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Abstract. This paper presents the theoretical developments of an exact finite strip for the buckling and
initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be
simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is
effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip
Method in this paper, provides an efficient and extremely accurate buckling solution. In the development
process, the Von-Karman’s equilibrium equation is solved exactly to obtain the buckling loads and the
corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate
buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected
form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the
present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the
lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the post-
buckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-
energy method. In this method, the Von-Karman’s compatibility equation governing the behavior of
isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through
the solution of the compatibility equation, the in-plane displacement functions which are themselves
related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-
of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the
total strain energy expressions and the theorem of minimum total potential energy is applied to solve for
the unknown coefficient. The developed method is subsequently applied to analyze the initial post-
buckling behavior of some representative thin flat plates for which the results are also obtained through
the application of a semi-analytical finite strip method. Through the comparison of the results and the
appropriate discussion, the knowledge of the level of capability of the developed method is significantly
promoted.
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1. Introduction

Prismatic plates and plate structures are increasingly used as structural components in various

branches of engineering, chief of which are aerospace and marine engineering. These structures are

often employed in situations where they are subjected to in-plane compressive loading. In

aerospace, in particular, the quest for efficient, light-weight structures often leads to allowing for the

possibility of local buckling and post-local-buckling at design load levels. Thus it is important to

accurately predict the buckling and post buckling behavior of such structures. 

In the field of linear buckling and vibration analysis of composite laminated plates and plate

structures formed of composite materials having very general material properties, Lau and Hancock

1984, Dawe and Craig 1988, Wang and Dawe 1999, Zou and Lam 2002 and Cheung and Kong

1995 have extensively used the finite strip method based on the use of both Classical Plate Theory

(CPT), first-order Shear Deformation Plate Theory (SDPT) and Higher-order Shear Deformation

Plate Theory (HSDPT).

The post-local-buckling behavior of elastic plates or plate structures is a geometric non-linear

problem. The non-linearity occurs as a result of relatively large out-of-plane deflections, which

necessitates the inclusion of non-linear terms in the strain-displacement equations. Inside the post-

buckling region, the out-of-plane deflections grow in a stable manner as the load increases (i.e., as

the load increases beyond its critical local buckling value). The growth in the out-of-plane

deflections is accompanied by continuous alterations in the stress system within the cross section.

The changes in out-of-plane deflections and the alteration in the stress system cause the

compressional stiffness of the plate to decrease. 

The non-linear equations governing the elastic large deflection of flat plates were first derived by

von Kármán. The post-local-buckling behavior of a plate can be analyzed by solving the von

Kármán non-linear equations, together with the appropriate boundary conditions. Unfortunately, the

von Kármán equations are coupled and fourth order, and thus no rigorous solutions are available.

This clearly indicates that the extension of the non-linear equations from a single plate analysis to

the plate structure analysis will involve even more complexity. All these have prepared the ground

for the development of the approximate methods to solve the post-local-buckling problem of plates

and plate structures. These approximate methods are primarily based on the Principle of Minimum

Potential Energy. 

Among the energy-based approximate methods, the finite element method (FEM) has become the

dominant form of geometrically non-linear structural analysis. However, although the finite element

method has no limitation regarding boundary conditions and local discontinuities such as openings in

plates, the large number of degrees of freedom, and thus considerable computational effort required

in the non-linear analysis of plates and plate structures may be considered as a deterrent factor. 

For the case of prismatic structures, the finite strip method (FSM) Graves Smith and Sridharan

1978 & 1981, which is a special form of the finite element method, has proved to be a capable tool

for analyzing the post-buckling behavior of plates and plate structures. As far as the computational

expense is concerned, the finite strip method can be significantly more efficient than the finite

element method. 

Early works concerned with the use of the FSM in predicting the geometrically non-linear

response of single rectangular plates and prismatic plate structures are those of Graves Smith and

Sridharan 1978 & 1981 and Hancock 1981. These authors consider the post-buckling behavior of

plates with simply supported ends when subjected to progressive end shortening. They also consider
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the post-buckling behavior of plate structures subjected to uniform or linearly varying end

shortening with each component plate of the structure having simply supported ends. The elastic

post-buckling response of channel section struts and rectangular box columns are investigated by

Graves Smith and Sridharan. Hancock uses the finite strip method to investigate the post-buckling

behavior of square box and I-section columns. In the finite strip methods developed by the

aforementioned authors, in-plane displacement fields are postulated in addition to the out-of-plane

displacement field. The lengthwise variations in the displacement fields are trigonometric functions.

The crosswise variations in both in-plane and out-of-plane displacement fields are simple

polynomial functions. It is noted that the above-mentioned finite strip methods can be categorized as

Semi-analytical FSM (S-a FSM).

In another contribution, Dawe and Wang 1996 have developed a spline finite strip method for

analyzing the geometrically non-linear response of rectangular composite laminated plates of

arbitrary lay-up to progressive end shortening in their plane. The plates are assumed to be thin, thus

allowing the analysis to be based on the use of classical plate theory. The attention is concentrated

on a particular finite strip model whose displacement field uses cubic B-splines longitudinally,

quadratic crosswise interpolation of the in-plane displacements and cubic crosswise interpolation of

the out-of-plane displacement. 

Kwon and Hancock 1992 have also developed a non-linear elastic Spline FSM to study the post-

buckling behavior of isotropic thin-walled sections undergoing local and distortional buckling. The

developed spline FSM takes account of geometric imperfections, residual stresses and non-simple

boundary conditions at the ends of the section under study. The FSM is applied to predict the post-

buckling behavior of lipped channel sections made of steel material. The comparison between the

FSM results and the experimental results, obtained by the same authors in an earlier study, is found

to be reasonable.

Kong and Cheung 1995 have developed a generalized geometrically non-linear spline finite strip

for the analysis of plates. The finite strip is general in the sense that its formulation is based upon a

third-order plate theory, and is applicable to thin plates as well as thick plates. The plates may be

made of isotropic or laminated composite materials with small initial imperfections. The FSM is

applied to analyze the post-buckling behavior of two isotropic square plates with small initial

curvatures loaded in edge compression. For the readers’ information, it is noted that Dawe 2002

provides a good state-of-the-art summary of the use of the finite strip methods in composite plates

for both semi-analytical finite strip method (S-a FSM) and spline finite strip method.

Khong and Rhodes 1988 have set up a computationally efficient approach to the post-buckling

analysis of prismatic structural members. In this approach, a linear finite strip method, developed

for the buckling analysis, based on the Principle of Minimum Potential Energy is employed to find

the buckling eigenvector. This eigenvector is then used as the post-buckled deflected shape in a

single-term post-buckling analysis based on the Principle of Minimum Potential Energy. The

analysis is simplified by the assumption that stresses in the direction perpendicular to loading and

shear stresses have negligible effects. This approach can be considered as a lower bound method of

post-buckling analysis (i.e., the post-buckling stiffness of the structure is underestimated by this

approach). The method is applied to plain and stiffened channel sections as well as Z-sections.

