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Abstract. Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can
not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through
general calculation theory and analytical method. To hold the mechanical behavior better, based on
elementary beam theory, by increasing the degree of freedom analytical method, taking account of
restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a
thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix
of the element, and code a finite element procedure. In addition, authors combine the obtained procedure
with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial
thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained
analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the
elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled
box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled
box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show
that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research
results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder
bridge structures.
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1. Introduction

Y-shape bridge structure is an effective way to solve the problem of traffic congestion in

modern cities. To solve the traffic congestion problem, a great number of the Y-shape bridges

were built in different regions. Cross-section form of the Y-shape bridge structure mainly adopts

the box girder structure. With the increasing of the use of the thin-walled box girder structure, the

mechanic behavior of the Y-shape bridge structure becomes more complicated, especially in

strained torsiondistortion angledistortion warp and shearing lag effect. Scholars at home and

abroad Huang (1994), Ding (1996), Li and Pi (1996), Hambly (1982), Morreu et al. (1996), Mira

Mitra et al. (2004), Thuc Phuong Vo and Lee (2006) and so on have studied the design and

structural analysis method about the Y-shape bridge structure based on the theory of the thin-

walled box girder.

The disposal method of the structure in the past mainly can be expressed as follows. Firstly, the

Y-shape bridge structure was generally divided into two independent structures, then the two

independent structures were analyzed respectively. This method can not take account into interaction

between main bridges and ramps. Secondly, the analysis of the Y-shape bridge structure was carried

out according to the elementary beam theory, this method can not take account of the restrained

torsionthe distortion anglethe distortion warp and the shearing lag effect. Thirdly, the analysis of Y-

shape bridge structure adopts the shell theory, this method can not obtain directly internal force, and

the workload of post-process is heavy. In a word, the above mentioned methods can not exactly

deal with the structural mechanical behavior, what’s worse, they may lead to insecurity of structural

design.

Based on the above theory, by increasing degree of freedom analytical method, taking account of

the strained torsionthe distortion anglethe distortion warp and the shear lag effect at the same time,

authors obtain the thin-walled box beam analytical element of 10 degrees of freedom of every node,

derive stiffness matrix of the element, and code a finite element procedure. In addition, authors

combine the obtained procedure with the spatial grillage analytical method, and build a new

analytical method that is the spatial thin-walled box girder element grillage analysis method. In

order to validate the precision of the obtained analysis method, authors analyze the typical Y-shape

thin-walled box girder bridge structure according to the elementary beam theory analytical method,

the shell theory analytical method and the spatial thin-walled box girder element grillage analysis

method respectively. At the same time, authors test the typical Y-shape thin-walled box girder

bridge structure. Comparisons of results of theory analysis with experimental text show that the

spatial thin-walled box girder element grillage analysis method is simple and exact. The research

results offer a new method to solve the complicated mechanical behavior of the Y-shape thin-walled

box girder bridge structures.

2. Element stiffness analysis of Y-shape bridge straight girder

2.1 Stiffness analysis of restrained torsion of thin-walled straight box girder

2.1.1 Nodal displacement of element and choice of nodal force

Element of the thin-walled straight box girder that authors built is shown in Fig. 1. Vectors of the

nodal force of the thin-walled box girder element under element coordinate system adopt , andF{ }
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vectors of the element displacement adopts .

(1)

(2)

2.1.2 Differential equation of the restrained torsion
Solutions of the restrained torsion basic equation of the closed cross-section beam are presented

by the minimal theorem of potential energy.

(3)

2.1.3 Element stiffness matrix taking account of the restrained torsion 
The element stiffness matrix  of the thin-walled straight box girder taking account of the

restrained torsion can be divided into four subsidiary matrixes, as shown in formula (4), stiffness

equation of buckling and torsion of the element is expressed according to the order of the freedom

degree  of the node displacement, as shown in Eq. (5) (Huang and Xie 2000), force factors of

the cross-section torque and buckling bimoment of constraint force can be shown in Eq. (6).

(4)
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 (6)
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Fig. 1 System of coordinates and nodal force in thin-walled box straight girder element
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2.1.4 Equivalent nodal force
Equivalent node load of the thin-walled box girder under uniformly distribute loading are

presented as follows.

, (7)

In the formulas (7): 

2.1.5 Cross-section stress analysis

Vertical normal stress and buckling normal stress of cross-section are expressed as follows in turn.

