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Abstract. The present study is concerned with the stochastic linear free vibration study of laminated
composite plate embedded with piezoelectric layers with random material properties. The system equations
are derived using higher order shear deformation theory. The lamina material properties of the laminate
are modeled as basic random variables for accurate prediction of the system behavior. A C0 finite element
is used for spatial descretization of the laminate. First order Taylor series based mean centered
perturbation technique in conjunction with finite element method is outlined for the problem. The outlined
probabilistic approach is used to obtain typical numerical results, i.e., the mean and standard deviation of
natural frequency. Different combinations of simply supported, clamped and free boundary conditions are
considered. The effect of side to thickness ratio, aspect ratio, lamination scheme on scattering of natural
frequency is studied. The results are compared with those available in literature and an independent
Monte Carlo simulation.
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1. Introduction

The composite materials are finding extensive applications in primary and secondary structures in

aeronautical and space projects, like advance aircraft, helicopters, launch vehicles, satellite, space

stations etc. because they have outstanding mechanical properties, such as high strength and

stiffness to weight ratio, excellent corrosion resistance and very good fatigue characteristics. 

The development of new class of smart materials has improved the performance and reliability of

structural systems made of composite materials. Piezoelectric material is one of the smart materials.

Such materials combine the superior mechanical properties of composite materials as well as

incorporate the additional inherent capability to sense and adapt their static and dynamic responses.

The piezoelectric materials have the property of converting mechanical energy in electrical energy

and vice versa. They are employed as both sensors and actuators in the development of smart

structures by taking advantage of direct and converse piezoelectric effects. 

The smart composite structures have more uncertainties and variability in their structural

properties compared to conventional isotropic structures as a large number of parameters is

associated with their complex manufacturing and fabrication processes. Some variations of structural
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parameters, such as material properties, fiber angles, thickness and curvatures, are inevitable even

for the smart composite laminates manufactured carefully in a laboratory. In common deterministic

analysis, these structural parameters are taken to be deterministic and the variations in these are

ignored, leading to approximation in analysis and design. 

Keeping in view the above aspects, the mechanical properties of materials may be modeled as

basic random variables (RVs) for accurate prediction of the structural system behavior. In spite of

well-developed theory and computational methods for structural responses with deterministic

material properties, structural analysis in which the material properties are considered random, is

still underdeveloped.

Considerable efforts have been made in the past by researchers and investigators on the

predictions of the dynamic and buckling response of smart composite structures considering the

material properties as deterministic. Notably among them are due to Tzou and Tseng (1991), Huang

and Tseng (1996), Correia Franco et al. (1997), Saravanos et al. (1997), Correia Franco et al.

(2000), Zhou and Chattopadhayay (2000), Chen et al. (2000), Sadek et al. (2003), Simoes Moita et

al. (2004), and Shu, (2005). Extensive literature is available on the response analysis of the

deterministic material properties to random excitations (Nigam and Narayanan, 1994). However, a

limited literature is available on the analysis of the structures with random system properties. Much

of the published work on random system properties is based on structures made of isotropic

materials. A relatively little work is available on the structures made of composites and absolutely

no work is reported on structures made of composites with embedded sensors and /or actuators with

random system properties to the best of authors’ knowledge. A comprehensive summary of the

state-of-the art on structural dynamics with parameters uncertainties has been presented by Ibrahim

(1987) and Manohar and Ibrahim (1998). Liessa and Martin (1990) analyzed free vibration and

buckling of rectangular composite plates and determined the variation in fibre spacing or

redistribution of fibre tend to increase fundamental frequency by 21% and the buckling load by

38%. Nakagiri et al. (1990) studied simply supported graphite epoxy plates with stochastic finite

element method taking fibre orientation, layer thickness, and number of layers as random variables,

and found that the overall stiffness of fibre reinforced plastic laminated plates is largely dependent

on the fibre orientation. Zang and Chen (1991) presented a method to estimate the standard

deviations of eigen-value and eigenvector of random multiple degree of freedom (MDOF) systems.