An energy-based approximate method, referred to as the semi-energy method by Rhodes &

Harvey 1977, was first used by Marguerre 1937, and has since been used by various researchers. It

is worth mentioning that there are two papers, written by Rhodes 1996 and Chou & Rhodes 1997,

which are extremely useful in providing references on the theoretical (mostly based on the semi-
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energy method) and experimental research into thin-walled structures. 

More recently, Ovesy et al. have developed a semi-energy post-local-buckling FSM in which the

out-of-plane displacement of the finite strip is the only displacement which is postulated by a

deflected form as distinct to that mentioned previously with respect to the S-a FSM and Spline

FSM. The developed semi-energy FSM has been applied to analyze the post-local-buckling behavior

of thin flat plates 2005, open channel section 2006 and box section struts 2006.

In this paper theoretical developments of an exact finite strip for the buckling and initial post-

buckling analyses of isotropic flat plates are presented. The so-called exact finite strip is assumed to

be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept

that it is effectively a plate, and thus the Von-Karman’s equilibrium equation is solved exactly to

obtain the general form of out-of-plane buckling deflection mode for the corresponding plate/strip

and the Von-Karman’s compatibility equation is subsequently solved exactly to obtain the general

form of in-plane displacement fields in post-buckling region. This method is characterized by the

use of buckling mode shapes, obtained form the Von-Karman’s equilibrium equation, as global

shape functions for representing displacements in a geometrically non-linear analysis. For this

reason, this method is designated by the name Full-analytical Finite Strip Method (F-a FSM). In the

cases of buckling and post-buckling analysis of plate, it can be modeled by assigning any arbitrarily

given number of the developed exact finite strips across its width but very often one strip is

adequately sufficient to model a plate.

2. Theoretical developments of the full-analytical FSM

In this section, the fundamental elements of the theory for the developed exact finite strip in

buckling and post-buckling problems are outlined. It is noted that a perfectly flat exact strip made

up of a linear isotropic material (with a constant modulus of elasticity E and Poisson ratio v) is

assumed throughout the theoretical developments of this paper. The so-called exact finite strip is

assumed to be simply supported out-of-plane at the loaded ends, and be thin so that the Classical

Plate Theory (CPT) is applied in the remaining of the paper. 

2.1 Basic formulation of the problem

The exact finite strip, which is schematically shown in Fig. 1, is of length L, width b and

thickness t. As mentioned earlier, the finite strip is simply supported out-of-plane at both ends, i.e.,

at ends x = 0 & L the boundary conditions are 

(1)

where the comma denotes partial differentiation, i.e.,  and , etc. It is

emphasized that the CPT is applied in the remaining of the paper. As a result of this assumption, the

Kirchhoff normalcy condition is incorporated, and thus

(2)

where  and  are components of displacement at a general point, whilst u, υ and w are similar

w w, y Mx 0= = =

( ), x ∂( )/∂x= ( ),xx ∂2( )/∂x
2

=

u u zw, x–=

υ υ zw, y–=

w w=

u υ, w
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components at the middle surfaces .

On the assumption that the plate is in a state of plane stress, the stress-strain relationship at a

general point for the plate becomes

(3)

where  and , respectively, correspond to the stresses and strains at a general point. Internal

forces and moments acting on the edges of a plate/strip are expressed in terms of forces and

moments per unit distance along the plate/strip edge. The force and moment intensities are related

to the internal stresses by the equations

(4)

where 

(5)

In the above equation,  and  are the membrane direct and shearing stress resultants per

unit length and  and  are the bending and twisting stress couples per unit length. It is

noted that the stresses and strains in Eq. (3), include the components corresponding to the

membrane and bending contributions as outlined below.

(6)

Where σ and ε correspond to the membrane contribution, and σb and εb relate to the bending and

twisting actions. It is noted that the relationship between σ and ε is similar to that given by Eq. (3).
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Fig. 1 A typical exact finite strip
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The same relationship also applies between σb and εb. Moreover, the membrane strain ε can be

subdivided into its linear εl and non-linear εnl components as given below.

(7)

It is also noted that within the context of CPT the bending strains εb are expressed by the

following equations

(8)

Since the potential energy of external loads is zero for the plate/strip under consideration, the total

potential energy of the plate/strip Vs is simply equal to the its strain energy Us (i.e., Vs = Us) which is

(9)

By substituting  and  from Eq. (6) into Eq. (9) and rearranging, the total strain energy of the

strip Us can be expressed by the following equations

(10)

where Ums designates the membrane strain energy of the plate/strip and is given by

(11)

and Ubs designates the bending strain energy of the plate/strip and is given by

(12)

The bending strain energy Ubs is expanded by using Eq. (3), and subsequently substituting for εb
by implementing Eq. (8), and finally carrying out the integration in the z direction. This gives

(13)

where  is the so-called bending stiffness of the plate/strip.

The von Kármán’s equilibrium and compatibility equations for large deflections of plate with the

assumption that the normal pressure is zero are given by the following equations respectively.

(14-a)
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In this equation the function F (i.e., ) which is known as the Airy stress function is

defined as follows

(15)

The membrane strain energy Ums (i.e., Eq. (11)) is further expanded by substituting for ε in terms

of σ using Eq. (3), and subsequently using Eq. (15) and then carrying out the integration in the z

direction. This gives

(16)

The positive directions of the edge forces and displacements are shown in Fig. 1. It is noted that

the in-plane shear force, in-plane transverse force, out-of-plane shear force and bending moment per

unit length of the plate/strip edge are denoted by  and My respectively. The subscripts i

and j denote the corresponding values of forces/displacements at edges i and j, respectively. It can

be seen in Fig. 1 that the nodal line forces and moments can be expressed in terms of internal in-

plane forces and normal displacements on the edges as follows

(17)

In the above equation, as indicated by Wittrick and Williams 1974, the Kirchhoff edge shear force

condition has been used for Pz.

By substituting Ny and Nxy from Eq. (15) into Eq. (17) for in-plane shear force and in-plane

transverse force, Px and Py can be expressed as

(18)

It is noted that in the remaining of the paper, the subscripts  are used for pre-buckling,

buckling and post-buckling stages, respectively.

2.2 Buckling analysis

The out-of-plane buckling deflection mode w1 is obtained by trying to solve the Von-Karman’s

equilibrium equation i.e., Eq. (14-a). This gives

(19)
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where  and F0 is the Airy stress function in the pre-buckling

stage. This equation constitutes a linear eigenvalue problem. 

