). The natural frequencies of square

and skew composite plates with simply supported (SS-1) and clamped edges are compared in

Table 4. Table 5 shows the effect of the length-to-thickness ratio on the natural frequency of a four-

layered symmetric cross-ply [0o/90o]s skew laminate with clamped edges. The results obtained from

the HSDT are represented in the table. 

Fig. 4 shows the natural frequencies of a symmetric and antisymmetric cross-ply composite plate

for increasing skew angles. For all clamped boundaries, the induced frequency tends to increase

sharply as shown in Fig. 4(a), especially for ψ > 30o. The frequencies for antisymmetric laminates

are higher than those for symmetric laminates, but the difference between FSDT and HSDT results

is negligible. In contrast, the frequencies show different trends for the cantilever (Fig. 4(b)). The

difference between the FSDT and HSDT results increases to a maximum difference of about 14%

and the induced frequencies for the antisymmetric case are much higher than those for the

symmetric case, especially for ψ < 30o. This is predictable because it is expected that a free edge

without restraints is normally susceptible to vibration effects when skew angles and layup sequences

are combined. The difference becomes more dramatic for the case with simple (SS-1)-free edges

shown in Fig. 5. For the all clamped edges, the natural frequencies increase at a constant rate with

the fiber angle, and the difference between the FSDT and HSDT results increases for both ψ = 30o

and 60o (Fig. 5(a)). On the other hand, for simple-free edges, the natural frequencies exhibit their

highest values within the range of fiber angles from 40o to 50o (Fig. 5(b)). In addition, it can be

observed that the difference between the FSDT and HSDT results for free edges is much greater

than that of all clamped edges. We may conclude from these results that the natural frequency of a

composite plate with a free edge is significantly influenced by the skew and fiber angles. Therefore,

we must carefully consider the high-order shear terms in the HSDT, which are heavily dependent on

other factors such as the shape and boundary conditions as well as the fiber orientation. 

Fig. 6 shows the frequency of a clamped antisymmetric cross-ply skew plate for an increasing

Table 5 Normalized natural frequencies of clamped skew plates based in the HSDT for various values of a/h
ratio (Material II, [0/90]s, )

Normalized frequency, ω

Length-to-thickness ratio, a/h

Skew angle Mode 5 10 20 50 100

0o 1
2
3
4 

1.1085
1.7357
1.8752
2.3041 

1.7809 
2.8027 
3.1374 
3.8166 

2.5343 
3.8452 
4.9829 
5.7594 

3.1561 
4.5736 
7.2149 
7.2694 

3.3050 
4.7501 
7.6261 
7.9530 

30o 1
2
3
4 

1.2655
1.8770
2.2155
2.4099 

2.0425 
3.1169 
3.6808 
4.0603 

2.8711 
4.5075 
5.5982 
6.1662 

3.5344 
5.5396 
7.8540 
8.2209 

3.6950 
5.7905 
8.6105 
8.8382 

45o 1
2
3
4 

1.5397 
2.1592 
2.6928 
2.7659 

2.5373 
3.6541 
4.6129 
4.6816 

3.5897 
5.4945 
7.1134 
7.2053 

4.3985 
7.1363 
9.6004 
9.9189 

4.5976 
7.5769 
10.3994 
10.7934 

ω ωb2 ρ/E2/h=
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Fig. 4 First-order natural frequency of symmetric and antisymmetric cross-ply composite plates for increased
skew angles (Material II, a/h = 10.0, ω = )ωb

2

/h ρ/E2

Fig. 5 First-order natural frequency of [90o/θo/θo/90o] composite skew plates for increased fiber angles
(Material II, a/h = 10.0, ω = )ωb

2

/h ρ/E2

Fig. 6 First-order natural frequency of clamped [0o/90o]N composite skew plates for increased number of
layers (Material II, a/h = 10.0, ω = )ωb

2

/h ρ/E2
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number of layers. The values in the figure approach a constant, regardless of the skew angle, as the

number of layers increases, especially for N > 3. As shown in the figure, the rate of convergence of

the FSDT and HSDT results shows similar trends, but the frequency amplitude of the laminate with

ψ = 60o is significantly greater than that of the others. Furthermore, a larger difference is observed

between the FSDT and HSDT results for ψ = 60o. This is probably due to the different dynamic

characteristics of a plate with ψ = 60o as illustrated in Fig. 3. The high-order shear terms in the

HSDT for the large skew angle of ψ = 60o are signified by the transformation of the material

coefficients (see Eqs. (9) and (10)) in oblique coordinates. The coupling stiffness Bij and Eij in

Eq. (9), which become nonzero for antisymmetric laminates, is more influenced by the frequencies

of the plate with the increased skew angle. Therefore, we may not neglect the shear terms when

analyzing composite skew plate structures because the contributions made by the high-order terms

could be substantial. 