The methods can be applied not only to the MDOF systems with distinct eigenvalues, but also to

MDOF systems with uncertainties in mass and stiffness matrix elements. They used both the

sensitivity and the perturbation technique to develop the methodology. Salim et al. (1993) employed

first order perturbation technique (FOPT) with Rayleigh-Ritz technique for analyzing composite

plates using classical laminate theory with random material properties. They analyzed specially

orthotropic composite laminates with all edges simply supported with deterministic loading to

obtain the SD of deflections. Englested and Reddy (1994) studied metal matrix composites based on

probabilistic micromechanics nonlinear analysis. They used Monte Carlo simulation (MCS) and

different probability distributions to incorporate the uncertainty in basic material properties. Raj et

al. (1998) obtained the static response of graphite-epoxy composite laminates with randomness in

material properties subjected to deterministic loading. The material properties have been modeled as

independent random variables. They used a higher order shear deformation theory to model the

plate behavior. They used the finite element method (FEM) in conjunction with MCS for obtaining

the second order statistics of static response. The sensitivity of variation of the SD of the response

towards the uncertainties in material properties has been examined for composite plates with
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different support conditions. Singh et al. (2001) obtained the second order statistics of first five

natural frequencies for two stacking sequences of cross ply laminates using Perturbation Technique.

They found that the fundamental mean frequency for anti-symmetric cross-ply is always lower than

symmetric cross ply. However, the relative value of the other natural frequencies depends on the a/h

ratio, mode of vibration and modular ratio. Also they found out that the classical laminate theory

over predicts the scatter in the fundamental frequency. Even for the thin plates, the use of classical

laminate theory may not be appropriate for study of scatter in the fundamental frequency. Onkar and

Yadav (2003) investigated non-linear response statistics of composite laminates using classical

approach with random material properties under random loading. Tripathi et al. (2007) analyzed the

free vibration of laminated composite conical shells with random material properties using

stochastic finite element method.

This paper presents probabilistic methodology for application of the HSDT based FEM in

conjunction with Taylor series based perturbation technique to random eigen value problem arising

from free vibration of the laminated composite plates integrating distributed piezoelectric sensors

due to random variation of lamina material properties. The C0 finite element as proposed by Singh

et al. (2002) for the random buckling analysis of the laminated composite curved shallow panels is

extended to free vibration analysis of composite plates embedded with piezoelectric layers with

random material properties. The formulation is in the framework of linear elasticity for small

deflection of smart composite laminates. The lamina material properties are modeled as basic RVs,

while other system parameters are taken as deterministic. To show the applicability of the proposed

outlined probabilistic methodology illustrative numerical examples are presented and discussed.

2. General formulation

Consider a laminated composite plate embedded with piezoelectric layers with perfect bonding

between laminae (Fig. 1). Assuming the transverse shear stresses and corresponding transverse shear

strains vanish on top and bottom surfaces of the laminate, the displacement field at a point in the

laminated composite plate based on HSDT is given as (Reddy 1984)

Fig. 1 Geometry of the laminated composite plate with piezoelectric layer
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 (1)

where u, v and w denote the displacements of a point on the mid surface in x, y and z directions,

respectively, and ψx and ψy are the rotations of plane normal to midsurface about the y and x axes,

respectively. The displacement functions are represented as  an ,
where C1 = 1 and C2 = C4 = 4/3h2. 

The displacement field model given in Eq. (1) can be rewritten as

(2)

where  and  

It can be seen that the degrees of freedom per node, by treating θx and θy as separate independent

DOFs, increase from 5 to 7. However, the strain vector will be having only first order derivative,

and hence a C0 continuous element would be sufficient. 

Considering the linear kinematics, the strain-displacement relations can be expressed as

 (3)

where

(4)

Assuming that a piezoelectric composite laminate consists of several layers, including the

piezoelectric layers, the linear constitutive equation for an orthotropic lamina of the laminate

substrate, is 

(5)
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and the constitutive equations of a deformable piezoelectric material, coupling the elastic and the

electric fields are given as (Tiersten 1969)

 (6)

(7)

with

,

(8)

where  is the elastic stress vector,  is the

elastic strain vector,  is the symmetric reduced elastic constitutive matrix, [e] is the piezoelectric

stress coefficient matrix,  is the electric field vector,  is

the electric displacement vector and [k] is the symmetric dielectric matrix, in the element local

system (x, y, z) of the laminate.