In the pre-buckling stage it is assumed that the plate/strip is subjected to the compressive axial

stress and thus

(20)

where  and ε is the end-shortening strain in the pre-buckling stage. Then by using Eq. (15)

(21)

By substituting Eq. (21) into Eq. (19), the Von-Karman’s equilibrium equation in the buckling

analysis can be expressed by the following form 

(22)

A Separable form is assumed for the displacement w1 in order to reduce the above partial

differential equation into an ordinary differential equation. The out-of-plane buckling deflection

mode w1 is assumed to vary sinusoidally with x. This assumption is consistent with the boundary

conditions set forth earlier by the Eq. (1). Thus, the out-of-plane buckling deflection mode w1 is

(23)

where  and parameter n in the above displacement function is merely an integer which

represents the number of buckle half-wavelengths along the strip, and  represents the shape

function in the transverse direction y. Substituting out-of-plane buckling deflection mode w1 from

Eq. (23) into Eq. (22) and rearranging leads to the following fourth-order ordinary differential

equation

(24)

where , and the superscript ' denotes differentiation with respect to y, i.e.,

. The solution of Eq. (24) depends on whether ζ, which is clearly positive, is greater

than, less than, or equal to unity, thus 

For ζ > 1, the solution can be written as 
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(27)

where   denote unknown constants. However, in practical situations, only the

case  has ever been encountered by the authors. Therefore, the associated computer program

has no coding for the cases  and  and would simply print a message if such cases

were ever detected. The displacement boundary conditions for  at the two edges  and

 can be written as

(28)

where the subscript 1 is used because they are initial buckling quantities and the subscripts i and j

denote amplitudes at edges i and j of the strip, respectively. These buckling displacement

amplitudes, which are depicted in Fig. 1, can be written as the displacement vector 

(29)

The four unknown constants   corresponding to a given plate/strip can be fully

determined in terms of buckling displacement amplitudes by substituting the boundary conditions of

Eq. (28) into Eq. (25). Thus, the solution of fourth-order ordinary differential Eq. (24) which

satisfies the displacement boundary conditions of Eq. (28) can be obtained analytically in terms of

the edge displacements . Substituting Eq. (23) into Eq. (17) yields the force boundary conditions

for the moment and out-of-plane edge shear force as

(30)

The left-hand sides of Eq. (30) are the amplitudes of the buckling forces and moments at the

corresponding edges of the plate/strip. They can be written as the force vector

(31)

The above equation which describes the edge forces in terms of the edge displacements can be re-

arranged as

(32)

Where  denotes the plate out-of-plane stiffness matrix. By applying these expressions to obtain

the stiffness matrices of individual strips, the exact overall stiffness matrix  for the whole plate

can be assembled by using the conventional routines of finite element analysis. The corresponding

buckling problem can finally be expressed as the eigenvalue problem

(33)

Where the vector  consists of the out-of-plane displacement amplitudes  for each nodal

line, and  is the stiffness matrix whose coefficients include trigonometric and hyperbolic

functions involving longitudinal stress σ as the plate/strip is analyzed exactly by solving its
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governing differential equation. 

It is realized that the application of the exact method for buckling of structures has resulted in a

transcendental eigenvalue problem in the form of Eq. (33) as distinct from equation

 which is encountered when approximate methods such as finite strip method are

used.

Such exact analyses always lead to considerable reductions in the order of  compared to

that required in the case of approximate analyses. 

There are many well-established and excellent alternative methods for solving the generalized

linear eigenvalue problem to find both the eigenvalues and eigenvectors, i.e., the critical longitudinal

stress and buckling modes, accurately and with complete certainty that none is missed, Wilkinson

1965 and Bathe 1996. However these methods are not directly applicable to the transcendental

eigenvalue problem in the form of Eq. (33). In the case of transcendental eigenvalue problem, in the

first stage it is necessary to implement a special algorithm, which has been developed by Wittrick-

Williams (W-W), in order to calculate the number of eigenvalues (critical stresses) exceeded by any

trial value of σ. The use of the W-W algorithm is essential as otherwise there will certainly be

structures for which some of the eigenvalues will be missed. 

Having calculated the number of eigenvalues, certain methods for finding the eigenvalue and

eigenvector of the transcendental eigenvalue problem can be used. The details of the W-W

algorithm and the two secure methods for finding the eigenvalue and eigenvector of the

transcendental eigenvalue problem are presented below. The first method utilizes a bisection

method, Wittrick and Williams 1974, whereas in the second method (which is designated by the

name recursive Newton method) transcendental eigenvalue problem is first reduced to a generalized

linear eigenvalue problem by using Newton’s method in the vicinity of an exact critical stress, Yuan

et al. 2003. Then the generalized linear eigenvalue problem is effectively solved by using a standard

inverse iteration method. 

It is noted that in the remainder of the paper the critical stresses of any strip with both

longitudinal edges clamped are denoted by σCl, which is to be called strip clamped-edge stresses.

2.2.1 Wittrick-Williams algorithm

The W-W algorithm, Wittrick and Williams 1970-1973, is a theoretically proven, reliable and

efficient tool to obtain the number of eigenvalues (i.e., critical load factors in the buckling problems

or natural frequencies in the free vibration studies) of transcendental eigenvalue equations to any

required accuracy. The algorithm does not directly compute the eigenvalues, but instead simply

finds J, the total number of eigenvalues below an arbitrarily given trial value. In this way the upper

and lower bounds are established on each required eigenvalue, after which various iterative

procedures can be used to converge on the eigenvalue to the required accuracy. 

Let  be the number of (positive) eigenvalues (critical stresses) which are less than some

chosen (positive) value σt, a trial value of σ, as

(34)

where 

(35)
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where the summation is over all strips in a plate (if required) and  is the number of strip

clamped-edge stresses σCl that are less than chosen value σt (for each strip). It is noted that Js can

be calculated from simple formulae for most commonly used plates, or otherwise numerical

procedures are available for its calculation, Wittrick and Williams 1974. Finally,  is

known as the ‘sign count’ of  and can be calculated as the number of negative leading

diagonal elements of , the upper triangular matrix obtained from  by the usual form

of Gauss elimination, without row interchanges, scaling or pivoting.

Clearly σt corresponds to a lower bound value (i.e., σL) on the rth critical stresses if ,

and otherwise σt is an upper bound (i.e., σU). Hence the numbers of critical stresses Nr and strip

clamped-edge stresses Nr0 lying in the interval  are given by

, (36)

2.2.2 Bisection method
The outcome of Eq. (34) has allowed the authors to calculate the number of positive critical

stresses which lie below any chosen value of σt. In this way, it is not difficult to devise an

automatic procedure by using Eq. (34) for finding two values σU and σL which provide upper and

lower bounds to σr, which is the rth eigenvalue. This knowledge eliminates entirely the need to

increment σ in very small steps in seeking the eigenvalues of Eq. (33) and lends itself admirably to

an iterative computational procedure such as the well-known bisection convergence method for

converging upon any required eigenvalues. The bisection convergence method has the advantage

that it converges to the eigenvalues with certainty and with any specified degree of accuracy. Once

a pair of upper and lower bounds have been established, the bisection method requires the interval

between the bounds to be progressively narrowed according to the simple Eq. (37). Having obtained

the new value of σ based on Eq. (37), the Eq. (34) is then implemented to find out whether the

obtained σ is an improved upper bound or an improved lower bound. 

