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Dynamic behaviour of multi-stiffened plates
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Abstract. The paper investigates the dynamic behaviour of stiffened panels. The coupled differential
equations for eccentric stiffening configuration are first derived. Then a semi-analytical procedure for
dynamic analysis of stiffened panels is presented. Unlike finite element or finite strip methods, where the
plate is discretized into a set of elements or strips, the plate in this procedure is treated as a single
element. The potential energy of the structure is first expressed in terms generalized functions that
describe the longitudinal and transverse displacement profiles. The resulting non-linear strain energy
functions are then transformed into unconstrained optimization problem in which mathematical
programming techniques are employed to determine the magnitude of the lowest natural frequency and the
associated mode shape for pre-selected plate/stiffener geometric parameters. The described procedure is
verified with other numerical methods for several stiffened panels. Results are then presented showing the
variation of the natural frequency with plate/stiffener geometric parameters for various stiffening
configurations. 
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1. Introduction

Dynamic analysis of stiffened plates has been a subject of interest for many years. Several

analytical and numerical methods were developed in the past by several researches. The

philosophy of each method depends upon the structural idealization of the plate and stiffener

elements. Wah (1964) presented a semi-analytical procedure for the analysis of equally spaced,

concentric stiffeners with identical cross sectional properties. Asku and Ali (1976, 1982) presented

alternative procedure for analysis of equally spaced stiffeners. The method is based on the

variational principles in conjunction with finite difference techniques. They illustrated the method

for the analysis of plate with one longitudinal stiffener and a plate with one longitudinal and one

transverse stiffener. Mukhopadhyay (1989) presented a finite difference procedure for dynamic

analysis of stiffened plates. The governing differential equations of the structure are derived by

assuming the stiffeners are symmetric about the mid-plane of the plate and ignoring the torsional

stiffness of the stiffeners. A displacement function satisfying the boundary condition is then

substituted into the governing differential equations and the resulting equations are transformed

into ordinary differential equations with constant coefficients that were solved by a finite
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difference scheme. Park and Cho (2006) presented approximate formulations to predict the

structural damage stiffened plates under explosion loads. Qing and Qiu (2006) presented numerical

formulations for free vibration analysis of stiffened plates. Displacement and stress compatibility

boundary conditions were used at the plate and the stiffeners interface. They presented schemes to

economize the computer time during the solution process. Peng and Kitipornchai (2006) used the

Galerkin method to analyze stiffened panels. Other approximate methods were also used by other

researchers (e.g., Kirk (1970), Long (1971), Mead et al. (1988), Mukherjee and Chattopadhyay

(1994), Fletcher (1959), Wu and Cheung (1974).

Finite element formulations were also presented by Mukherjee and Chattopadhyay (1994) and

Barrette et al. (2000) for free vibration analysis of stiffened plates. They suggested various meshing

strategies to economize the computer time. Ghosh and Biswal (1996) used standard four-noded

rectangular element with seven degrees of freedom to model the plate. Magnified stiffness values

were used at the plate/stiffener points of contacts. Koko (1990), Koko and Olson (1991) used a

“super” plate element to represent each panel bay, and a single beam element to represent each of

the stiffeners. Each plate element has nine displacement nodes with a total of 59 degrees of

freedom, while the beam element has three displacement nodes with 19 degrees of freedom. Rikards

et al. (2001), developed alternative Finite Element Formulations for buckling and vibration of

stiffened plates. Kumar, and Mukhopadhyay (2002) presented a numerical model for linear transient

response analysis of laminated stiffened plates with arbitrarily oriented stiffeners. Zhang et al.

(2005) used the method for dynamic analysis of stiffened plates under heavy fluid loading. They

incorporated in their formulations the radiation damping effect due to the fluid loading. Patel et al.

(2006) used Finite Element formulations for static and dynamic analysis of stiffened shells subjected

to uniform in-plane harmonic edge loading. Wittrick (1968) used the Finite Strip Method for

stability and vibration analysis of stiffened plates. A sinusoidal distribution of forces and moments

is assumed in the longitudinal direction for each plate. By solving the differential equation of each

plate element, a sinusoidal stiffness matrix, of undetermined coefficient for each plate, is generated.

