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Response of temperature dependence of an elastic
modulus in microstretch generalized thermoelasticity 
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Abstract. Laplace-Fourier transform techniques are used to investigate the interaction caused by
mechanical, thermal and microstress sources in a generalized thermomicrostretch elastic medium with
temperature-dependent mechanical properties. The modulus of elasticity is taken as a linear function of
reference temperature. The integral transforms are inverted using a numerical technique to obtain the
normal stress, tangential stress, tangential couple stress, microstress and temperature distribution. Effect of
temperature dependent modulus of elasticity and thermal relaxation times have been depicted graphically
on the resulting quantities. Comparisons are made with the results predicted by the theories of generalized
thermoelasticity. Some particular cases are also deduced from the present investigation. 

Keywords: Microstretch generalized thermoelastic solid, Integral transforms, Concentrated source,
Microstress force 

1. Introduction 

The concept of microcontinuum, proposed by Eringen (1999), can take into account the

microstructure effects while the theory itself is still a continuum formulation. The first grade

microcontinuum consists a hierarchy of theories, namely, micropolar, microstretch and

micromorphic, depending on how much microdegrees of freedom are incorporated. These high

order continuum theories are considered to be potential tools to model the behavior of the material

with a complicated microstucture. For example, in the case of a foam composite, when the size of

the reinforced phase is comparable to the intrinsic length scale of the foam. In these situations, the

microstucture of the foam must be taken into account to some degree, so a high order continuum

model must be assigned for the foam matrix. The same remains true for nanocomposites, since the

scale of the reinforced phase is so small, the surroundings matrix cannot be homogenized as a

simple material (Cauchy medium), some intrinsic microstructures of the matrix must be considered

in a proper continuum model. Microstretch theory is a generalization of the theory of micropolar

elasticity and a special case of the micromorphic theory. The microstrech solids are those in which

material particles can undergo stretches (expansion and contraction) in addition to translation and

rotation. Thus a microstretch elastic solid possesses seven degrees of freedom: three for translation,
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three for rotation (as in micropolar elasticity) and one for stretch, required by substructures. Such a

generalized media can catch more detailed information about the microdeformation inside a material

point, which is more suitable for modelling the overall property of the foam matrix in the case of

foam composites. Kumar and Singh (1998) studied wave propagation in a generalized

thermomicrostretch elastic solid. De Cicco (2003) investigated the stress concentration effects in

microstretch elastic bodies. Liu and Hu (2004) investigated the inclusion problem of microstretch.

Svanadze (2004) constructed fundamental solution of the system of equations of steady oscillations

in the theory of microstretch elastic solids. Bakshi et al. (2007) investigated the problem of wave

propagation in materials with memory in generalized thermoelasticity. The elastic modulus is an

important physical property of materials reflecting the elastic deformation capacity of the material

when subjected to an applied external load. Most of the investigations were done under the

assumption of the temperature-independent material properties, which limit the applicability of the

solutions obtained to certain ranges of temperature. Modern structural elements are often subjected

to temperature change of such magnitude that their material properties may no longer be regarded

as having constant values even in an approximate sense. At high temperature the material

characteristics such as the modulus of elasticity, coefficient of thermal expansion and thermal

conductivity etc. are no longer constants. The thermal and mechanical properties of the materials

vary with temperature, so the temperature-dependence of the material properties must be taken into

consideration in the thermal stress analysis of these elements. Tanigawa (1995) investigated

thermoelastic problems for non-homogeneous structural material. Ezzat et al. (2001, 2004)

investigated the dependence of modulus of elasticity on reference temperature in generalized

thermoeleasticity and obtained interesting results. Motivated by the recent experimental studies

(1973, 1976, 1999, 2003) showing the necessity of taking into consideration the real behavior of the

material characteristics, this paper presents an attempt to examine the temperature dependency of

elastic modulus on the behavior of two-dimensional solutions in a generalized thermo-microstretch

elastic medium. The physical applications are encountered in the context of problems such as

ground explosions and oil industries. This problem is useful in the field of geomechanics, where

interest is in various phenomenon occurring in earthquakes and measurements of stresses and

temperature distribution due to presence of certain sources. 