(37)

This bisection step is repeated until upper and lower bounds differ by less than the user specified

error tolerance Tol1. This paper adopts the termination criterion as

(38)

Each iteration halves the interval so that 10 iterations improve the accuracy approximately 1000

times (210). 

The main disadvantage of the bisection method is that it does not provide the eigenvectors, whose

knowledge is often necessary in a thorough buckling study. Therefore, an extension of the method is

provided in the developed computer program in order to calculate the pertinent eigenvectors. 

2.2.3 Recursive newton method

The theoretical development of the recursive Newton method for solving the transcendental

eigenvalue problems in the current study is essentially similar to the approach adopted by Yuan et

al. 2003. 

Suppose a stress interval (σL, σU) has been identified by the W-W algorithm or by some other
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means, and it has been determined that there is only one critical stress σg and no strip clamped-edge

stresses σCl inside the interval, i.e.,  and . Let σa denote the best available

approximation to the exact critical stress σg in (σL, σU). Initially σa is set to be at the middle of the

interval, i.e., , to ensure that its nearest critical stress is the one within (σL, σU).

Moreover, let the following notation be introduced

(39)

Here,  and  are assembled from first and second derivatives of the strip stiffness matrices,

respectively.

 Consider the Taylor series expansion

(40)

Right multiplication by the exact mode vector  leads to 

(41)

Nothing that  and ignoring the second and higher order terms yields 

(42)

Eq. (42) implies that with an approximate  and  known, a better approximation to the

exact critical stress σa and mode vector  can be obtained by solving the generalized linear

eigenvalue problem

(43)

It is noted that  is derived analytically in the current study. Eq. (43) is a typical formulation of

Newton’s method, which represents a linearization of the original transcendental problem

 in the vicinity of σg. After obtaining the solution of Eq. (43), i.e., the eigenvalue μ and

the associated eigenvector , a possibly more accurate stress can be extrapolated by 

(44)

It is well known that if σa is sufficiently close to σg, Newton’s method has second order accuracy

(i.e., of the order of  for a single σg ( ). The second order accuracy implies that, in

order to obtain a final approximate stress satisfying the error tolerance Tol1 in the way defined by

Eq. (38), it suffices to narrow the stress interval until . Then one iteration of

Newton’s solution will give both stress and mode vector with the accuracy approximately satisfying

the required tolerance Tol1. 

In the present study the inverse iteration procedure, which is employed by Yuan et al. 2003, is

selected for solving the Eq. (43). 

Solving Eq. (43) involves many eigenpairs but, because , only one of them satisfies

. A natural method that is guaranteed to converge on the eigenpair for which the
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absolute eigenvalue μ is least is the inverse iteration procedure, which is employed in this paper and

the Rayleigh quotient is used to accelerate the convergence on the eigenvalues, giving

 with  a random vector

 with (45)

 with 

which is terminated when

(46)

where  is mth element of ; max denotes the maximum value for any m, and Tol2 is the

user specified error tolerance, which may or may not be equal to Tol1 in Eq. (38). It can be seen

that at each iteration of the Newton method, the solution for the eigenvalue μ and the associated

eigenvector  is achieved by the inverse iteration method. It is noted that for some initial values

of σa, it is likely that the Newton’s method converge to the solution σμ which may not lie within

. Therefore, it is necessary to carry out the so-called μ-check, which means checking

whether σμ lies within . 

Having calculated a μ value which satisfies the error criterion of Eq. (46), a better approximation

to σμ is calculated using Eq. (44) and a μ-check is performed to see if the results are acceptable. If

so, σa is replaced by σμ and the inverse iteration procedure is carried out to obtain better

approximations for the stresses and mode vectors. This procedure is repeated until σμ and σa differ

by less than the user specified error tolerance Tol3, i.e., μ <  Tol3.

It is emphasized that the solution of Eq. (33) in the manner described above leads to the buckling

stress σ and the corresponding out-of-plane buckling deflection mode w1 for each plate/strip.

2.3 Post-buckling analysis

Generally, in a multi-term post-buckling analysis, each of the in-plane or out-of-plane

displacements can be postulated by a summation of displacement functions, each of which being

multiplied by an unknown coefficient. It is noted that each of the assumed displacement functions is

required to satisfy the corresponding in-plane or out-of-plane boundary conditions. In the current

paper, however, since the objective is to investigate the initial post-buckling behaviour of the plate,

a single-term approach is considered to be appropriate. It is assumed that the deflected form

immediately after the buckling is the same as that obtained for the buckling. Thus, the out-of-plane

buckling deflection mode, corresponding to the lowest buckling load, i.e., the first mode, is used for

the initial post-buckling study. Moreover, it is noted that as far as the in-plane displacements are

concerned, their functions are obtained by solving the Von-Karman’s compatibility equation

governing the behavior of isotropic flat plates.

Having obtained an exact shape of the deflected form at buckling from the buckling analysis, the

analysis of post-buckling behavior can proceed on the assumption that the deflected form in the
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immediate post-buckling range is identical to that at buckling, with only the deflection magnitudes

varying. Thus, the post-buckling out-of-plane deflection function w2 can be written as 

(47)

where δ is the deflection coefficient. The stresses occurring in the plate after the buckling are

related to the deflection of the plate via the Von-Karman’s compatibility equation i.e., Eq. (14-b).

(48)

Substituting Eq. (23) and (47) into Eq. (48) yields

(49)

The above equation indicates that the stress function F2 may be considered in two parts: one part

is constant with respect to x, and the other part is varying periodically with x, i.e.

 

(50)

The plate/strip is assumed to be subjected to an in-plane compressive loading acting through

frictionless rigid platens in the post-buckling region such that uniform end-shortening strain ε occurs

at end  only (see Fig. 1). The in-plane boundary conditions at loaded ends of the plate/strip

are summarized as follows 

(51)

By substituting F2 from Eq. (50) in Eq. (49) whilst imposing the boundary conditions as Eq. (51),

and following the semi-energy post-buckling procedure in the manner described in Ref. Ovesy et al.

2004,  and the post-buckling in-plane u2 displacement function corresponding to the out-of-

plane buckling deflection mode and the deflection coefficient δ can eventually be derived as Eqs.

(52) and (53), respectively. 