(8)

2.2 Distortion stiffness analysis of the thin-walled straight box girder

2.2.1 Basic differential equation of eistortion 

 (9)

In the Eq. (9),  is an attenuation coefficient of the box girder cross-section distortion

deformation.

2.2.2 Element stiffness matrix taking account of distortion deformation

Distortion stiffness equation of the straight girder element adopts matrix form, as shown in

formula (10), the element stiffness coefficients of the formula (10) can be obtained on the basis of

definition of the stiffness coefficient and the regulation which takes account of the positive direction

of the constraint force, as illustrated in Eq. (11). In the Eq. (11), when degree of freedom

 brings about unit displacement respectively, subscript m adopts 9, 10, 19 and 20

respectively.

(10)

       

  (11)

2.2.3 Calculation of distortion moment

According to literature (Huang and Xie 2000), eccentric loading in the girder can always be

divided into normal symmetrical loading and unsymmetrical loading, as shown in Fig. 2. The
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pure torsion loading and distortion loading of mutual balance, as shown in Fig. 3.

In accordance with the definition of shearing force flow, rigid torsion loading  and

distortion loading  can be presented as follows.

, , , (12)

Then torque and distortion moment is expressed as follows.

(13)

2.2.4 Distortion equivalent nodal force

According to the literature (Huang and Xie 2000), when one puts the distortion loading on the

girder, equivalent distortion moment and equivalent distortion bimoment of two end node can be

received:

1) Uniformly distribute distortion moment mD on the girder

(14)

2) Concentrated distortion moment MD on the span middle cross-section

(15)

In the Eq. (15): 
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Fig. 2 Decomposition of eccentric load

Fig. 3 Decomposition of torsion load
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2.2.5 Distortion stress analysis of cross-section
Distortion normal stress of any point on the cross-section can be obtained directly through the

distortion bimoment BD of the cross-section.

2.3 Stiffness analysis of shearing force lag effect of the thin-walled straight box girder

2.3.1 Basic differential equation of the shearing force lag 

(16)

2.3.2 Element stiffness matrix taking account of shearing force lag deformation

The shearing force lag stiffness equation adopts matrix form as follow.

(17)

In the Eq. (17)
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The element deformation stiffness in the yoz plane can be presented according to the definition of

the stiffness coefficient. When the degree of freedom  bring about unit

displacement in turn, the subscript m of the stiffness coefficient  and

 of the formula (19) adopt 2, 3, 4, 8 and 12, 13, 14, 18 respectively.

2.3.3 Equivalent node force of shearing force lag

Calculation method of equivalent node force is similar to the stiffness coefficient, solution of the

equivalent node force can be presented through the basic differential equation, and the

corresponding solution of the freedom degree of the basic differential equation can be obtained

under the uniformly distribute loading of the “y” and “x” axes directory. Then the equivalent node

force is presented on the basis of boundary condition as follows.

(20)

The results of solution above taking account of shearing force lag effect can be presented by the

corresponding procedure, and normal stress is obtained at last.

2.3.4 Element stiffness of the thin-walled straight girder taking account of the shearing
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(21)

3. Curve girder element stiffness analysis

3.1 Restrained torsion stiffness analysis of the thin-walled curve box girder

3.1.1 Local coordinate and the unknown quantity of the displacement 
Curve girder element of the thin-walled same cross-section is shown in Fig. 4, geometric center

axis of the space flexure is proposed on the same plane, and SiSj is an eccentric displacement y0

between shearing force center and geometric center. To calculate conveniently, authors take no

account of factors of the eccentric displacement. Radius of the geometrical center is RG, and radius

of the shear force center is Rs. 

Local coordinate system adopts curve line coordinate, z axis directory of the local coordinate

points to the tangential direction of the girder axis line, and its directory accords with element

directory. X axis lies in curvature plane, the x axis is normal to z axis, and the x axis that points at
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 Fig. 4 Spatial curve girder element
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right-side of element directory is positive. The local coordinate system conforms to the principle of

right hand screw, and it is normal curvature when curvature center lies in the right of element

directory and negative in the left. The vectors of the node displacement and bar end force of the

curve element accord with the straight girder element.

3.1.2 Strain energy of the curve girder element
Buckling element of curve girder is shown in Fig. 5. According to static structure and balance

relation, internal force formulation (22) of each cross-section is acquired except for the buckling

bimoment  when j end is put on seven bar end force Fxj, Fyj, . The

buckling bimoment can be presented by the Eq. (22). In the Eq. (22),  is a moment of inertia of

the cross-section fan shape.