2. Basic equations

The basic equations in linear homogeneous, isotropic microstretch generalized thermoelastic solid

in the absence of body forces, body couples, stretch force and heat sources are given by

2.1. Balanced Laws 

Balance of Momentum 

(1) 

Balance of Moment of Momentum 

(2) 

Balance of first stress moments 

(3)

tkl k, ρu··l=

mkl k, εlmmtmn+ ρjφ
··
m=

λk k,
* t s–( )+ ρj0φ

··*

=
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Energy Equation 

(4) 

2.2. Constitutive Relations 

tkl = λur,rδkl + μ(ul,k + uk,l) + K(ul,k − εklrφr) + λ0δklφ
* − ν δklT, (5)

mkl = αφr,r + βφk,l + γφl,k + b0εmlkφ
*
,m, (6)

λ*
k = α0φ

*,k + b0εklmφl,m, (7)

s − t = λ0uk,k + λ1φ
* − β1T, (8)

qk = KδklT,k, (9)

ρηT0 = νT0uk,k + ν1T0φ
* + ρC*T

                                                            , for L-S Theory (10)

      qi,i = K*Ti,i

and 

ρηT0 = νT0uk,k + ν1T0φ
* + ρC* T

                                                                             , for G-L Theory (11)

                                              qi,i = K*Ti,i

Substituting the value from Eqs. (5)-(11) in Eqs. (1)-(4), we obtain 

(λ + 2μ + K)∇(∇· ) − (μ + K)∇ × ∇ ×  + K∇ ×  + λo∇φ* − ν ∇T = , (12)

(α + β + γ)∇(∇· ) − γ∇ × ∇ ×  + K∇ ×  − 2K  = , (13) 

αo∇2φ* + ν1 T − λ1φ
* − λ0∇·  = , (14) 

(15) 

where list of symbols are given in Appendix A. 

3. Formulation and solution of the problem

We considered a microstretch generalized thermoelastic medium with temperature dependent

elastic modulus. The rectangular Cartesian coordinate system (x, y, z) with z axis pointing vertically

into the medium is introduced. For the two dimensional problem, we assume the components of the

displacement  and microrotation vector , of the form 

 = (u, 0, w),      = (0, φ2, 0), (16) 

We assume temperature dependent elastic constants of the form 

ρη· T0 qi i,=

1 τ1

∂
∂t
----+⎝ ⎠

⎛ ⎞

⎭
⎬
⎫

1 τ0

∂
∂t
----+⎝ ⎠

⎛ ⎞

∂
∂t
---- τ0

∂2

∂t
2

------+⎝ ⎠
⎛ ⎞

⎭
⎬
⎫

u u φ 1 τ1

∂
∂t
----+⎝ ⎠

⎛ ⎞ ρ
∂2

u

∂t
2

--------

φ φ u φ ρj
∂2

φ

∂t
2

--------

1 τ1

∂
∂t
----+⎝ ⎠

⎛ ⎞ u ρjo
∂2

φ

∂t
2

--------

K
*∇2

T ρC
* ∂

∂t
---- τ0

∂2

∂t
2

------+⎝ ⎠
⎛ ⎞T νT0

∂
∂t
---- n0τ0

∂2

∂t
2

------+⎝ ⎠
⎛ ⎞∇ u⋅ ν1T0

∂
∂t
---- n0τ0

∂2

∂t
2

------+⎝ ⎠
⎛ ⎞φ

*
,+ +=

u φ

u φ
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(λ, λ0, α, β, μ, ν, K, K*, γ, ν1, b0) = (λa, λ0a, αa, βa, μa, νa, Ka, K
*
a, γa, ν1a, b0a) (1 − α*T0), (17)

where, α* is called the empirical material constant. Also we define the dimensionless variables by

the expressions 

where 

(18)

where ω* is the characteristic frequency of the material and C1 is the longitudinal wave velocity of

the medium.