(52)

(53)

where

(54)

and  can be found from the following equation 
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where

(56)

It is noted that the first term on the right hand side of Eq. (53) represents the prescribed uniform

end-shortening strain. The amplitude of the second term whilst divided by δ 2 and evaluated at

 and  (i.e., ) represents the post-buckling in-plane displacement

parameters u2i and u2j respectively (see Fig. 1). It is also noted that the post-buckling in-plane u2

displacement is a function of out-of-plane buckling deflection mode (which is a function of critical

longitudinal stress) and deflection coefficient δ.

The solution of Eq. (55) is composed of two parts; the particular integral solution , and the

general solution . 

(57)

Having known the out-of-plane buckling mode shape, i.e., fw1 in the buckling analysis, fw1 and its

derivatives are substituted in the right-hand side of Eq. (55) so that it changes to the following form 

(58)

where  are known constant. The particular integral solution , which depends on

the out-of-plane buckling deflection mode, takes the same form as expression (58), and can be

found by using the method of undetermined coefficients.

The general solution  is as follows 

(59)

The coefficients  are unknown at present, but it is assumed that these

coefficients and subsequently  and ψ are known so that the analysis to find the in-plane

displacements can be completed. 

The post-buckling in-plane υ2 displacement can be developed in the same manner as that

described in Ovesy et al. (2004) with respect to the semi-energy post-buckling finite strip.

(60)

where 

(61)

The above equation describes the in-plane υ2 displacement function corresponding to the out-of-

plane buckling deflection mode (which is determined in the buckling analysis) and deflection

coefficient δ.

The first term on the right hand side of Eq. (60) describes the transverse in-plane expansion of the

plate/strip, which occurs due to the Poisson’s ratio effect. The second term (i.e., )
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describes the transverse in-plane movement of the longitudinal fibers of the plate/strip. This

movement, which is constant along the length of a given fiber, varies from a minimum value of

zero at edge y = 0 to its maximum value at the edge y = b. The third term describes the in-plane

waviness of the longitudinal fibers. The amplitude of this term whilst divided by  and evaluated

at y = 0 and y = b (i.e., ) represents the post-buckling in-plane displacement

parameters  and  respectively (see Fig. 1). Finally, the fourth term (which is equivalent to

) and the fifth term on the right hand side of Eq. (60) represent values which remain constant

at all points on a given plate/strip. The existence of the fourth term on the right hand side of Eq.

(60) (i.e., ) allows the point  to be treated as a reference point in

terms of its deflection being connected to another strip or being restrained. The obtained expression

for the in-plane  displacement function (i.e., Eq. (60)) clearly shows that by setting  or 

equal to 0, only the in-plane waviness of the corresponding edge is prevented (i.e., the

corresponding edge is kept straight) but the edge is still allowed to move.

It is noted that the post-buckling in-plane displacement amplitudes (i.e.,  and ) can

explicitly be described in terms of the four unknown coefficients . The four

equations describing ,  are then solved by treating the coefficients 

as unknowns, while all other parameters, including all in-plane post-buckling displacement

amplitudes (i.e., , ) are assumed to be known. Thus, the coefficients 

are explicitly described in terms of , , b, λ, v. Having found the coefficients

, they are substituted in Eq. (59) to find the general solution. Subsequently, the

combination of the general and particular integral solutions is used to substitute for ψ in the

expression describing F22 (i.e., Eq. (56)). 

By substituting the stress function F2 from Eq. (50) into Eq. (18) for in-plane shear force and in-

plane transverse force, amplitudes of Px and Py in the post-buckling region can be expressed by the

following equations 

(62)

The in-plane shear force and in-plane transverse force obtained from Eq. (62) are composed of

two parts; one part which corresponds to the particular integral solution  is a function of the

out-of-plane displacement parameters (buckling displacement amplitudes ), and the other part

which corresponds to the general solution ψG, is a function of the in-plane displacement parameters

(i.e., ). 

Eq. (62) can be re-arranged to obtain the following set of linear simultaneous equations for the

strip, which is designated as the strip stiffness equations.
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Whilst  consists of terms which correspond to the particular integral solution , and  is

the stiffness matrix of the strip. 

Having developed the stiffness equations for each strip (i.e., Eq. (63)), the overall stiffness

equations corresponding to the whole plate are formed by following the conventional finite element

assembly procedure, and noting that the plate is not subjected to any external force, thus  vectors

vanishes during assembly process. The overall stiffness equations are

(66)

Where matrices  and  are assembled from their counterparts (i.e.,  and ) for

each strip. Once Eq. (66) is solved and the post-buckling in-plane displacement parameters (i.e.,

, ) are obtained, they are then substituted into Eq. (53) and (60) to determine the

analytical form of u2 and υ2 for each strip, respectively. It is noted that the obtained u2, υ2 and the

assumed w2 are all determined in terms of the deflection coefficient δ, which will be calculated

below.

2.4 Deflection coefficient  calculation

As described in subsection Basic formulation of the problem, for a prescribed uniform end-

shortening strain ε, the strain energy of the strip Us which is simply equal to its total potential

energy Vs, is composed of bending strain energy Ubs and membrane strain energy, Ums (i.e.,

Eq. (10)). Substitution of Eqs. (47), (50), (52) and (56) into Eq. (13) and (16), and summation of all

strip energies give 

(67)

where Um and Ub are the membrane and bending strain energies of the plate, respectively, and 

 

(68)

Here the summation Σ relates to all strips. For a prescribed post-buckling end-shortening strain ε,

the above constants can be obtained by substituting the functions  and ψ from Eqs. (25) and

(57) respectively into their integrands and carrying out the integration analytically. It is emphasized

that these constants need to be evaluated only once. It is noted that the deflection coefficient δ is the

only unknown in the energy expression. The strain energy is then minimized by differentiating U

with respect to δ. This gives
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(69)

where . It is noted that in the above equation  relates to the trivial equilibrium

path, and thus the branched equilibrium path is obtained by dividing the above equation by δ to

give

(70)

In Eq. (70), since  and m4 are all known constants, δ can be solved for any prescribed value

of end-shortening strain ε. The obtained expression for the deflection coefficient δ clearly shows

that the critical end-shortening strain  and the corresponding buckling stress (i.e., )

can alternatively be obtained by setting δ equal to 0. This buckling stress (i.e., ) is

identical to that obtained earlier in connection with the buckling study of the plate. It is noted that

for  the value of δ is imaginary. 

The longitudinal mid-plane stress σx is defined by the following equation, which is obtained from

Eqs. (15), (50), (52) and (56).

(71)

The longitudinal force/load acting on a strip is determined by integrating the longitudinal mid-

plane stresses σx over the strip cross-sectional area, i.e.

(72)

It is seen that the above equation is multiplied by a negative sign, so that positive Ps values

represent compression forces. The total longitudinal force/load acting on a plate at a given cross

section along the plate length, corresponding to a prescribed end-shortening strain, is obtained by

summation of all strip forces Ps at the same cross section, i.e.