The electric field vector is the negative gradient of the electric potential φ, which is assumed to be

applied and varying quadratically in the all three directions

(9)

Hence 
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 (10c)
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 (11)

where 

 (12)

 

and 

 (13)

The vector  can also be expressed as 

(14)

(15)

The potential energy of a piezoelectric laminated composite plate undergoing small deformation is

given as 

Potential energy U = Strain energy – Electrical energy 

(16)

Using constitutive relations as given in Eqs. (6)-(7), the potential energy U can be expressed as

 (17)
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where 

(19)

and 

(20)

Using Eqs. (11) & (18), the Eq. (17) becomes

 (21)
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with 

, i = 3, j = 1, 2, 6

i = 1, 2, j = 4, 5 (24b)

 (25a)
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The Eq. (4) can be further written in matrix form as
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Using Eqs. (14) and (26), the Eq. (22) can be further written as

 (28)

For NL number of layers of composite plate embedded with piezoelectric layer, the kinetic energy

of a vibrating plate in bending is given as 
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3. Probabilistic methodology of solution

3.1 Finite element formulation

In the present a nine noded C0 isoparametric flat plate element is used to carry out the free

vibration analysis of general multi-layered composite plates embedded with piezoelectric layer. The

element has nine nodes and seven degrees of freedom per node, .

For the finite element analysis, the Eq. (28) can be written as 

 (35)

 (36)

where NE is number of elements used for meshing the plate.

The displacement vector Λ and the electric potential φ can be written in terms of shape functions

Ni and Nφ, respectively as 
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Using Eqs. (41a) and (42), the Eq. (40) can be written as 

(43)

where element bending stiffness matrix 

 

coupling matrix  

and dielectric stiffness matrix

 

 (44a-c)

Here K(e), K1
(e) and K2

(e) are computed numerically by transforming existing coordinate system to

natural coordinate system ξ and η using Gauss quadrature rule. 

Thus potential energy (Eq. (39)) of the laminate becomes,

(45)

For NL layers, the kinetic energy of the laminate can be written as 

 (46) 

where

(47)

Here the elemental mass matrix can also be obtained by numerical Gauss quadrature rule.

The governing equation for free vibration of piezoelectric laminated composite plate can be

derived using Variational principle, which is generalization of the principle of virtual displacement.

Lagrange equation for a conservative system can be written as 

for  (48)

here  and  are the generalized coordinates and velocities, respectively.

By substituting Eqs. (45) and (46) into Eq. (48), the following is obtained
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where 

(50)

By eliminating qφ from Eq. (49), one obtains as

  (51)

where 

Assuming the displacements to vary sinusoidal (i.e., principle mode) with respect to time with

natural frequency ω, the Eq. (51) can be expressed in the form of generalized eigen-value problem

as

 (52)

where .

In deterministic environment, the natural frequency is obtained using Eq. (52). However, in

random environment, the elements of the stiffness matrix K, being dependent on the system material

properties, are random in nature, and it is not possible to directly obtain the statistics of natural

frequency by using Eq. (52). To achieve this, further analysis is required and an probabilistic

approach with perturbation technique and Taylor series is outlined in next sub-section.

3.2 Taylor series based perturbation technique 

It can be seen that the eigenvalues and eigen vectors (Eq. (52)) are random. For sensitive

application, it is appropriate to assume that strict quality control would be exercised and the

dispersion of material properties around their mean is small. Consequently, the dispersion in derived

quantities like K, ω, etc. can also be assumed small as compared to their mean values.

Without any loss of generality, the derived random variables like K, ω, etc. may be split up as the

sum of its mean and zero mean random part as (Singh 2001, Nigam and Narayan 1994)

 (53a-d)

 

where overbar denotes the mean value and superscript ‘r’ denotes the zero mean random part.