By equating the edge displacements of each panel, the problem reduces to finding the solution of

the determinant, which provides the natural frequency, or buckling load of the structure. Other

Finite Strip formulations for analysis of stiffened plates were also presented by Harik and Salamoun

(1988), Peng-Cheng et al. (1987) and Chan et al. (1991).

While these investigations focused on the analysis of stiffened plates, little attention was given to

the behaviour of the structure. Objectives of this paper are to study the dynamic behaviour of

stiffened plates. In other words, how changing plate/stiffener geometric proportions affect the

dynamic response of the structure. This part of the investigation will provide valuable information

from the design point of view. 

2. Analysis

Consider the plate shown in Fig. 1, of length a and width b, stiffened orthogonally by eccentric

stiffeners of number NSx and NSy, where NS denotes the number of stiffeners and the superscripts x

and y denote the directions along which the stiffeners span. The origin of the global axis of the

plate is chosen at the lower left hand corner denoted by O. The distance from the global co-ordinate

system to the centroid of stiffeners along the x-axis is denoted by ηi and for stiffeners along the y-

axis is denoted by ξi as shown in the figure. The spacing of the stiffeners along the x direction is
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also denoted by spxi, i = 1, 2, 3,... NSx, and for stiffeners along the y axis, is denoted by spyi,

i = 1, 2, 3,... NSy. Each stiffener is described by a set of geometric properties, cross-sectional area A,

first moment of inertia Q, second moments of inertia about the major and minor axes i.e., Iy, Iz for

stiffeners along the x-axis and Ix, Iz for stiffeners along the y axis, polar moment of inertia Io and

torsional rigidity, J. The subsequent sections describe two approaches for dynamic analysis of

eccentrically stiffened plates. The plate and stiffeners for both cases are treated as rigidly connected

at their junctions. In the first approach, the governing differential equations are derived and, in the

second, an energy formulation, which will be used in subsequent sections as a method of analysis,

will be presented. 

2.1 Governing differential equations

By taking the mid-plane of the top plate as the axis of reference, the resultant forces and moments

for the interval −tp/2 < z < tp/2 is given by

Fig. 1 Orthogonally stiffened plate
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(1)

where Ip is the plate flexural rigidity per unit width = t3
p /12(1 − v2), Ap is the area per unit width of

the section = tp/(1 − v2). The product EpIp in the conventional plate rigidity D, is so designated since

the plate and stiffeners might have different modulus of elasticity. By Assuming a compatible strain

distribution at this line of junction, the resultant forces and moments within this interval can be

written as

, (2)

where Qxi and Qyi denote the first moment of area of the stiffeners per unit width about the mid-

plane of the plate; their magnitudes, therefore, depend upon the stiffener profile, i.e., I-section,

rectangular, ...etc. As an example, for a typical ith rectangular stiffener of height, h, and distance

from the mid-plane of the plate to the centroid of the stiffener, ex, these quantities become

(3)

(4)

The resultant forces and moments for the assembled structure are, therefore,

(5)

When substituting Eqs. (1), (2) into Eq. (5), the total system of forces for the assembled structure
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(6)

and the moment resultants are given by

 (7)

The force and moment equilibrium equations are given by

(8)

(9)
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where mp and  and  are the mass density of the plate and stiffeners along the x and y axes,

respectively, and  and  are the polar moment of inertia for typical x and y stiffeners,

respectively. 