(73)

By substituting the deflection coefficient δ from Eq. (70) into Eq. (73) and rearranging 
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It is seen that the P-ε relationship in the post-buckling region is a linear function which is tangent

to the actual post-buckling curve at the buckling point. The slope of this line, which is post-
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buckling stiffness S can be obtained by letting δ = 0 in Eq. (73) and differentiating the equation

with respect to ε. Therefore, the relative post-buckling stiffness defined as the ratio of the post-

buckling stiffness to the pre-buckling stiffness can be calculated from Eq. (75) in a very

straightforward manner. 

(75)

where  is the width of the plate.

It is noted that in contrast to some other approximate analyses such as finite element method or

conventional finite strip methods, the current exact analysis always leads to considerable reductions

in computational time. 

3. Theoretical development of the semi-analytical FSM

The theoretical development of the Semi-analytical Finite Strip Method (S-a FSM) for the

analysis of the plates is presented in this section. The displacement fields of the S-a FSM are

expressed as

(76)

(77)

(78)

It is noted that ru, rυ and rw represent the number of longitudinal terms assumed for the

corresponding displacement functions. The  and  are transverse polynomial interpolation

functions of various types and orders, involving undetermined displacement coefficients

corresponding to the nth series’ term along the length of the strip. In representing u and υ variations

across a strip, the linear Lagrange polynomial is used, and in representing w the cubic Hermitian

polynomial is utilized as in most previous finite strip studies in the context of CPT, Ovesy and

Ghannadpour and Morada 2005 and Ovesy and Ghannadpour 2006.

(79)

where  and  are the undetermined in-plane nodal displacement parameters and 

and  are the undetermined out-of-plane nodal displacement parameters along edges of the strip

and
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(80)

,

With the establishment of the finite strip displacement fields according to the equations that

mentioned above, the strain energy of the strip Us which is equal to its total potential energy Vs

using Eqs. (2), (3), (6), (7), (8) and (9) can ultimately be expressed in the form

(81)

Here  and  are symmetric square stiffness matrices. The coefficients of  and

 are constant whilst those of  and  are linear and quadratic functions of the

displacements, respectively. The column matrix  contains the strip degrees of freedom. In

evaluating Us all integrations in the x and y directions are determined analytically.

For the whole plate, comprising an assembly of finite strips, the total potential energy is simply

the summation of the potential energies of the individual finite strips. Correspondingly, whole plate

matrices which are equivalent of those appearing in Eq. (81) for the individual finite strip are

generated by appropriate summations in the standard fashion. Thus, the potential energy for whole

plate can be expressed as

(82)

The pertinent plate equilibrium equations are obtained by applying the principle of minimum

potential energy. That is to say the partial differentiation of the plate potential energy with respect to

each degree of freedom in turn gives a set of non-linear equilibrium equations

(83)

where  is the global stiffness matrix, and  is a vector, which includes the degrees of freedom

for the whole structure. This set of equations needs to be modified by applying the appropriate zero-

displacement boundary conditions at the longitudinal exterior edges of the plate (i.e., at the

unloaded edges of the plate). After the application of any appropriate zero-displacement boundary

conditions, the equations must be solved. In the present study the Newton-Raphson (N-R) iterative

procedure is selected for solving the equations. Once the global equilibrium equations are solved

and the nodal degrees of freedom are found for a particular prescribed end shortening, it is possible

to calculate the displacements u, υ and w at any point in any finite strip using Eqs. (76)-(78), and to

determine force and moment quantities through use of Eq. (4).

The solution for the initial instability can be obtained by ignoring the nonlinear matrices  and

 from Eq. (83)

(84)

The eigenvalue problem of the above equation can be solved by using inverse iteration procedure

that described in section Recursive Newton method (i.e., Eqs. (45) and (46)) to find the critical end-

shortening strain εCr.
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4. Results and discussions

This section presents a number of numerical examples showing the excellent performance of the

proposed algorithm, which was implemented in a Compaq Visual FORTRAN 6.5 computer

program. It is noted that the program is run on a standard Pentium IV 3.0 GHz PC. The results of

the developed F-a FSM analysis are compared with some other results which either have been taken

directly from the literature or obtained from a S-a FSM analysis carried out by the authors.

In order to investigate the verification of the proposed method, the plate is divided into two, four,

10 and 50 strips of equal width giving four cases for consideration. The investigation of the results

has revealed that the critical buckling load, the relative stiffness values and the post-buckling results

are identical among the four cases as expected. Thus, a plate can be accurately modeled by applying

only one strip to it. It is worth mentioning that the three error tolerances Tol1, Tol2 and Tol3 are

taken to be 10-14 .

In the S-a FSM, in order to reflect the symmetry of the problem in the longitudinal direction, the

appropriate series’ terms are chosen and used. That is to say, for u the first three even terms (n = 2,

4, 6), for υ the first four even terms (n = 0, 2, 4, 6) and for w the first two odd terms (n = 1, 3)

were used. It is noted that for all the plates under consideration, the width to thickness ratio b/t and

the Poisson’s ratio v are 120 and 0.3 respectively, and the plate is assumed to buckle into a single

half-wave longitudinally.

4.1 Buckling results

In presenting the results in this section, two important parameters are now introduced

(85)

where K is the non-dimensional buckling coefficient and φ is the aspect ratio of the plate.

In order to investigate the convergence characteristics of recursive Newton method, the buckling

of a plate with clamped-free boundary conditions (i.e., C-F) and aspect ratio of φ = 2 is studied. The

convergence results for the buckling coefficient are given in Table 1. It is noted that the buckling

coefficient interval , in which  and , is (1.1,2). It can be seen in Table 1

that the algorithm has worked very satisfactorily by converging to  with the accuracy of 14

decimal digits only after four iterations. 
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Table 1 Convergence procedure in recursive Newton method for plate C-F

κ μ Kμ K(κ) μ-check

0 1.55000000000000

1  0.21314086226485 1.33685913773515 1.33685913773515 Accept

2 0.00088210053354 1.33597703720161 1.33597703720161 Accept

3 0.00000001483335 1.33597702236826 1.33597702236826 Accept

4 0.00000000000000 1.33597702236826 1.33597702236826 Accept
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Table 2 represents the numerical values of the buckling coefficient K obtained by the developed

method (F-a FSM), both by the application of bisection and recursive Newton solvers, as well as

the results obtained by the S-a FSM for different plates. The computer run time is represented in the

table, and the number of finite strips that is served in the analysis is also inserted in the table. It is

worth mentioning that for S-a FSM approach, the number of finite strips represented in the table are

those obtained after the pertinent convergence studies with regard to the number of strips have been

carried out. In the third column of Table 2, the buckling coefficient interval , in which

 and , that is computed by the W-W algorithm is represented. 