By substituting these in the governing random Eq. (52) and collecting same order terms up to first

order, assuming also small random variations in derived random variables, one obtains as
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Eq. (54) is a deterministic equation relating the mean quantities. The mean eigenvalues and

corresponding mean eigenvectors can be determined by conventional eigen solution procedures.

However, Eq. (55) cannot be solved by the conventional eigen solution procedure. For obtaining the

solution of the random Eq. (55), it is assumed that the eigenvalues are all distinct. The normalized

eigenvectors meet the orthogonality conditions (Singh 2001). Any vector in the space can be

expressed as a linear combination of eigenvectors. Hence, the ith random part of the eigenvectors

can be written as

, with i = 1, 2, 3….p (56)

where  are small random coefficients to be determined.

Substituting Eq. (56) into the Eq. (55), pre multiplying the first by  and the second by 

, respectively and applying orthogonality conditions (Singh 2001), one obtains as

 (57)

,  (58)

By substituting the Eq. (58) into the Eq. (56), one obtains as

 (59)

Let  denote the random lamina material properties. The  can also be expressed

as

 

 (60)

By using first order Taylor’s series expansion centered at the mean value of dj (Kleiber and Hein

1992, Liu et al. 1986), the derived random variables can be expressed as

(61a-c)

where, j denotes the partial differentiation with respect to 

By substituting Eqs. (61a) and (61c) into Eq. (57), one obtains as
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(63)

On squaring Eq. (53b) and taking the expectation, an expression for the mean square value of the

eigenvalues is expressed as

 

 (64)

Using Eq. (63), the variance of λi is obtained as (Nigam and Narayan 1994)

 (65)

Using the basic definition of variance, the  is written as 

 (66)

By substituting Eq. (61a) in Eq. (66), one can write as

  (67)

where  is the covariance between dj and dk and defined as 

 (68)

where  is the joint probability density function for dj and dk, and ρjk is the correlation

coefficient for dj and dk, which ranges from −1 to 1, and  is the standard deviation for dj, Dbj is

the differential variable of dj. 

4. Numerical examples and discussion

The results for some examples of free vibration of laminated composite plate embedded with

piezoelectric layers with random material properties have been presented to illustrate the technique.

The approach has been validated by comparison with the results available in the literature and an

independent MCS results. A comparative study for the mean and standard deviation of natural

frequency of composite plate and smart composite plate is also presented. A nine noded simple C0

Lagrangian isoparametric finite element, having seven degrees of freedom (DOFs) per node with 63

DOFs per element for the HSDT model has been used for spatial descretization of the laminate.

These elements are found to be quite stable. Based on convergence study, a (5 × 5) mesh has been

adopted throughout the study. The results have been computed by employing full (3 × 3) integration

rule. The nondimensional natural frequency is taken as 
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Various combinations of plate edge support conditions of clamped (C), free (F) and simple (S)

have been used for the analysis. The notation CSCS, for examples, implies clamped edges at x = 0,

a, and simple support edges at y = 0, b. The boundary conditions considered for the plate are 

Clamped edges: u = v = w = θ1 = ψx = θ2= ψy = 0 at y = 0, b and x = 0, a

Simply supported edges: v = w = θ2 = ψy = 0, at x = 0, a and u = w = θ1 = ψx = 0, at y = 0, b

Free edges: u ≠ v ≠ w ≠ θ1 ≠ ψx ≠ θ2 ≠ ψy ≠  0 at y = 0, b and x = 0, a

The ratio of the standard deviation (SD) and mean of material properties considered in this study

is assumed to vary from 0% to 20% (Liu et al. 1986). The lamina material properties modeled as

RVs are longitudinal and transverse modulii E11 and E22, in plane shear modulus G12, out-of-plane

shear modulii G13 and G23, and Poisson ratio ν12. The materials used for present investigations are

Graphite/Epoxy composite material and Lead Zirconate Titanate (PZT-4) piezoelectric material. The

material properties for these materials are shown below. These properties are in the direction of

fiber orientation (Saravanos et al. 1997, Singh et al. 2001):

Material-1: E11 = 25 E22, G12 = G13 = 0.5 E22, G23 = 0.2 E22, E22 = 10.3 GPa, ν12 = 0.25.