The displacement components, u(x,z,t) and w(x,z,t), may be written in terms of the potential

functions, q(x,z,t) and (x,z,t), as

. (19)

and Laplace and Fourier Transform defined as

, (20)

and

(21)

Using Eqs. (16)-(21) in Eqs. (12)-(15), we obtain 

(22)

(23)

(24)

(25)

(26)

Solving Eqs. (22), (25) and (26), we obtain

(27)

x' z',( ) ω
*

c1

------ x z,( )=      u' w',( )
ρc1ω

*

νaT0

-------------- u w,( )=      φ'2 φ'
*,( )

ρc1
2

νaT0

---------- φ2 φ
*,( )=      t'ij

tij

νaT0

----------=, , , ,

m'ij λ'i,( ) ω
*

c1νaT0

--------------- mij λi,( )=      T'
T

T0

-----=      t' ω
*
t=      τ '0 τ '1,( ) ω

*
τ0 τ1,( )=, , , ,

ω
* ρC

*
c1

2

Ka
*

--------------=      ρc1
2 λa 2μa Ka+ +=,

u
∂q

∂x
------

∂ψ

∂z
-------+=      w

∂q

∂z
------

∂ψ

∂x
-------–=,

f x y p, ,( ) f x y t, ,( )e pt–

dt
0

∞

∫=

f ξ y p, ,( ) f x y t, ,( )eιξx
dx

∞–

∞

∫=

d
2

dz
2

------- ξ
2

– p
2
R–⎝ ⎠

⎛ ⎞ q̃
λ0a
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2

--------φ
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1 τ1p+( )T̃–+ 0,=

μa Ka+( )
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2
---------------------

d
2

dz
2

------- ξ
2
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⎛ ⎞ p

2
R– ψ̃
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--------φ̃2– 0,=

d
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and after solving Eqs. (23) and (24), we obtain

(28)

where A, B, C,.... are given in Appendix B.

The solution of Eqs. (27) and (28) satisfying the radiation condition that  and  as

 are given by 

(29) 

where, m1, m2, etc. are given in Appendix C. 

4. Boundary conditions 

The boundary conditions on the surface z = 0 are given by 

(i)  t33 = −P1ς (x)δ (t), 

(ii) t31 = −P2ς (x)δ (t), 

(iii) m32 = −P3ς (x)δ (t), 

(iv) T = P4ς (x)δ (t), 

(v) λ3
* = −P5ς (x)δ (t), (30)

where P1, P2, P3, P5 are the magnitudes of applied forces, P4 is the constant temperature applied at

the boundary and ς (x) is the known function defined later. Applying the Laplace and Fourier

transform defined by (20) and (21) on boundary conditions (30) and with the help of Eq. (29), we

obtain the components of normal force stress, tangential force stress, tangential couple stress,

temperature distribution and microstress as

(31)

(32)

(33)

(34)

(35)

where Δ, Δ1, Δ2 etc. are defined in Appendix D. 

d
4

dz
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------- A
d

2
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Case I − Normal Stress

To obtain the expressions due to normal stress we must set P1 = 1 and P2 = P3 = P4 = P5 = 0 in the

boundary condition (30).

 

Case II − Tangential Stress

To obtain the expressions due to tangential stress we must set P2 = 1 and P1 = P3 = P4 = P5 = 0 in

the boundary condition (30). 

Case III − Tangential Couple Stress 

To obtain the expressions due to tangential couple stress we must set P3 = 1 and P1 = P2 = P4 = P5 = 0

in the boundary condition (30). 

Case IV − Thermal Source 

To obtain the expressions due to thermal source we must set P4 = 1 and P1 = P2 = P3 = P5 = 0 in

the boundary condition (30). 

