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Abstract. The static and dynamic analyses of simply supported beams are studied by using the U-
transformation method and the finite difference method. When the beam is divided into the mesh of equal
elements, the mesh may be treated as a periodic structure. After an equivalent cyclic periodic system is
established, the difference governing equation for such an equivalent system can be uncoupled by
applying the U-transformation. Therefore, a set of single-degree-of-freedom equations is formed. These
equations can be used to obtain exact analytical solutions of the deflections, bending moments, buckling
loads, natural frequencies and dynamic responses of the beam subjected to particular loads or excitations.
When the number of elements approaches to infinity, the exact error expression and the exact convergence
rates of the difference solutions are obtained. These exact results cannot be easily derived if other
methods are used instead.

Keywords: static analysis; dynamic analysis; beam; convergence rate; U-transformation; finite differ-
ence method. 

1. Introduction

As an important numerical computational method, the finite difference method has broad

applications in various scientific research fields, e.g., physics, mechanics, astronomy and

engineering technology. The study on the convergence of difference schemes always attracts the

attention of computing mathematicians and dynamicists. Dividing elements to less size and

increasing the degree of the interpolation polynomial can only decrease the error but not improve

the precision. So it is important to uncover the convergence of the finite difference schemes.

In 1972, Runchal discussed the convergence and accuracy of three finite difference schemes for a
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two-dimensional conduction and convection problem (Runchal 1972). Caldwell made an estimate of

the convergence of a locally one dimensional finite difference scheme for parabolic initial-boundary

value problems and error estimates for the finite scheme are presented (Caldwell 1976). Abarbanel

et al. considered a family of spatially semi-discrete approximations, including boundary treatments,

to hyperbolic and parabolic equations, and investigated the error bounds of finite difference

approximations to partial differential equations (Abarbanel et al. 2000). Brezzi et al. analyzed the

stability and convergence properties of the mimetic finite difference method for diffusion-type

problems on polyhedral meshes (Brezzi et al. 2005). Borzi et al. studied the finite difference

multigrid solution of an optimal control problem associated with an elliptic equation, and sharp

convergence factor estimates of two-grid method for the optimality system are obtained by means of

local Fourier analysis (Borzi et al. 2003). Tetsuro Yamamoto and Akio Yamamoto used an

acceleration technique to investigate the convergence of various finite difference schemes (Tetsuro

2002, Akio 2005).

All the previous works only discussed the convergence of the finite difference schemes and made

error estimates. The exact finite difference solution and convergence rate cannot be obtained by

using the previous methods. 

The U-transformation method is an analytical method for the exact analysis of structures with

periodicity or nearly periodic properties, such as static and dynamic analysis of continuous beams,

plane trusses, stiffened plates, mass spring systems, and cyclic bi-periodic structures (Cai et al.

2002). Recently, Liu et al. applied the U-transformation method to study the static and dynamic

problems of a simply supported rectangular plate by using the two-dimensional finite difference

method, and the convergence rates of explicit difference solutions were discussed (Liu et al. 2003,

2006).

In the present paper, the application of the U-transformation technique is extended to the

convergence study of finite difference method. Without lost of generality, a beam with two simply

supported ends and the central difference formula are considered. The beam subdivided by a

uniform mesh may be regarded as a periodic structure. By considering an equivalent structure and

adopting the U-transformation technique, a set of independent equations with only one degree of

freedom can be derived from the governing equations. Therefore, the exact explicit expressions for

the deflections, bending moments, buckling loads, natural frequencies and dynamic responses can be

easily obtained. The convergence rates can then be determined simply from the explicit solutions.

Numerical results are given to verify the exact closed-form explicit solutions obtained by the

proposed technique in the present paper.

2. Simply supported beam

Consider a beam with two simply supported ends. The beam is divided into n equal elements and

then the beam may be regarded as a periodic structure with n substructures as shown in Fig. 1. L

denotes the length of the beam and a is the length of an element,  is the load function, and j

denotes the nodal number. The boundary conditions can be expressed as  and

, where wj and Mj denote the deflection and bending moment of the j-th node,

respectively. The equivalent system with cyclic periodicity must satisfy these two restrained

conditions.

Only the structures with cyclic periodicity may be analyzed by using the U-transformation

F x( )
w1 wn 1+ 0= =

M1 Mn 1+ 0= =
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method. Firstly, it is necessary to extend the original beam by its symmetrical image and apply anti-

symmetric loading on the corresponding extended part about the original loading as shown in Fig. 2.

The two ends can be imaginarily put together and treated as one point in mathematics. A structure

with such characteristics is a kind of cyclic periodic structure. It is possible to use the U-

transformation method to analyze the equivalent system as shown in Fig. 2 instead of the original

beam as shown in Fig. 1. The boundary conditions at both extreme ends for the original beam are

satisfied automatically in its equivalent system. 