Material-2: E11 = 40 E22, G12 = G13 = 0.6 E22, G23 = 0.5 E22, E22 = 6.92 GPa, ν12 = 0.25.

PZT-4: Elastic properties: Ep11= 81.3 GPa, Gp12 =30.6 GPa, Gp13 = 25.6 GPa, Gp23 = 25.6 GPa,

Ep22 = 81.3 GPa, νp12 = 0.33.

Piezoelectric coefficients (10−12 m/V): e31= e32 = −122.0, e33 = −285.0, e24 = 0

Electric permittivity (ε0 = 8.85 × 10−12 Farad/m): k11/ε0 =1475, k22/ε = 1475, k33/ε0 = 1300

4.1 Convergence study

In this section, the convergence study of the laminated composite plate embedded with

piezoelectric layers is discussed.

Convergence of the normalized fundamental frequency with various mesh refinement is as shown

in Table 1. Here Material-2, PZT-4, aspect ratio (a/b) = 1, a/h = 10 and 100 and SSSS boundary

conditions. From the Table, it can be concluded that a 5 × 5 mesh gives sufficiently converged

values of the fundamental frequency for moderately thick and thin plates.

4.2 Numerical validation 

The validation study of the C0 finite element based probabilistic plate model is accomplished by

Table 1 Convergence of normalized fundamental frequency  for a square [0/P/90] plate
(Material-2 and SSSS) with mesh

Mesh a/h = 10 a/h = 100

1 × 1 10.2090 11. 07098

2 × 2 9.962654 11. 02690

4 × 4 9.568518 10. 19674

5 × 5 9.547060 10. 10596

6 × 6 9.539077 10. 10243

ϖ ωa
2

ρ/E22( )/h=
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comparing the results of the following set of problems with the results published in the literature

and an independent MCS. Here for all cases Material-1 & 2, aspect ratio (a/b) = 1, a/h = 10 and

100, boundary condition SSSS and laminate lay-ups [0/90], [0/90/90/0], [0/P/90] and [0/90/P/0/90].

Based on convergence, 5000 samples have been taken for the MCS approach. Each layer is having

equal thickness and density, ρ = 1 kg/m3.

The comparative study of the mean results from the present investigation with the results available

in the published literature is presented in Tables 2 and 3 without and with piezoelectric layer,

respectively.

From the Table 2, it is seen that the difference in the results obtained from the present study and

those of Ref. (Singh et al., 2001) is less than 2.5% in all the cases. Hence one can conclude that the

present formulation gives reasonably good results.

From the Table 3, it is observed that the difference in the results obtained from the present study

and those of Ref. (Umrao et al. 2008) is less than 1% in all the cases. Hence one can conclude that

the present formulation for smart laminates gives quite good results.

Fig. 2 shows a comparison of the normalized standard deviation (SD) results of the fundamental

frequency obtained by the present investigation and an independent MCS approaches for a [0/P/90]

square laminate having SSSS boundary condition with all lamina material properties changing

simultaneously, keeping same value at a time. The influence of scattering in the lamina material

properties on fundamental frequency has been obtained by allowing the ratio of SD (σ) to mean (µ)

to vary from 0 to 20%.

From the Fig. 2, it can be seen that the difference between two results are very small. Hence it

can be concluded that the present outlined probabilistic approach for smart laminate gives

reasonably accurate results as the MCS is considered to be exact approach for random analysis.

Table 2 Validation of normalized fundamental frequency,  for a square laminate with
SSSS

Stacking Sequence
Material-1 Material-2

a/h = 10 a/h = 100 a/h = 10 a/h = 100

0/90
9.172616* 10.25518* 10.8111* 11.74685*

8.98083^ 10.47657^ 10.56565^ 11.90491^

0/90/90/0
11.94181* 15.73490* 15.39339* 19.56791*

11.77252^ 15.17055^ 15.10799^ 19.13029^

*Present Study; ^ Singh et al. (2001).