Substituting Eq. (6) into the force equilibrium Eq. (8), results in the following pair of differential

equations

(10)

(11)

Similarly, by substituting Eq. (7) into Eq. (9), the moment equilibrium results in an additional

differential equation given by

(12)

Therefore, for given plate and stiffener properties, the solution of the three coupled differential

Eqs. (10)-(12) gives the natural frequency for the assembly

2.2 Semi-analytical formulation

The energy method affords an alternative means of analyzing stiffened plates. In this section a

non-linear energy based approach is presented for the analysis of stiffened plates. In dealing with

the structure as assembled plate and beam (or stiffener) elements, the membrane strain energy, in

the interval −tp/2< z < tp/2, is given by

(13)

and the bending strain energy is

(14)

The strain energy of the longitudinal and transverse stiffeners is composed of two parts, the axial
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(15)

(16)

where  and  are the strain energies of stiffeners spanning along the x and y axes,

respectively. Consider a typical ith stiffener spanning in the x direction, the axial strain is given by

(17)
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for the  and  functions. Similarly Bm(ξ), Dn(η), Er(ξ) and Hs(η) are generalized functions

that satisfy the in-plane boundary conditions and {umn, vrs} are their corresponding amplitudes. The

integers N1, M1, N2, M2, N3, M3 denote the number of generalized functions used to define the

displacement functions,  and , respectively. Substituting these displacement

functions into Eq. (14), the plate bending strain energy can be written as

(24)

where the integrals I(T), T = 1...4, are given by
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  (28)

 (29)

Also, by substituting the expressions for U, V and W into Eq. (15) the strain energy of a typical

stiffener spanning in the x-direction reads
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(30)

where

(31)

The displacement functions of Eqs. (21)-(23) are two dimensional, i.e., compatible with the two

dimensional integrals for the plate strain energies, while the strain energy integrals for the stiffeners

are one dimensional. Since these functions are also used for the stiffener strain energies, the

transformation delta function, , has been introduced into Eq. (31) that evaluates the

displacement function at the location of the stiffener. For example, when this transformation

function is used with the out of plane displacement function, then 

(32)

where ηi is the location of the stiffener spanning along the x or ξ-axis. By similar analogy, the strain

energy of the stiffeners spanning in the y direction becomes
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(33)

where the values of the I integrals are given by

  (34)

The plate and stiffeners kinetic energies can also be written in terms of the displacement functions

as

 (35)
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where

(36)

Equating the maximum kinetic and strain energies given by Eqs. (24), (27), (30), (33), the natural

frequency of the assembled structure, ω, can be expressed in the following format 

(37)

where Ω is a natural frequency parameter that is a function of the plate/stiffener geometric

properties, the shape functions  that satisfy the boundary

conditions along the four edges and their associated coefficients, . The objective now is

to find, for prescribed , the coefficients 

that minimize the parameter Ω. Since this parameter is a non linear function of these coefficients,

analytical treatment of the problem becomes difficult especially as the number of coefficients

increases. In this investigation Mathematical Programming Techniques was used as the optimization

algorithm for the vibration analysis of stiffened plates. The mathematical statement of the problem

is stated as

Minimize Ω (38)

Subject to (39)

where the superscript U and L denote the upper and lower bounds on these variables. The

optimization strategy for the non-linear function is performed iteratively by generating and solving a

sequence of Quadratic sub-problems. The optimization strategy is described by 
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where the superscript denotes the iteration number and the subscript i denotes the design variable, x
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is the vector containing the displacement coefficients, α is the step size and P is the search

direction. For each iteration, the search direction and step size is computed to produce a sufficient

decrease in the objective function. At a typical kth iteration, the search direction is computed from

the solution of the quadratic, Taylor expansion of the frequency parameter Ω

Minimize Ω (41)

where  is the gradient of the natural frequency parameter at the kth iteration and  is the

Hessian matrix. After obtaining the search direction from this Quadratic approximation of the

function, each iteration proceeds by determining a step length, α, that produces a decrease in the

objective function. The process continues until there is no further decrease in Π, or the decrease is

of negligible order

3. Result

The first part of this section presents verifications to the described procedure for several stiffened

and unstiffened panels that have been analyzed by other authors, using alternative numerical

methods, such as Finite Element, Finite Difference and Finite Strip. In the second part, the dynamic

behaviour of the structure is investigated for several panels. 