3. Deflection

Consider the cyclic periodic system as shown in Fig. 2. The deflection equation of the j-th node

can be expressed as 

, (1)

where Fj denotes the loading for the node j, and EI is the flexural rigidity. The loading Fj must

satisfy the anti-symmetric condition, i.e.

, (2)

Substituting the central difference scheme for  into the governing Eq. (1) results in

, (3)

in which a = L/n. 

EI
d
4
wj

dx
4

---------- Fj= j 1 2 … 2n, , ,=

Fj F2n j– 2+–= j 2 … n; F1, , Fn 1+ 0= = =

d
4
wj/dx

4

EI

a
4

----- wj 2– 4wj 1–– 6wj 4wj 1+– wj 2++ +( ) Fj= j 1 2 … 2n, , ,=

Fig. 1 Simply supported beam with n elements

Fig. 2 Equivalent system with 2n elements
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Every displacement of the cyclic periodic structures may be expressed as a series of cyclic modes

Us, and the coefficients qs denote the mode co-ordinate (Liu et al. 2003). Now the U-transformation

method is used to uncouple the difference Eq. (3), i.e., let

, (4a)

or

, (4b)

in which qm is the generalized displacement, , and .

Applying the U-transformation (4) to Eq. (3) results in

, (5)

where 

, (6)

Consider the case of a beam subjected to an uniform load with magnitude p0, i.e., , then 

, (7)

Substituting Eq. (7) into Eq. (6) yields

,

, (8)

Inserting Eq. (8) in Eq. (5), the generalized displacement qm becomes

,

, (9)

Now every nodal displacement can be obtained from the U-transformation (4) with Eq. (9), as

, (10)

The maximum deflection occurs at the center of the beam. If n is even, substituting 

into Eq. (10) yields 

(11)

Expanding the right side of Eq. (11) into power series of ψ results in

wj

1

2n
---------- e

i j 1–( )mψ
qm

m 1=

2n

∑= j 1 2 … 2n, , ,=

qm

1

2n
---------- e

i j 1–( )– mψ
wj

j 1=

2n

∑= m 1 2 … 2n, , ,=

i 1–= ψ π/n=

EI

a
4

----- 6 8cosmψ– 2cos2mψ+( )qm fm= m 1 2 … 2n, , ,=

fm
1

2n
---------- e

i j 1–( )– mψ
Fj

j 1=

2n

∑= m 1 2 … 2n, , ,=

F x( ) p0=

Fj Fn j+– p0= = j 2 … n; F1, , Fn 1+ 0= = =

fm
2ip0–

2n
-------------

sinmψ

1 cosmψ–

-------------------------= m 1 3 … 2n 1–, , ,=

fm 0= m 2 4 … 2n, , ,=

qm

2ia
4
p0–

2nEI
------------------

sinmψ

1 cosmψ–( ) 6 8cosmψ– 2cos2mψ+( )
-------------------------------------------------------------------------------------------= m 1 3 … 2n 1–, , ,=

qm 0= m 2 4 … 2n, , ,=

wj

ia
4
p0–

nEI
---------------

sinmψ

1 cosmψ–( ) 6 8cosmψ– 2cos2mψ+( )
-------------------------------------------------------------------------------------------

m 1 3,=

2n 1–

∑= j 1 2 … 2n, , ,=

j n/2 1+=

wmax

2a
4
p0

nEI
-------------

sin
mπ

2
-------sinmψ

1 cosmψ–( ) 6 8cosmψ– 2cos2mψ+( )
-------------------------------------------------------------------------------------------

m 1 3,=

n 1–

∑=
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(12)

The first term on the right hand side of Eq. (12) represents the limiting solution, which is in

agreement with the analytical solution. Then the second term represents the main error of the finite

difference solution. When n approaches to infinity, the deflection converges from the above

analytical solution at an asymptotic rate of n−2. And meanwhile the precise coefficient of the error

term  is determined. Comparing the finite difference solution (12) with the exact finite

element solution found by the U-transformation and the finite element method (Chan et al. 1998), it

can be found that the former converges slower than the latter whose convergence rate is n−4.