Case V − Microstress Force 

To obtain the expressions due to microstress force we must set P5 = 1 and P1 = P2 = P3 = P4 = 0

in the boundary condition (30). 

5. Application 

Case − I : Concentrated Source

To determine normal stress, tangential stress, tangential couple stress and temperature distribution

due to concentrated force described by Dirac delta function ς (x) = δ(x) must be used with

(36) 

Case − II : Distributed Source 

The solution due to force distributed over a strip dimensionless width 2a, applied on the half

space is obtained by setting 

ς (x) = H(x + a) − H(x − a) (37) 

in Eq. (30). Using the Eq. (18) and then applying Laplace and Fourier transforms defined by Eqs.

(20) and (21) on Eq. (37) we obtain

(38)

ς̃ ξ( ) 1=

ς̃ ξ( ) 2sin ξa( )
ξ

---------------------=
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The expressions for stresses and temperature distribution can be obtained for concentrated and

uniformly distributed source by replacing  from (36) and (38) in Eqs. (31)-(35). 

Particular Cases 

(i) If we take τ1 = 0, n0 = 1, in Eqs. (31)-(35), we obtain the corresponding expressions of stresses

and temperature distribution for L-S theory. 

(ii) If we take τ1 > 0, n0 = 0, in Eqs. (31)-(35), the corresponding expressions of stresses and

temperature distribution are obtained for G-L theory. 

(iii) Taking τ0 = τ1 = 0, in Eqs. (31)-(35), yield the corresponding expressions of stresses and

temperature distribution for Coupled theory of thermoelastcity. 

Special Case 

If we take R = 1, in Eqs. (31)-(35), we obtain the corresponding expressions of stresses and

temperature distribution for thermomicrostretch elastic solid. These results tally with the one

obtained by Kumar et al. (2000) in the case of concentrated mechanical source by changing the

suitable parameters. 

6. Inversion of the transform 

The transformed stresses and temperature distribution are functions of z, the parameters of

Laplace and Fourier transforms p and ξ, respectively, and hence are of the form . To obtain

the solution of the problem in the physical domain, first we invert the Fourier transform and then

Laplace transform by using the method applied by Kumar et al. (2004). 

7. Numerical results and discussion

We take the case of magnesium crystal (1984) as a material subject to thermal disturbance for

numerical calculations. The physical constants used by us are 

ρ = 1.74 kg/m3,                      j = 0.2 × 10−15 m2,            λ = 9.4 × 1011 N/m2,

μ = 4.0 × 1011 N/m2,               K = 1.0 × 1011 N/m2,          γ = 0.779 × 10−4 N/m2,

λ0 = 0.5 × 1011 N/m2,              λ1 = 0.5 × 1011 N/m2,         α0 = 0.779 × 10−9 N/m2, 

K* = 0.6 × 10−2 J/m sec oC,       C* = 0.23 J/Kg oC,             T = 298 K. 

The computations were carried out for a single value of time t = 0.2 and on the surface of the

plane z = 0. The numerical values for the normal stress t33, tangential couple stress m32, temperature

distribution T and microstress λ3 on the surface of plane due to applied concentrated and uniformly

distributed normal sources are shown in Figs. 1-24. In these figures the solid line with or without

center symbol represents the solution obtained when modulus of elasticity is taken as a linear

function of reference temperature (TD, α = .05), while the dotted lines with or without center

symbol represent the solution obtained in the case of temperature independent modulus of elasticity

(TI, α* = 0). The comparison of three theories of generalized thermoelasticity, namely, Coupled