3.1 Verification examples

Table 1 shows a numerical comparison of the values obtained using the present formulations and

the analytical values of Harris and Crede (1961), for four aspect ratios, b/a = 1, 1.5, 2, 2.5. The

natural frequencies are presented in terms of the non-dimensional parameter Ω given by 

(42)

where D = Eptp
3/12(1 − v2) is the plate flexural rigidity, tp is the plate thickness, mp is the mass

density, ω the natural frequency in rad/sec. and a is the length of plate. As can be seen that both

values are in good agreement. 

The second verification example is a simply supported plate with one eccentric stiffener spanning

along the centerline shown in Fig. 2. The Modulus of Elasticity of the plate and the stiffener are Ep

= Est = 30 × 106 psi (2.07 × 105 N/mm2), and the mass densities  = 0.28 Ib/in3

(7.83 × 10−6 kg/mm3). The dimensions of the plate are a = 16 in. (410 mm), b = 24 in. (600 mm)
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Table 1 Comparison of Ω obtained using present formulations with Harris and Crede (1961)

b/a
Ω (rad/s)

Harris and Crede (1961) Present

1 19.74 19.73

1.5 14.26 14.17

2 12.34 12.33

2.5 11.45 11.43
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and the thickness tp = 0.25 in. (6.33 mm). The stiffener depth hx1 = 0.875 in. (22.22 mm) and the

thickness = 0.5 in. (12.7 mm). This panel was analyzed by Mukherjee and Mukhopadhy (1989)

using the Finite Element method, by Asku (1982) using Finite Difference formulation and by Harik

and Guo (1993) using Finite Element method. The lowest natural frequency for the structure is

shown in Table 2 and as can be seen they are in reasonable agreement. 

The next verification example is a 2 × 2 Bay continuous plate shown in Fig. 3. The line support

are placed at the spx1 = spy1 = 0.5. This plate was analyzed by using the Finite Strip Method by Wu

and Cheung (1974) and by and by Koko (1990) using a refined Finite Element formulation. The

lowest natural frequencies Ω are compared in Table 3 with these references. It can be seen that the

agreement is reasonable.

ts
xi

Fig. 3 Geometric details of 2 × 2 continuous plate

Table 2 Comparison of Ω obtained using present formulations with other references

Reference ω (Hz)

Asku (1982) 254.94

Harik and Guo (1993) 253.6

Mukherjee and Mukhopadhyay (1989) 257.05

Present 256.2 

Fig. 2 Geometric details of plate with one longitudinal stiffener
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3.2 Dynamic Behaviour of Stiffened panels

The interest in this section is to show the influence of the geometric parameters on the natural

frequency of the structure. Several stiffening configurations are used in order to illustrate the

structural efficiency of the system. Fig. 4(a) shows the natural frequency parameter, Ω vs. hx1/tp

ratio for a centrally stiffened panel. The solid curve represents the eccentric while the dashed curve

represents the concentric configuration. The solid circles are the numerical values obtained from the

analysis using SQP. Starting with an unstiffened plate with unit aspect ratio, the natural frequency

parameter Ω equals 19.73, and the mode shape is half-sine wave. Increasing hx1/tp, while setting the

contribution of the torsional strain energy GJx1/Db to zero, the natural frequency parameter, Ω,

increases until it attains a constant value of 49.3 at hx1/tp = 6.1 for the eccentric and 13.7 for the

concentric configuration. At this stage, the stiffener subdivides the plate into two sub-panels and

freely rotates, since GJx1/Db = 0. The EIx1/Db ratio for this hx1/tp value is about 17. The hx1/tp for the

concentric configuration is larger since the axis of bending of the plate and the stiffener in this case

coincides while, for the eccentric configuration, the value of the inertia of the stiffener is larger. The

natural frequency  parameter Ω at this stage equals 49.3 which can also be obtained by replacing

the paramter β by (β)sub in Eq. (37), i.e.