4. Bending moment

The governing equation of the bending moment can be expressed as 

(13)

Substituting the difference scheme for  into the governing Eq. (13) results in

, (14)

where

(15)

Applying the U-transformation 

, (16)

in Eq. (14) results in

(17)

From Eq. (17) the generalized moment qm can be expressed as

,   (18)

Now every nodal bending moment can be obtained from the U-transformation (16) with Eq. (18),

i.e.

wmax

5

384
---------

p0L
4

EI
---------- 1

4

5
---n

2–
+⎝ ⎠

⎛ ⎞ O n
4–( )+=

p0L
4
/96EI

d
2
Mj

dx
2

----------- Pj–

p0, j– 2 3 … n, , ,=

p0, j n 2+ … 2n, ,=

0, j 1 n 1+,=⎩
⎪
⎨
⎪
⎧

= =

d
2
Mj/dx

2

Mj 1+ 2Mj– Mj 1–+ Fj′= j 1 2 … 2n, , ,=

Fj′

p0a
2
, j– 2 3 … n, , ,=

p0a
2
, j n 2+ … 2n, ,=

0, j 1 n 1+,=⎩
⎪
⎨
⎪
⎧

=

Mj

1

2n
---------- e

i j 1–( )mψ
qm

m 1=

2n

∑= j 1 2 … 2n, , ,=

2 cosmψ 1–( )qm fm

2ip0a
3

2n
---------------

sinmψ

1 cosmψ–

-------------------------, m 1 3 … 2n 1–, , ,=

0, m 2 4 … 2n, , ,=⎩
⎪
⎨
⎪
⎧

= =

qm

ip0a
2

2n
------------

sinmψ

cosmψ 1–( ) 1 cosmψ–( )
-----------------------------------------------------------= m 1 3 … 2n 1; qm–, , , 0 m, 2 4 … 2n, , ,= = =
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, (19)

The maximum moment occurs at the center of the beam. If n is even, substituting  into

Eq. (19) yields

(20)

When n approaches to infinity, the moment converges to the analytical solution at an asymptotic

rate of , i.e., . And at the same time the precise coefficient of the error term

 is derived. The explicit finite element solution for Mmax (Chan et al. 1998)

converges to the analytical solution at an asymptotic rate of . So the difference solution for Mmax

converges faster than the finite element one.

5. Buckling load

Consider now the simply supported beam subjected to the axial pressure with magnitude Px at two

ends as shown in Fig. 3. Similar to that described above, an equivalent system with cyclic

periodicity may be produced. 

The buckling equation can be expressed as

, (21)

Substituting the difference schemes for ,  and the U-transformation (4) into the

buckling Eq. (21) results in

, (22)

From Eq. (22) the critical load can be expressed as

, (23)

Expanding the right side of Eq. (23) into power series of ψ results in

, (24)

The critical load Pcr, i.e., the minimum buckling load Px can be obtained, by substituting m = 1

into Eq. (24), as 

Mj

ip0a
2

2n
------------–

e
i j 1–( )mψ

sinmψ

1 cosmψ–( )2
-----------------------------------

m 1 3,=

2n 1–

∑= j 1 2 … 2n, , ,=

j n/2+1=

Mmax

p0a
2

n
----------

sin
mπ

2
-------sinmψ

1 cosmψ–( )2
-------------------------------

p0L
2

8
---------- 1 1–( )n/2 π

15
------n

3–
+⎝ ⎠

⎛ ⎞ O n
4–( )+=

m 1 3,=

n 1–

∑=

n
3–

Mmaxn ∞→
lim p0L

2
/8=

1–( )n/2p0πL
2
/120

n
2–

EI
d
4
wj

dx
4

---------- Px

d
2
wj

dx
2

----------+ 0= j 1 2 … 2n, , ,=

d
4
wj/dx

4
d
2
wj/dx

2

EI

a
4

----- 6 8cosmψ– 2cos2mψ+( )qm

Px

a
2

----- 2cosmψ 2–( )qm+ 0= m 1 2 … 2n, , ,=

Px

EI

a
2

-----
6 8cosmψ– 2cos2mψ+( )

2cosmψ 2–
-------------------------------------------------------------–= m 1 2 … 2n, , ,=

Px

EIπ
2
m

2

L
2

----------------- 1
m

2
π
2

12
------------n

2–
– O n

4–( )+= m 1 2 … 2n 1–, , ,=

Fig. 3 Simply supported beam subjected to the axial pressure at two ends
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(25)

The first term on the right hand side of Eq. (25) represents the limiting solution that is in

agreement with the analytical solution. Then the second term represents the main error of the

buckling load found by finite difference method. When n approaches to infinity, the buckling load

converges from below the exact analytical solution at an asymptotic rate of . Some numerical

results of Eq. (25) are given in Table 1. The convergence rate of the exact finite element solution is

, so the finite element solution for Pcr converges faster than the finite difference one.

6. Natural frequency

Consider the cyclic periodic system as shown in Fig. 2. The dynamic equations for all

substructures are of the same form, i.e.

 

, (26)

where ρ denotes the mass per unit length. The loading functions Fj must satisfy the anti-symmetric

condition expressed as Eq. (2).

Substituting the difference scheme for  into the governing Eq. (26) results in 

, (27)

Applying the U-transformation to Eq. (27), i.e., substituting

, (28)

with  into Eq. (27) results in

, (29)

where fm has been defined by Eq. (6).