3.2 Skew plates with cutout 

Table 6 shows the effect of the cutout size on the normalized natural frequencies of simply

supported square plates made of Material III ([(±45o/0o
2)3(90o/02

o/90o)2]s, b/h = 75). The square

cutout ratio is varied from 0.0 to 0.6 in step of 0.2. It can be observed from the table that the results

obtained from this study are in good agreement with those reported by Kumar and Shrivastava

(2005) and commercial package model (ABAQUS 6.7, 2007). For all clamped boundaries, the

comparison of results in Table 7 also shows that the present results are in close agreement with

those of Kumar and Shrivastava (2005) and ABAQUS. The frequencies for the 0.2 and 0.4 cutout

Table 6 Normalized values of low order natural frequencies for free vibration of forty-layered [(±45o/0o
2)3(90o/

0o
2/90o)2]s simply supported (SS-1) square plates with cutout (  ; a/h = 75 ; Material

III) 

Normalized frequency, ω

Cutout ratio
(s/b) 

Mode This study 
(HSDT)

Kumar and Shrivastava (2005) 
        (HSDT)           (FSDT)

ABAQUS 
(FSDT)

0.0 1 
2
3
4 

13.592
29.003 
37.665 
53.607 

13.714 
29.503 
38.309 
54.852 

13.590 
29.113 
37.792 
53.934 

13.685 
29.894 
39.103 
55.568 

0.2 1 
2
3
4 

13.113 
28.245 
35.527 
51.961 

13.403 
29.061 
36.903 
53.421 

13.154 
28.391 
35.790 
52.401 

13.162 
29.213 
37.154 
53.881 

0.4 1 
2
3
4 

14.173 
25.642 
28.603 
48.260 

14.862 
26.683 
29.912 
49.765 

14.243
25.651
28.640 
48.719 

14.222 
26.212 
29.389 
50.182 

0.6 1 
2
3
4 

19.338 
27.812 
28.865 
43.980 

21.064 
30.061 
31.418 
49.424 

19.527 
28.204 
29.376 
45.223 

19.421 
28.205 
29.321 
45.881 

ω ωb2/h ρ/E2=
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Table 7 Normalized values of low order natural frequencies for free vibration of forty-layered [(±45o/0o
2)3(90o/

0o
2/90o)2]s clamped square plates with cutout (  ; a/h = 15 ; Material III)

Normalized frequency, ω

Cutout ratio 
(s/b) 

Mode This study
(HSDT) 

Kumar and Shrivastava (2005) 
(HSDT) 

ABAQUS
(FSDT) 

0.2 1 
2
3
4 

21.031
32.464
36.980
50.744 

21.501 
32.893 
37.834 
50.477 

20.853 
32.957 
37.340 
50.602 

0.4 1 
2
3
4 

26.922 
31.851 
35.510 
47.208 

27.522 
32.067 
35.986 
47.910 

26.902 
31.307 
34.975 
47.522 

0.6 1 
2
3
4 

43.287 
47.311 
55.765
 60.054 

45.488 
45.720 
54.905 
57.770 

44.040 
44.142 
52.647 
55.113 

ω ωb2/h ρ/E2=

Fig. 7 Normalized values of low order natural frequencies for free vibration of forty-layered [(±45o/0o
2)3(90o/

0o
2/90o)2]s simply supported (SS-1) square and skew plates with cutout (ω = ; a/h = 75 ;

Material III)
ωb

2

/h ρ/E2
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ratios are closed to that of the plate without cutout. On the other hand, the induced frequency for

the cutout ratio of 0.6 is extremely higher than the others. This is predictable because it is expected

that the plate mass decreases as the cutout ratio increases. We can also notice that the frequency is

significantly altered for the 0.6 cutout ratio regardless of the boundary condition. 

Fig. 7 shows the natural frequencies of a forty-layered simply supported composite plate with

different cutout ratios for increasing skew angles. As the skew angle increases, the differences in

frequencies due to different skew angles are small for a great number of layers as shown in Fig. 6.