ς̃ ξ( )

f̃ ξ z p, ,( )
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thermoelasticity (C-T), Lord Shulman (L-S) and Green Lindsay (G-L) have been shown in all the

graphs. The solid and dotted line with center symbol (−×−×−) corresponds to C-T theory, solid and

dotted line with center symbol (−o−o−) corresponds to G-L theory and the solid and dotted line

without center symbol correspond to the case of L-S theory. Figs. 1-4 shows the variation of normal

stress, tangential couple stress, temperature distribution and microstress on application of

concentrated mechanical force. It is observed from Fig. 1 that the value of normal force stress t33
for C-T theory initially decreases in the range 2 ≤ x ≤ 4 and then oscillates with very small

amplitude about origin, whereas for L-S and G-L theories its value start with sharp initial increase

in the range 0 ≤ x ≤ 2 then decreases in the range 2 ≤ x ≤ 3.5 and then oscillate with decreasing

Fig. 1 Variation of normal stress with distance x Fig. 2 Variation of tangential couple stress with
distance x

Fig. 3 Variations of temperature distribution T with
distance x

Fig. 4 Variations of microstress with distance x
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amplitude. It is evident from Fig. 2 that the value of tangential couple stress m32, for C-T theory

start with initial increase then decreases with further increase in distance x, while for L-S and G-L

theories its values increases with increase in x. Fig. 3 shows the variation of temperature distribution

T, with distance x. For C-T theory the values of T increase with increase in distance x. However for

L-S and G-L theories its values decrease with increase in distance x. It is evident from Fig. 4 that

the values of microstress, λ3 for C-T theory start with sharp decrease, then oscillate with small

magnitude about origin, while reverse behavior is observed in the case of L-S and G-L theories. To

show the comparison, in Fig. 4 the values for L-S theory is shown by dividing the original value by

10. Figs. 5-8 shows the variation of stresses and temperature distribution on application of

Fig. 5 Variations of normal stress with distance x Fig. 6 Variation of tangential couple stress with
distance x

Fig. 7 Variation of Temperature Distribution T with
distance x

Fig. 8 Variations of microstress with distance x
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uniformly distributed mechanical force. It is observed from Fig. 5 that the variation of t33 for C-T

theory is same as on the application of concentrated force but that for L-S and G-L theories

opposite behavior is observed. The values of m32 for both L-S and G-L theories, decrease with

increase in distance x, while for C-T theory its values initially increase and then decrease with

further increase in x, which is observed in Fig. 6. Fig. 7 shows that the values of T increase with

increase in distance x for all the three theories of generalized thermoelasticity. To show the

comparison, the values for L-S theory in Fig. 8 is shown by dividing the original value by 10. Also

it is evident from Fig. 8 that the values of λ3 start with sharp initial decrease, then oscillate about

origin with very small amplitude for all the three theories all generalized thermoelasticity. Figs. 9-16

Fig. 9 Variations of normal stress with distance x Fig. 10 Variation tangential couple stress with
distance x

Fig. 11 Variation of temperature distribution T with
distance x

Fig. 12 Variation of microstress with distance x
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shows the variation of stresses and temperature distribution on application of concentrated and

uniformly distributed thermal source. Fig. 9 shows that the values of normal stress for C-T theory

start with sharp initial decrease within the range 0 ≤ x ≤ 2, then oscillate with decreasing amplitude

for both TI and TD modulus of elasticity. While for G-L theory and for both TI and TD its values

oscillate with small amplitude about origin, and in the case of L-S theory its values initially

increases then, oscillate about origin with increase in distance x. Similar behavior with difference in

their magnitude is observed when uniformly distributed source is applied. It is evident from Figs. 10

and 14 that the values of m32 increase with increase in distance x for L-S theory for both TD and TI

modulus of elasticity. While for G-L and C-T theories its values start with sharp initial decrease and

Fig. 13 Variations of normal stress with distance x Fig. 14 Variation of tangential couple stress with
distance x

Fig. 15 Variation of temperature distribution with
distance x

Fig. 16 Variation of microstress with distance x
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oscillate with increasing magnitude. Figs. 11 and 15 shows the variation of temperature distribution