Inserting  and  into Eq. (29) yields

, (30)

where  denotes the natural frequency found by finite difference method. The natural frequencies

can be obtained from Eq. (30) as

Pcr

EIπ
2

L
2

----------- 1
π
2

12
------n

2–
– O n

4–( )+=

n
2–

n
4–

EI
d
4
wj

dx
4

---------- ρ
d
2
wj

dt
2

----------+ Fj= j 1 2 … 2n, , ,=

d
4
wj/dx

4

EI

a
4

----- wj 2– 4wj 1–– 6wj 4wj 1+– wj 2++ +( ) ρ
d
2
wj

dt
2

----------+ Fj= j 1 2 … 2n, , ,=

wj

1

2n
---------- e

i j 1–( )mψ
qm

m 1=

2n

∑= j 1 2 … 2n, , ,=

ψ π/n=

q··m
EI

ρa
4

-------- 6 8cosmψ– 2cos2mψ+( )qm+
fm

ρ
----= m 1 2 … 2n, , ,=

qm Qm x( ) e
iω t⋅= fm 0=

EI

ρa
4

-------- 6 8cosmψ– 2cos2mψ+( ) ω̃m

2
– Qm 0= m 1 2 … 2n, , ,=

ω̃m

Table 1 Buckling load P
cr

n 2 4 8 16 32

P
cr

0.79438 0.94860 0.98715 0.99679 0.99920 1.00000

Multiplier EIπ2/L2

∞
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, (31)

Expanding the right side of Eq. (31) into power series of ψ results in

, (32)

where ωm denotes the analytical solution for the m-th natural frequency of the simply supported

beam, i.e.

, (33)

When n approaches to infinity, the natural frequencies determined by the finite difference method

converge from below the exact solutions at an asymptotic rate of n−2. The first five natural

frequencies are given in Table 2. The convergence rate of the natural frequencies found by the U-

transformation and the finite element method is n−4 (Chan et al. 1998), and the finite element

solutions for ωm converge faster than the finite difference ones.

7. Dynamic response

Let us consider a concentrated load of magnitude p(t) acting at the midpoint of a simply supported

beam. If the number of the substructures is even, the loading function may be expressed as

(34)

with other nodal loading being equal to zero.

Substituting Eq. (34) into Eq. (6) yields

ω̃m

2 EI

ρa
4

-------- 6 8cosmψ– 2cos2mψ+( )= m 1 2 … 2n, , ,=

ω̃m

2
ωm

2
1

m
2
π
2

6
------------n

2–
– O n

4–( )+= m 1 2 … 2n, , ,=

ωm

2
m

4
π
4 EI

ρL
4

--------= m 1 2 … 2n, , ,=

Fn/2 1+ Fn n+ /2 1+–
p t( )

a
---------= =

Table 2 Natural frequencies 

n
m

2 4 8 16 32

1st 64.0000 87.84531 94.93423 96.78499 97.25273 97.40909

(-33.4091)a (-9.56378) (-2.47486) (-0.62410) (-0.15636)

2nd 1024.000 1405.525 1518.948 1548.560 1558.545

(-534.545) (-153.020) (-39.598) (-9.986)

3rd 2984.155 6243.611 7445.543 7776.805 7890.136

(-4905.982) (-1646.526) (-444.594) (-113.3327)

4th 16384.00 22488.40 24303.16 24936.73

(-8552.73) (-2448.33) (-633.56)

5th 31323.15 51778.11 58479.45 60880.68

(-29557.53) (-9102.57) (-2401.23)

Multiplier EI/ρL4

aThe numbers in the round bracket denote the error.

ω̃
m

2

∞
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, (35)

and then inserting Eq. (35) in Eq. (29) results in 

, (36)

The solution for qm of Eq. (36) with zero initial condition can be expressed as a Duhamel integral

, (37)

where  has been defined by Eq. (32). Now the response function of the deflection can be

obtained from the U-transformation (4) with Eq. (37), i.e.

, (38)

The response function of the deflection at the center of the beam may be found by substituting

 into Eq. (38), i.e.

(39)

The analytical solution by using mode method is given as 

(40)

The finite difference solution shown in Eq. (39) converges but does not converge uniformly to the

analytical solution when the number of elements approaches to infinity. The convergence rate is

dependent on the characteristic of the loading function.

8. Conclusions

In the present work, the application of the U-transformation has been extended to convergence

studies of the static and dynamic analysis of the finite difference method. Explicit finite difference

solutions for deflections, bending moments, buckling loads, frequencies and dynamic response have

been obtained. It has been shown that when the number of elements approaches to infinity, the

results are the same as the exact analytical solutions. The convergence rates of the solutions are

precisely determined. The proposed method in the present paper is also applicable to the static and

dynamic analysis of two and three-dimensional systems.
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