(22)

The strain energy of buckling element of the curve girder in the Fig. 3 has two aspects: taking

account of buckling effect and taking no account of buckling effect.

(23)

In the Eq. (23)
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degree subsidiary matrix [Fjj]7×7 of the thin-walled curve girder buckling element j end can be

acquired.

2) Space stiffness matrix of element

The element of curve girder is similar to the straight girder element, authors adopt matrix form,

and the space stiffness matrix is expressed in Eq. (24). The subsidiary matrix  of the Eq. (24)

can be presented through the flexible degree matrix based on the relation formulation (25) of

between the flexible degree matrix and stiffness matrix.

(24)

(25)
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force in the Eq. (26).  can be obtained through the stiffness subsidiary matrix  according to

the symmetrical relation between i node and j node, as shown in Eq. (27).
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2) Wing slab shearing lag buckling strain energy

(31)

3) External force work under distribute loading and end node force 

(32)

In the Eq. (32), the end node force  and the vector  of the element displacement:

 is a corresponding force factor of the shearing force lag displacement freedom degree ζ.

Because of only taking account of the shearing force lag effect, the external work can be expressed

as follows (Zhang et al. 1998, Luo et al. 2004, Wu et al. 2004, Nie 2000). 

So, the overall potential energy functions of the curve box girder can be presented as follows
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In addition, according to the force boundary condition and taking account of shearing lag effect, the

corresponding cross-section force factors of the shearing force lag displacement is

(34)

(35)
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3.3.2 Stiffness coefficient 
To calculate stiffness coefficient of the element, external force should be put aside, and solution of

Eq. (33) can be presented as follows:

(37)

In the Eq. (37):

A1, A2: Integral constant based on boundary condition.

Then according to the order of the Eq. (2) freedom degree, shearing force lag effect deformation

stiffness can be expressed as follow

(38)

In accordance with the definition of stiffness coefficient, taking account of normal directory

regulation of shearing force lag, the stiffness coefficient of the Eq. (38) can be presented

, (39)

When each freedom degree brings about unit displacement, the subscript m adopts 8, 18 in turn,

that is, when i end (z = 0) brings about unit displacement, vectors of others displacement are zero

value. 

 

I end brings about unit displacement but the vectors of other displacement are zero, and the

response produced by i end and j end can be presented as follows.

;

Therefore, authors can obtain stiffness coefficient as follows:

;

According to the characteristic of the curve box girder structure and the mechanic behavior, the

moment, the torsion and the distortion and the others under external loading couple mutually. In

order to simplify analysis and ensure precision, this paper only takes account of interaction between

flexure and torsion, and did not takes account of interaction other factors. Therefore, after taking

account of the restrained torsionthe distortion anglethe distortion warp and the shearing force lag

effect based on elementary girder theory, authors obtain a thin-walled curve box girder analytical

element stiffness matrix  of 10 degrees of freedom of every node. In order to shorten this

paper, only the element stiffness matrix  is shown in Eq. (40). In the Eq. (40), stiffness matrix

coefficient  of shearing force lag effect and the distortion accord with the straight girder, and
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 is the flexible degree coefficient. To analyze conveniently, authors use “m” form, its value

bases on literature (Huang and Xie 2000).

(40)

4. Finite element procedure composition based on this paper’s theorem

The whole set of thinking of the procedure composition calculation analysis: The structure was

divided into space straight girder element and curve girder element based on this paper’s theory that

is the thin-walled box girder stiffness matrix analysis, and the finite element analytical method is

adopted. In addition, the procedure composition adopts FORTRAN language. As for the range of

the use of the procedure, boundary-value as well as other noticeable problems have been discussed

in the other paper.

5. Analysis of engineering application of Y-shape thin-walled box girder bridge 

5.1 Engineering introduction 

One Y-shape bridge is shown in Fig. 6, the main string bridge adopts three-span pre-stressed

concrete thin-walled continuous box girder, the length of the main string span is composed of

27.5 m + 50 m + 27.5 m, and the width of the bride is 12.6 m. The ramp of the bridge adopts three-

span pre-stressed concrete thin-walled continuous curve box girder, the radius of the ramp is 50 m,

the span length of the ramp is consist of 31 m + 45 m + 31 m, the width of the bridge is 9.2 m, and

design loading adopts Chinese standard Qiche-20.