Table 3 Validation of normalized fundamental frequency,  for a square (0/90/P/0/90)
laminate with SSSS

Material-1 Material-2

a/h = 10 a/h = 100 a/h = 10 a/h = 100

Umrao et al. (2008) 13.7854 15.2992 16.9900 18.9341

Present 13.8560 15.3987 17.1208 18.9954

ϖ ωa
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4.3 Parametric study of the smart composite laminates

4.3.1 Mean natural frequency
Tables 4-7 show the first five normalized mean natural frequencies of a square (0/P/90) plate,

Material-1 and 2 and a/h = 10 and 100, for SSSS, CCSC, CCCC, CFCF, CSCS boundary

conditions, respectively. The Tables show that the natural frequencies increase as the thickness ratio

increase. The increment is more for higher modes as compared with the increment in the

fundamental frequency. A look at the frequencies from orthotropicity point of view clearly states

that with increase in modular ratio the natural frequencies of free vibration increases. The natural

frequencies are clearly affected by the end conditions. The frequencies of the plate with CCCC

boundary conditions are the highest for the two thickness ratios considered when compared with

other end conditions. The Plates subject to different end conditions in ascending order of natural

frequencies are CFCF, CSCS, CCSC, and CCCC.

Fig. 3 shows the variation of the first five normalized frequencies with side to thickness (a/h)

ratio for a square (0/P/90) plate with CCCS for Material-1 and 2. It is seen that a/h ratio has a

strong effect on frequency of a smart composite plate. Normalized frequency increases as a/h

increases. This can be attributed to the difference in the elastic properties between fiber filament and

Table 4 Normalized natural frequencies,  for a square (0/P/90) laminate with SSSS

Mode
Material-1 Material-2

a/h = 10 a/h = 100 a/h = 10 a/h = 100

1 9.547060 10.19674 11.07451 11.78057

2 25.87808 31.68508 30.53770 37.24854

3 25.88645 31.69032 30.54754 37.25517

4 32.13499 43.86338 37.98730 50.87662

5 3214505 77.75460 37.99890 92.11673

ϖ ωa
2

ρ/E22( )/h=

Fig. 2 Validation of results for variance of normalized fundamental frequency of square (0/P/90) SSSS
laminate (Material-1 and a/h = 10) with all basic material properties varying simultaneously
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matrix materials which leads to a high ratio of in-plane Young’s modulus to transverse shear

modulus for the composite plates. It is also seen that this increase is more in case of higher modes

of vibration as compared with fundamental mode. In general, frequency having higher orthotropicity

ratio is more as compared to lower ratio.

Fig. 4 shows the effect of the modulii ratio on the normalized fundamental frequency of a square

(0/P/90) plate, a/h = 10, for CCCS boundary condition. It is observed that the frequency increases

as the modulus ratio increases. This follows from the fact that the higher the modulus ratio the

stiffer the plate will be.

Free vibration analysis of the composite plates with five different boundary conditions was carried

out for a square (0/P/90) plate (Material-1) with a/h. The results for fundamental frequency are

presented in Fig. 5. From the figure, it is seen that the smart plate is most affected by the CCCC

and least affected by the SSSS boundary conditions. 

Effect of stacking sequences on free vibration response was also studied. The variation of

Table 5 Normalized natural frequencies,  for a square (0/P/90) laminate with CCSC

Mode
Material-1 Material-2

a/h = 10 a/h = 100 a/h = 10 a/h = 100

1 16.98614 19.96802 19.85710 23.48224

2 31.77430 40.95112 36.91307 48.20580

3 34.44293 48.74458 40.20100 57.55658

4 43.50641 60.45696 50.40527 73.1122

5 54.33292 87.41765 67.1829 103.5228

Table 6 Normalized natural frequencies,  for a square (0/P/90) laminate with CCCC