The table shows that the results of the buckling coefficient K that are obtained by both bisection

and recursive Newton solvers are exactly the same. However, the number of iterations required by

the recursive Newton solver to converge into the exact solution is less than those required by the

bisection solver. For example, in the case four in Table 2, which is the same plate as that

investigated earlier in Table 1, bisection method requires at least 49 bisections in order to converge

to an approximate buckling coefficient with accuracy comparable to that of  in Table 1.

The table also shows that the results of the F-a FSM agree very well with those obtained by S-a

FSM. It is noted that for a given degree of accuracy in the results, the F-a FSM analysis requires

much less computational effort, as a consequence of implementing less degrees of freedom,

compared to the S-a FSM. 

For completeness, the buckling mode shape of a representative plate, i.e., the case four in Table 2,

is shown in Fig. 2. A very good agreement can be seen among the mode shapes obtained by

different methods. 

It is worth pointing out that in the remainder of the present paper, the F-a FSM is to be carried

out using recursive Newton method as distinct from the bisection method.

KU KL,( )
Nr 1= Nr0 0=

K
4( )

Table 2 Comparison of the buckling coefficients (K) obtained by F-a FSM and S-a FSM

Case Edges BCs 
φ

(L/b)
(KL, KU)

Buckling coefficient (K) 
Run time(s), No. of strips, [No. of iterations in F-a FSM]

F-a FSM
S-a FSM

Newton Bisection

1 S-F 1  (1.1,2)
 1.40159812598470

0.02,1,[4] 
1.40159812598470

0.08,1,[53]
1.40159812589585

 2.2,90

2 S-S 1  (2,5) 
4.00000000000000 

0.02,1,[5] 
4.00000000000000

0.07,1,[50] 
 4.00000000021518

3.61,100

3 C-F 1 (1.1,2) 
1.65250589714372

0.02,1,[4] 
 1.65250589714372 

0.07,1,[49]
1.65250589734019

 3.1,100

4 C-F 2 (1.1,2)
 1.33597702236826

0.02,1,[4] 
 1.33597702236826

0.07,1,[49] 
 1.33597702122061

4.17,100

5 C-S 1  (3,6)
 5.74020783895471

0.02,1,[7]
 5.74020783895471

 0.07,1,[50] 
 5.74020781067525

14.66,170

6 C-C  0.5  (5,9) 
7.69128364530829

0.02,2,[5] 
 7.69128364530829

0.1,2,[51] 
 7.69128365234950

13.77,180

7 C-C 2/3  (5,9) 
6.97160208744291

0.02,2,[4] 
 6.97160208744291

0.1,2,[51] 
 6.97160215017088

15.46,180

S, C and F denote simply supported, clamped and free respectively.
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4.2 Relative stiffness and post-buckling behaviour

Table 3 represents the numerical values of the relative stiffness (i.e., the S*/S at the instant of

buckling) for different plates. The presented values consist of those derived from the developed F-a

FSM analysis and those from Ref. Rhodes and Harvey 1974. The values of the relative stiffness

provided by Rhodes and Harvey 1974 have been calculated by implementing a semi-energy

technique. These values are accurate because, in their calculation process, the postulated deflected

form after buckling has been taken as the buckling solution. However, in their buckling analysis, in

contrast to the current F-a FSM where the Von-Karman’s equilibrium equation is solved exactly to

obtain the buckling coefficients and corresponding mode shapes, the principle of Minimum Potential

Energy is used to obtain the buckling coefficients and mode shapes. Thus, the values of relative

stiffness acquired by the developed F-a FSM analysis are exact and the corresponding results of

Rhodes and Harvey 1974 are somewhat approximate. 

It is worth mentioning that in the other approximate methods such as Finite Element Method

(FEM), S-a FSM, semi-energy FSM or Spline FSM, the calculation of the values of relative

stiffness is very time consuming due to the incremental nature of the solution strategy in these

methods.

Table 3 Comparison of the F-a method results (S*/S) with the results of Rhodes

Case Edges BCs φ
(L/b)

Relative Stiffness (S*/S)

In-plane Out-of-plane F-a FSM  Rhodes

1 Unconstrained S-S 1 0.40833586 0.408

2 Straight S-S 1 0.50000000 ---

3 Unconstrained S-F 2 0.43699398 0.438

4 Unconstrained C-S 1 0.49405703 0.494

5 Unconstrained C-F 2 0.55666462 0.556

6 Unconstrained C-C 2/3 0.48128190 0.481

For the in-plane conditions, Straight denotes that the unloaded edges are kept straight but allowed to move in-
plane.

Fig. 2 Out-of-plane buckling deflection mode in transverse direction for plate C-F
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Figs. 3-7 show the variation of the relative stiffness, i.e., S*/S at the instant of buckling, with the

aspect ratio φ. In these figures, the two loaded edges of the plate are simply supported whilst the

boundary conditions at the two unloaded edges are of a variety of combinations, namely simply-

simply (S-S), clamped-clamped (C-C), clamped-simply (C-S), clamped-free (C-F) and simply-free

(S-F) in Figs. 3-7, respectively. It is seen in all the figures that the relative stiffness is increased by

the increase in the aspect ratio. Obviously, if the number of buckle half-waves were allowed to take

values more than 1, i.e., the constant value assumed so far in the current study, the afore-mentioned

behavior might change accordingly. This investigation is also carried out and the results are

presented in Fig. 8. It is seen in Fig. 8 that by allowing the change in the number of buckle half-

waves n to occur, the buckling coefficient variations demonstrate a clear garland type behavior.

Moreover, it is interesting to note that for certain aspect ratios at which the switching in the number

of buckle half-waves is experienced by the buckling coefficient variations, a sudden drop in the

values of the relative stiffness, i.e., S*/S at the instant of buckling, is demonstrated. 

Fig. 3 Relative stiffness and buckling coefficient for
plates having two longitudinal edges simply
supported

Fig. 4 Relative stiffness and buckling coefficient for
plates having two longitudinal edges clamped

Fig. 5 Relative stiffness and buckling coefficient for
plates having one longitudinal edge simply
supported, one clamped

Fig. 6 Relative stiffness and buckling coefficient for
plates having one longitudinal edge clamped,
one free
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The next step is to compare the F-a FSM results with those from S-a FSM inside the post-

buckling range. The non-dimensional form of load-end shortening variation  and the

non-dimensional form of load-peak deflection variation  for the C-F plate with

P/PCr ε/εCr–( )
P/PCr w2max/t–( )

Fig. 7 Relative stiffness and buckling coefficient for plates having one longitudinal edge simply supported,
one free

Fig. 8 The variation of relative stiffness and buckling coefficient for simply supported plates
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aspect ratio φ equal to 2, i.e., the case four in Table 2 or the case five in Table 3, are depicted in

Figs. 9 & 10, respectively. 