5.2 Structural static analysis

In order to validate the precision and convenience of this paper’s theory, authors analyze the Y-

shape bridge structure according to the elementary beam element model, space shell theory model

and this paper’s theory model analytical method that is the spatial thin-walled box girder element

grillage analysis method respectively (Kim et al. 2007, Huang 1998, 2002, Wu et al. 2004,

mi j,

m11                          

m21  m22                        

m31  – m32  – m33                     

m41  – m42  – m43  m44           symmetry      

m51  – m52  – m53  m54  m55              

m61  m62  m63  – m64  – m65  – m66            

m71  – m72  – m73  m74  m75  m76  m77         

0  0  0  0  0  0  0  K8 8,       

0  0  0  0  0  0  0  0  K9 9,    

0  0  0  0  0  0  0  0  K10 9,   K10 10,
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O’Briven and Keogh 1998, Hao 2005). The analytical calculating scales of the three different

theories above are obtained, as shown in Table 1. The spatial thin-walled box girder element

grillage analysis calculation model was built based on this paper’s theorem, as shown in Fig. 7. 

5.3 Comparison of theory analysis results with experimental test 

The Y-shape bridge structure analysis adopts three kinds of theories and two kinds of loading

cases. The first loading cases: three 300 kN standard loadings were collocated symmetrically only

on the middle location of the main string 50 m span. The biggest moment of the middle location of

the 50 m span of the main string was obtained. The second loading cases: two 300 kN standard

loadings were collocated symmetrically only on the middle location of 45 m span of the bridge

ramp curve girder. The biggest normal moment of the middle location of the 45 m ramp curve

girder was obtained. In order to shorten the length of the paper, authors just give out a portion of

the analytical results.

5.3.1 Deflection contrast

Deflection contrast under the second loading cases is shown in Fig. 8. According to Fig. 8, the

results of elementary beam element model calculation have great deviation, the results of the shell

model is most close to the results of the experimental test, the results of this paper’s theorem that is

the spatial thin-walled box girder element grillage analysis model is close to the results of the shell

model and experimental test.

 

Fig. 6 The simplified version of Y-shape bridge (m) Fig. 7 This paper theoretical model (m)

Table 1 the comparison of the resolute scales of three analytical models

Structure analysis model Node numbers Element numbers
Freedom degree 

numbers

Basic space pole model 203 224 1218

This paper’s theory model 203 224 1827

Space shell structure model 4471 4319 17884
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5.3.2 Strain contrast

Strain contrast under the first loading cases is shown in Table 2.

6. Conclusions 

The mechanical behavior of the Y-shape thin-walled box girder bridge structure is complex, so

one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge

structure through general calculation theory and analytical method. To hold the mechanical behavior

better, based on elementary beam theory, by increasing degree of freedom of the analytical method,

taking account of the restrained torsionthe distortion anglethe distortion warp and the shearing lag

effect, authors obtained a thin-walled box beam analytical element of 10 degrees of freedom of

every node, derive stiffness matrix of the element, and code a finite element procedure.

Authors analyze a typical Y-shape thin-walled box girder bridge structure according to the

elementary beam theory analytical method, the shell theory analytical method and the spatial thin-

walled box girder element grillage analysis method respectively. The comparisons of results of

theory analysis with experimental text show that the spatial thin-walled box girder element grillage

analysis method is of accuracy and validity. Meanwhile, it indicates that the analytical method of

the spatial thin-walled box girder element grillage can simulate the complex the Y-shape bridge

structure as a spatial grillage system of intersection relation. The mechanic model of the spatial

 Fig. 8 The deflection comparison of ramp under the second loading cases

Table 2 the strain comparison of sections under the first loading cases (Unit: 10-6)

Section
Strain measure

 node
Basic beam 

element
Shell

element
Theory results 
of this paper

Measure
results

A-A

1 34.5 15.7 31.1 18

2 34.5 15.4 28.6 —

3 34.5 14.8 26.1 19

4 -36.3 -40.6 -37.9 -38

5 -36.3 -40 -36.5 -39

6 -36.3 -39.2 -35.0 -38

 Notice: A-A section is the middle location of the main string span.
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grillage system conforms to the cases of the practical mechanic structure, one can obtain directly the

structural internal force and deformation. The research results are helpful for mechanic property of

these Y-shape thin-walled box Girder bridge structures
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