Mode
Material-1 Material-2

a/h=10 a/h=100 a/h=10 a/h=100

1 19.39275 23.40323 22.67836 27.59243

2 35.55004 50.34827 41.29375 59.43067

3 35.73644 50.36979 41.74078 59.48750

4 46.33182 67.16863 53.72116 78.60659

5 58.23301 100.3574 67.57400 118.8477

Table 7 Normalized natural frequencies,  for a square (0/P/90) laminate with CFCF

Mode
Material-1 Material-2

a/h = 10 a/h = 100 a/h = 10 a/h = 100

1 13.53673 16.30042 15.84367 19.34540

2 14.05095 16.98313 16.36652 20.01812

3 21.11531 24.69709 24.61743 28.87544

4 30.79387 46.99903 36.44279 55.77712

5 32.55048 47.56282 37.87311 56.18690
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fundamental frequency of the plate (Material-1) with a/h having four stacking sequences for SSSS

boundary condition is presented in Fig. 6. The results show similar trend for cross ply and angle ply

laminates. It is seen that symmetrical angle and cross ply laminates have higher frequency when

compared with the other two respective sequences. The (45/-45/P/-45/45) plate gives the highest

frequency, while the (0/P/90) plate gives the lowest frequency. 

Fig. 7 shows the variation of normalized fundamental frequency with fiber orientation of a square

(θ/P/θ) laminate, a/h = 10 and 100 and Material-1 and Material-2 for SSSS boundary conditions. It

is seen that variations in lamination angle may result in large changes of frequency. The maximum

value of frequency occurs at angle 45 degrees. 

Fig. 5 Variation of normalized fundamental frequency
of square (0/P/90) laminate (Material-1) with
side to thickness ratio (a/h) for different
support conditions

Fig. 6 Variation of normalized fundamental frequency
of square (0/P/90) laminate (SSSS and
Material-1) with side to thickness ratio (a/h)
for different stacking sequences

Fig. 3 Variation of the first five normalized natural
frequency of square (0/P/90) laminate (CCCS
and Material-1 and 2) with side to thickness
ratio (a/h) 

Fig. 4 Variation of normalized fundamental frequency
of square (0/P/90) laminate (CCCS) with side
to thickness ratio (a/h)
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4.3.2 Standard deviation of fundamental frequency

The influence of scattering in the material properties on fundamental frequency has been obtained

by allowing the ratio Standard deviation (SD or σ) to mean (µ) to vary from 0 to 20% for

piezoelectric laminated composite plates. Plots of  vs σ (material property)/µ (material

property) have been obtained considering the lamina material properties E11, E22, G12, G13, G23 and

ν12 as basic random variables (RVs). These random variables are sequenced as: d1 = E11, d2 = E22,

d3 = G12, d4 = G13, d5 = G23 and d6 = v12.

The scattering in the fundamental frequency of a piezocomposite (0/P/90) plate, Material-1 and

a/h = 10 for different boundary conditions with all the material properties varying simultaneously is

shown in Fig. 8. It is revealed that the frequency of the plate with SSSS boundary conditions has

the highest scatter and that with CCCC boundary conditions has lowest scatter. It is also revealed

that the plate with CCCS, CCCC and CSCS shows almost same scattering up to 12 percent

σ
ω
2/µ

ω
2

Fig. 8 Variation of standard deviation (SD)/mean of normalized fundamental frequency of square (0/P/90)
laminate (Material 1 and a/h = 10) with all basic material properties changing simultaneously

Fig. 7 Variation of normalized fundamental frequency of square (θ/P/θ) laminate (SSSS and a/h = 10 and
100) with stack angle in degree
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Fig. 9 Variation of standard deviation (SD)/mean of normalized fundamental frequency of square (0/P/90)
laminate (Material 1, a/h = 10 and SSSS) with SD of material property, (a) E11, (b) E22, (c) G12, (d)
G13, (e) G23, and (f) v12
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scattering in all material properties. 