Fig. 4 Variation of Ω with hx1/tp for a plate with one longitudinal stiffener; b) variation of Ω with GJx1/Db

Table 3 Comparison of Ω obtained using present formulations with other references

Reference Ω (rad/s)

Koko (1990)   20.05

Wu and Cheung (1974)   19.74

Present 19.6
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(43)

The first quantity of the above equation is the natural frequency parameter of the sub-panel i.e., a

simply supported plate along the four edges of width spx1 and (β)sub is the aspect ratio of the sub-

panel = (a/spx1). Therefore, these values of hx1/tp are the points where the natural frequencies of the

plate and the sub-panels coincide and hence represent the optimum values.

Now, by fixing the EIx1/Db or hx1/tp ratio at any value along the constant Ω = 49.3 line and

increasing the torsional stiffness parameter GJx1/Db of the stiffener, a further increase in the natural

frequency parameter Ω can be obtained as shown Fig. 4(b). Note that, by fixing hx1/tp,   needs

to be increased to increase the Jx1 value of the stiffener. The stiffener, at this stage, partially restrains

the plate against rotation along b/2 until it clamps the plate along this side and the Ω value becomes

constant at 68 for GJx1/Db ≈ 3.8. This corresponds to the natural frequency of a plate with three

simply supported edges and clamped along the fourth longitudinal edge. Any further increase in

 produces no further increase in the natural frequency of the plate.

To give numerical insight to the advantage of stiffened plates, if we assume that the Modulus of

Elasticity of the plate and the stiffener are Ep = Est = 30 × 106 psi (2.07 × 105 N/mm2), the mass

densities mp =  = = 0.28 Ib/in3 (7.83 × 10−6 kg/mm3) and the dimensions of the plate are

a = 30 in. (762 mm), b = 30 in. (762 mm). If we further assume that the natural frequency to be

attained is ω = 266 Hz, therefore for unstiffened plate the required plate thickness to achieve this

natural frequency is tp = 0.5 in. (12.7 mm) and thus the total volume of material required is 450 in3

(7.4 × 106 mm3). By adding a stiffener along the centerline of the plate, this natural frequency can

be attained at hx1 = 1.22 in. (30.5 mm),  = 0.5 in. (12.7 mm) and a reduced plate thickness tp of

0.2 in. (5.1 mm). Thus the total volume of the stiffened plate is 198 in3 (3.24 × 106 mm3). Therefore

for the same natural frequency, the stiffened plate requires less than one half the material the

unstiffened plate requires. This shows the great efficiency of stiffened plates in material savings.

Fig. 5 illustrates the variation of the stiffener spacing with the natural frequency parameter Ω for
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Fig. 5 Variation of Ω with the stiffener spacing, spx1/b Fig. 6 Variation of Ω with hx/tp for a plate with two
longitudinal stiffeners
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0 < (spx1/b) < 1 for eccentric configuration for EIx1/Db = 20, i.e., hx1/tp = 6.65. Note that this value

of hx1/tp is along the constant Ω line. The incremental value of spx1 was b/10. The value of GJx1/Db

is taken to be zero for this case. Note that the curve is symmetric about the centerline, spx1 = b/2.

As can be seen, the best location for the stiffener, which produces the highest Ω value, is at the

centerline of the plate. A possible explanation for this is that when the stiffener is off centre, the

plate is divided into two sub-panels with different widths, spx1 and spx2, as shown in Fig. 1. The

critical one will correspond to the larger spx1 since it will produce the smallest Ω value. If, for

example, the stiffener is at spx1 = 0.4b, the panel with spx2 = 0.6b will have a lower natural

frequency since it has a lower aspect ratio. Therefore, the largest Ω can be obtained when the

natural frequency of both sub-panels coincides, i.e., spx1 = spx2 = 0.5. 

When considering two equally spaced longitudinal stiffeners, with hx1/tp = hx2/tp and eccentric

configuration the optimum stiffener slenderness is increased to 10.8 as shown in Fig. 6. Note that

since the parameters hx1/tp and hx2/tp are increased equally, they are denoted by hx/tp in the graph. At

this value of hx/tp, the stiffeners sub-divide the plate into three sub-panels each of length a and

width b/3. The maximum Ω value at this stage, ignoring the contribution of the torsional strain

energy, is 98.6. This value can also be obtained by replacing the plate parameters, β and a by (β)sub

and (a)sub in Eq. (37), i.e.