It is noted that in the pre-buckling range (i.e., for  and  between 0 to 1) the out-of-

plane deflection is zero, and thus as expected a clearly linear behaviour (see Fig. 9) is predicted by

both F-a FSM and S-a FSM approaches.

It may be noted that in the post-buckling range, the peak deflection occurs at the crest of the

buckle at the free edge of the plate. Having carried out a collapse investigation similar to that

attempted in Ref. Ovesy, Loughlan and Ghannadpour 2005, it is revealed that the collapse of the C-

F plate does not take place within the range of loading shown in these figures. Thus, the validation

of the F-a FSM analysis will be discussed for the entire range of loading presented in the figures.

The results obtained by S-a FSM are presented so that they can be compared with those obtained

using the developed F-a FSM. Before making any comment on how the results compare with each

other, a brief description on the assumption of constant stiffness in the post-buckling stage is given

below.

As it can be seen in Eq. (74), the relationship between P and ε in the post-buckling region is a

linear function, i.e., the post-buckling stiffness in the case of F-a FSM analysis is constant for the

entire range of post-buckling. Obviously, this constant stiffness is equal to the slope of the tangent

to the actual post-buckling curve at the buckling point. It is worth mentioning that the single term

assumption within F-a FSM analysis corresponds to the fact that the shape of the plate in the post-

buckling region is unchangeable in both longitudinal and transverse directions. Thus, the

relationship between P and ε has become a linear function. However in the case of S-a FSM

analysis, a clearly non-linear behaviour is expected to occur due to the fact that the longitudinal

change has been allowed by the multi-term nature of the analysis, and the transverse change has

been allowed by the finite strip nature of the analysis.

As far as the comparison between F-a FSM and S-a FSM results is concerned, Fig. 9 shows a

good agreement between the load-end shortening variation results over the entire range of loading

under consideration, and Fig. 10, in general, indicates a very good agreement over the range of

loading shown in the figure. 

It is emphasized that the convergence studies with regard to the number of strips have been

investigated for the entire S-a FSM results presented in the figures. It is noted that 32 finite strips

are proved to be sufficient to obtain converged results. 

ε/εCr P/PCr

Fig. 9 Non-dimensional load-end shortening variation
for C-F plate

Fig. 10 Non-dimensional load-peak deflection variation
for C-F plate
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Figs. 11 to 13 show the comparison of a variety of different F-a FSM results with the

corresponding S-a FSM results at a load of P = 1.5PCr. The out-of-plane deflected shape of the plate

is shown in Figs. 11 and 12. Fig. 11 depicts the deflected shape across the plate at the crest of the

buckle, and Fig. 12 shows the buckle form along the length at the free edge of the plate. Although

at some of the locations a small difference between the results can be seen, the consistency between

the results is very good in general. 

Fig. 13 depicts the non-dimensional form of longitudinal mid-plane σx stress distributions across

the plate at three different cross sections along the length, i.e., node, average (midway between node

and crest) and crest of buckle. A very good agreement between F-a FSM and S-a FSM results can

be seen at all of the cross sections of the plate. It is evident that, at all of the cross sections, the load

is shed towards the clamped edge of the plate. This load shedding occurs due to the growth in the

out-of-plane deflection across the plate in the post-buckling region. This deflection grows faster at

the crest of buckling in the regions near to the free edge of the plate. Hence these regions become

less capable of carrying compressional load and as a result tend to shed the load towards the

clamped edge. This load shedding takes place to such an extent that the stresses become tensile at

the free edge of the plate. It may be noted that the maximum edge stress occurs at the crest of

buckling at the clamped edge of the plate.

Finally, it has become clear that regardless of the plate’s aspect ratio and boundary conditions,

both F-a FSM and S-a FSM approaches are capable of delivering excellent results for predicting the

post-buckling behavior of the plates. As far as the comparison of the results is concerned, it is

sometimes seen that the results are different from each other by a small amount. In general,

however, the agreement between the results is very good. It may be noted that the reason for the

small difference between the results may lie with the fact that the F-a FSM utilizes a single term to

represent the out-of-plane deflection whilst in the case of the S-a FSM method the formulations are

based on a multi-term approach. It is noted that for a given degree of accuracy in the results, the F-

a FSM analysis requires less computational effort, as a consequence of implementing less degrees of

freedom, compared to the S-a FSM.

Fig. 11The out-of-plane deflected shape across the
C-F plate at the crest of the buckle at load
P = 1.5PCr

Fig. 12 The out-of-plane deflected shape along the
length at the free edge of the C-F plate at
load P = 1.5PCr



208 H. R. Ovesy and S. A. M. Ghannadpour

5. Conclusions

Theoretical developments of an exact finite strip for the buckling and initial post-buckling

analyses of isotropic flat plates have been presented. The so-called exact finite strip has been

assumed to be simply supported out-of-plane at the loaded ends. The strip has been developed

based on the concept that it is effectively a plate, and thus the Von-Karman’s equilibrium equation

has been solved exactly to obtain the general form of out-of-plane buckling deflection mode for the

corresponding plate/strip. The investigation of thin flat plate buckling behavior is then extended to

an initial post-buckling study with the assumption that the deflected form immediately after the

buckling is the same as that obtained for the buckling. The Von-Karman’s compatibility equation

has been solved exactly to obtain the general form of in-plane displacement fields in the post-

buckling region. The obtained in-plane and out-of-plane deflected functions are then substituted in

Fig. 13 Longitudinal mid-plane stress distributions across the C-F plate at load P = 1.5PCr
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the total strain energy expressions and the theorem of minimum total potential energy is invoked.

The developed method is subsequently applied to analyze the buckling and initial post-buckling

behavior of some representative thin flat plates. The presented buckling results have indicated the

capability of the developed F-a FSM analysis in terms of delivering exact results at bucking point.

The values of relative post-buckling stiffness obtained by the developed F-a FSM analysis are also

extremely accurate at the buckling point because the exact buckling mode shape and corresponding

buckling coefficient are used in the post-buckling analysis. 

Having compared the F-a FSM results with those from Semi-analytical FSM inside the post-

buckling range, a small difference between the results is experienced. This has been due to the fact

that the current F-a FSM analysis utilizes only a single term to represent the out-of-plane deflection

in the post-buckling region. However, for a given degree of accuracy in the results, the F-a FSM

analysis requires less computational effort, as a consequence of implementing less degrees of

freedom, compared to the S-a FSM.

Finally, it is worth mentioning that the promising results obtained in the current paper have made

the authors to extend the application of F-a FSM analysis to the post-local-buckling analysis of plate

structures, i.e., short struts. Some interesting results have already been obtained which will be

published once the investigation is complete.
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