On the other hand, for the large cutout size (s/b > 0.2), the differences when compared to those of

square plates increase, especially for skew angles of ψ = 30o and 45o. This implies that there is

signicant change in dynamic characteristics of the skew plate with the large cutout size. The key

observations from the figure are various effects of the interaction between skew angles and cutout

sizes on the free vibration of plates. Table 8 shows normalized values of low order natural

frequencies for free vibration of forty-layered [(±45o/02
o)3(90o/02

o/90o)2]s simply supported (SS-1)

square and skew plates with cutout for various values of a/h ratio. The size of the cutout is fixed

Table 8 Normalized values of low order natural frequencies for free vibration of forty-layered [(±45o/0o
2)3(90o/

0o
2/90o)2]s simply supported (SS-1) square and skew plates with cutout for various values of a/h ratio

(  ; s/b = 0.4 ; Material III)  

Normalized frequency, ω

Length-to-thickness ratio, a/h

Skew angle Mode 5 10 20 40 80

0o 1 
2 
3 
4 

10.645 
14.567 
14.955 
20.561 

12.829 
19.945 
20.974 
33.326 

13.723 
23.412 
25.339 
43.314 

14.051 
25.016 
27.629 
47.084 

14.170 
25.681 
28.671 
48.330 

15o 1 
2 
3 
4 

10.685 
14.490 
15.015 
21.049 

13.025 
19.835 
21.168 
33.153 

14.191 
23.385 
25.752 
42.742 

15.044 
25.156 
28.550 
47.129 

16.320 
26.225 
30.795 
49.162 

30o 1 
2 
3 
4 

10.887 
14.452 
15.208 
21.099 

13.633 
19.681 
21.695 
32.786 

15.517 
23.455 
26.934 
42.083 

17.495 
25.684 
30.924 
47.219 

20.350 
27.560 
35.149 
50.580 

45o 1 
2 
3 
4 

11.217 
14.530 
15.538 
20.609 

14.573 
19.701 
22.475 
32.176 

17.357 
23.835 
28.551 
41.583 

20.445 
26.680 
33.854 
47.429 

24.236 
29.341 
39.549 
51.873 

60o 1 
2 
3 
4 

11.577 
14.722 
15.928 
20.509 

15.583 
19.911 
23.319 
31.756 

19.207 
24.484 
30.234 
41.473 

23.135 
27.940 
36.644 
47.989 

27.350 
31.259 
43.309 
53.393 

75o 1 
2 
3 
4 

11.867 
14.932 
16.258 
20.519 

16.353 
20.181 
23.979 
31.594 

20.547 
25.065 
31.504 
41.584 

24.960 
29.023 
38.650 
48.679 

29.346 
32.759 
45.879 
54.803 

ω ωb2/h ρ/E2=
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as s/b = 0.4. It can be observed that the frequency increases as the length-to-thickness ratio.

Furthermore, the difference becomes more dramatic as the skew angle increases. Note that the

frequency in this case is heavily dependent on the skew angle. 

Fig. 8 shows the mode shapes of [45o/-45o]s composite skew plates with the central cutout ratio of

0.4. The geometrical and material properties of the skew plate are same as those of Fig. 3. It is

interesting to observe that the mode shapes of the plate with cutout are significantly different from

those of the plate without cutout, especially for the bigger skew angle. This is clearly due to the

interaction effect of resulting from the increased skew angle and cutout ratio. The extent of the

dynamic characteristics changed from the effect is determined by the fiber orientation, the length-to-

thickness ratio and boundary condition. 

4. Conclusions 

We developed a technique based on nonlinear high-order plate theory to analyze the free vibration

behavior of skew composite structures with or without cutout, which is an attractive approach

because it not only is computationally efficient and accurate but it also avoids assumptions about

shear factors that are mandatory in a FSDT. The accuracy of the present formulation is

demonstrated for rectangular and skew laminates using FSDT and HSDT calculations. The

technique is then implemented for rectangular and skew plate structures with various skew angles,

cutout ratios, length-to-thickness ratios, layup sequences, and boundary conditions to compare the

Fig. 8 Mode shapes of the lowest modes for [45o/-45o]s free-clamped composite skew plates with cutout
(s/b = 0.4, a/h = 10.0)
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results obtained from the two different theories. 

The use of different plate theories make little difference for thin plates regardless of the skew

angles. The difference, however, becomes significant for thick composites, even rectangular ones,

depending on the layup configuration and boundary conditions. For skew composites with free

edges, the difference is even greater because both the properties of the materials and the geometrical

properties of the member have large contributions to the overall behavior of the structure. In

specific, skew angles of more than 60o is very sensitive to the fiber angles and number of layers. In

this case, the difference between FSDT and HSDT results increases, especially with the number of

layers. Therefore, it is desirable to use a HSDT for better accuracy. The nonlinear effect of through-

thickness shear deformations, which largely govern the free vibrations of skew composite structures,

should not be neglected for these types of problems. The results of plates with cutout implies that

there is significant change in dynamic characteristics of the skew plate with the large cutout size,

especially for various length-to thickness ratios. The key observations are various effects of the

interaction between skew angles and cutout sizes on the free vibration of plates. The parameter case

results of this study may serve as a benchmark for other designers and researchers analyzing free

vibrations of laminated composite skew plate structures with or without cutout.  
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