(44)

Noting that in this case (β)sub = 3β. It can be seen that the value of the maximum natural

frequency parameter is almost doubled by adding additional transverse stiffener.

By adding a transverse stiffener along the centerline of the plate, i.e., spy1 = a/2, and increasing hx/

tp and hy/tp equally, the optimum h/tp for the longitudinal and transverse stiffeners is increased to

10.5 for the eccentric and to 21 for the concentric configuration as shown in Fig. 7. The natural

frequency parameter of the structure, in this case, increases to 128.3. At this hx/tp value, the

stiffeners subdivide the plate into six sub-panels each with (β)sub = 1.5. This value of Ω can be

obtained by replacing β and a in Eq. (37) by (β)sub and (a)sub to obtain 
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Fig. 7 Variation of Ω with h/tp for a plate with two
longitudinal and one transverse stiffeners

Fig. 8 Variation of Ω with hx/tp for a plate with three
longitudinal stiffeners
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(45)

If the transverse stiffener is added to in the longitudinal direction instead of the transverse

direction, the maximum value of natural frequency parameter Ω of the structure is 167.7, i.e., higher

by about 30% from the previous configuration, as shown in Fig. 8. The amount of hx/tp to subdivide

the plate into four equally sub-panels on the other hand is 16.1 for the eccentric configuration.

4. Conclusions

The paper investigated the dynamic behaviour of multi-stiffened plates. As a first stage, the

coupled differential equations for eccentric stiffening were derived and expressed in terms of the

plate/stiffeners geometric properties. Generalized energy formulations were then derived for the

computation of the natural frequency of the assembled plate and stiffener elements. The resulting

non-linear strain energy functions are then transferred into unconstrained optimization problem and

Mathematical Programming is used to determine the magnitude of the lowest natural frequency and

the associated mode shape. Verification examples are then presented for several panels. The

dynamic behaviour was then detailed for several stiffening configurations. The variation of the

natural frequency was shown with the plate stiffener geometric proportions. From these graphs it is

now possible to determine the finite values of h/tp which maximize the natural frequency of the

structure.
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Nataion

Ap : area of the plate;
Axi, Ayi  : areas of ith stiffener along the x and y axes, respectively;
a, b  : length and width of the plate;
Ep, Est  : Young’s modulus for the plate and the stiffeners, respectively;
ex  : eccentricity of the stiffeners;
Fi(ξ), Gj(η) : out of plane displacement functions;
Bm(ξ), Dn(η), Er(ξ), Hs(η) : in-plane displacement functions;
G  : shear modulus;
hxi, hyi  : depth of ith stiffener along the x and y axes, respectively;
Ip  : moment of inertia of the plate;
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Iy
xi, Ix

yi  : second moment of inertia about the major axis of ith stiffener along the x and y
axes, respectively; 

Iz
xi, Iz

yi  : second moment of inertia, about the minor axis, of ith stiffener along the x and y
axes, respectively; 

Io
xi, Io

yi : polar moment of inertia of a typical ith stiffener along the x and y axes, respec-
tively;

Jxi, Jyi  : torsional rigidity of a typical ith stiffener along the x and y axes, respectively;
Mxx

p ,  Myy
p , Mxy

p   : Moment components of the plate;
  : Moment components of the stiffeners;

mp  : mass density of the plate;
  : mass densities of stiffeners along the x and y axes, respectively;

: force components of the plate;
  : force components of the plate;

Qxi, Qyi  : first moment of inertia of a typical ith stiffener along the x and y-axes, respectively;
W, U, V  : out of plane and in-plane displacements;
SC  : support condition;
spxi, spyi  : stiffener’s spacing in the x and y-direction, respectively;
tp  : thickness of the plate;

  : thickness of ith stiffener along the x and y axes, respectively;
  : total strain energies of stiffeners along the x and y axes, respectively;

Ω : non-dimensional natural frequency parameter;
ω : natural frequency of the structure.
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