Figs. 9(a)-(f) plot normalized SD of fundamental frequency with individual random change in

material property, keeping the other deterministic, Material-1 and a/h = 10 of the (0/P/90) plate with

different boundary conditions. It is observed that the frequency is most affected by randomness in

E11 and E22, while it is least affected by changes in G23 and v12. 

Scattering in fundamental for different stacking sequence of a plate with SSSS, Material-1 and

a/h = 10 with material properties varying simultaneously is shown in Fig. 10. The stacking

sequences considered are (0/90/P/90/0), (0/90/P/0/90), (45/-45/P/-45/45) and (45/-45/P/45/-45). It is

seen that for all material properties varying scatter in fundamental frequency is more or less similar

for all the four sequences. Anti- symmetric and symmetric cross ply show higher scattering of

frequency for all material properties other than G23 and G13 for which angle ply plates show higher

scatter. 

The scattering of fundamental frequency for a variation in material properties for a (0/P/90) plate

with SSSS and Material-1 for a/h ratios 10 and 100 was studied and the results are shown in

Figs. 11 and 12. The thin plate has higher scatter in its frequency for a variation in all material

properties. This also follows for all properties when considered alone other than for G23 and G13 for

which thicker plates have higher scatter in their frequency.

4.4 Comparison with composite laminate

Fig. 13 shows a comparison of the scattering in normalized fundamental frequency with

normalized SD of material properties varying simultaneously of a conventional composite (0/90)

plate and a piezoelectric composite (0/P/90) plate, with a/h = 10 and Material-1 having SSSS

boundary conditions. It is seen that the piezoelectric composite plate shows less scattering as

compared with a conventional composite plate.

Fig. 10 Variation of standard deviation (SD) of
fundamental frequency of square smart
laminate (SSSS, Material-1, and a/h = 10)
with all basic material properties changing
simultaneously 

Fig. 11 Variation of standard deviation (SD) of
normalized fundamental frequency of square
(0/P/90) laminate (SSSS and Material-1)
with all basic material properties changing
simultaneously
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Fig. 12 Variation of standard deviation (SD)/mean of normalized fundamental frequency of square (0/P/90)
laminate (Material 1 and SSSS) with SD of material property (a) E11, (b) E22, (c) G12, (d) G13, (e)
G23, and (f) v12
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5. Conclusions

The linear free vibration response of laminated composite plates embedded with piezoelectric

sensors with random material properties has been investigated for different thickness ratios (a/h),

material properties stacking sequences and boundary conditions. The mean for natural frequencies

and standard deviation for fundamental frequency of free vibration of piezoelectric laminated

composite plate has been obtained using an outlined probabilistic approach. The following

conclusions are noted from this limited study.

• The natural frequency of free vibration of piezoelectric laminated composite plate increases as a/h

ratio increases. The frequency also increases as the modulus ratio increases.

• A smart plate with all edges clamped has the highest frequency and the one with all edges

simply supported has the least when mode wise comparison is made.

• The laminated composite plates with piezoelectric layers shows less scattering in fundamental

frequency with simultaneous variation in material properties as compared to plates without

piezoelectric layers.

• The SD of fundamental frequency shows different sensitivity to different material properties.

The sensitivity also changes with the boundary condition, stacking sequence, and a/h ratio.

Fig. 13 Comparison of composite plate fundamental frequency scattering with smart composite laminate with
all basic material properties changing simultaneously (Material-1, a/h = 10, SSSS and a/b = 1) 

Table 8 Normalized natural frequencies,  for a square (0/P/90) laminate with CSCS

Mode
Material-1 Material-2

a/h = 10 a/h = 100 a/h = 10 a/h = 100

1 15.24570 18.05818 17.74388 21.09884

2 28.05016 33.35139 32.71793 39.12659

3 32.21801 47.87848 38.08360 56.54519

4 33.41458 55.54581 38.73973 64.78235

5 40.70200 69.27845 47.01246 81.81233

ϖ ωa
2

ρ/E22( )/h=
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• The dispersion in fundamental frequency is least affected with scatter in Poisson’s ratio v12 and

most affected with scatter in E11.
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