T on application of concentrated and uniformly distributed thermal source. For C-T theory its values

sharply decrease and then oscillate with decreasing magnitude, whereas reverse behavior is observed

in the case of L-S theory. The values for G-L theory lies in between of C-T and L-S theory. It is

evident from Figs. 12 and 16 that the values of microstress for all the three generalized theories

decrease with increase in distance x on application of both concentrated and uniformly distributed

thermal source. Figs. 17-24 show the variations of stresses and temperature distribution on

application of concentrated and uniformly distributed microstress force. It is evident from Figures that

the values of t33 on application of both concentrated and Uniformly distributed microstress force are

Fig. 17 Variation of normal stress with distance x Fig. 18 Variation of tangential couple stress with
distance x

Fig. 19 Variation of Temperature Distribution T with
distance x

Fig. 20 Variation of microstress with distance x



Response of temperature dependence of an elastic modulus in microstretch generalized thermoelasticity 589

similar in nature. For C-T theory its values sharply decrease and then oscillate with decreasing

amplitude while for L-S and G-L thery its values oscillate about origin with small amplitude. The

values of m32 on application of microstress force is exactly same as that obtained on the application

of thermal source but with the di.erence in their magnitude. It is evident from Figs. 19 and 23 that

for L-S theory the values of temperature distribution initially increase and then became constant

about origin on application of both concentrated and distributed microstress force. But for L-S and

G-L theories, when concentrated microstress force is applied its value initially increases, then appers

to be constant near the origin with increase in distance x, while on application of uniformly

distributed microstress force its value start with sharp increase then slowly increases and afterwards

Fig. 21 Variation of normal stress with distance x Fig. 22 Variation of tangential couple stress with
distance x

Fig. 23 Variation of temperature distribution with
distance x

Fig. 24 Variation of microstress with distance x
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decreases with increase in x. Similar behavior in the values of microstress on application of

microstress force is observed as that observed in the case of thermal source but with difference in

their magnitude as shown in Figs. 20 and 24. 

8. Conclusions

The results of the problem may be applied to a wide class of geophysical problems involving

temperature change. The deformation at any point of the medium at any point is useful to analyze

the deformation Field around mining tremors and drilling into the crust of the earth. It is observed

from the figures that when concentrated mechanical force is applied, the value of normal force

stress, tangential couple stress and microstress is maximum for C-T theory and minimum for L-S

theory, while for G-L theory its values lie in between the value of C-T and LS, for both temperature

dependent and independent material constants. Similar behavior is observed on the values of m32

and λ3 when concentrated force and on temperature distribution T when uniformly distributed

mechanical force is applied. However the reverse behavior on the values of t33, m32, λ3 is observed

when uniformly distributed force is applied and on T when concentrated force is applied. When

thermal source is applied the variation pattern of m32 and T is observed to be opposite to that

obtained on the application of mechanical force, however similar variation pattern of the values of

t33 and λ3 is observed. The opposite behavior for C-T and L-S theory is observed on the value of

temperature distribution T when both concentrated and uniformly distributed thermal sources are

applied. When microstress force is applied the values of stresses and temperature distribution

behave in similar way as in the case of mechanical force. 

It is clear that normal stress for L-S and G-L theory initially has increasing and then decreasing

effect with the modulus of elasticity being dependent on reference temperature. While on

application of thermal source its value get decreased with the modulus of elasticity being dependent

on the reference temperature. The values of tangential couple stress m32 decreased on application of

concentrated mechanical force and increased on the application of uniformly distributed mechanical

force. However when thermal source is applied and for L-S and G-L its value is more for T-D than

that of TI, while reverse behavior is observed in the case of C-T theory. When microstress force is

applied similar behavior is observed. The value of temperature distribution T get increased in L-S

theory, however for L-S and G-L initially its values get decrease and afterwards increased. The

value of microstress for C-T theory get decreased while that of L-S and G-L theory get increased

with the modulus of elasticity being dependent on reference temperature. 
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Appendix A 

In above relations, we have used the following notations :

ui components of displacement vector, φi component of microrotation vector, tij components of the

stress tensor, mij components of the couple stress tensor, εij components of micropolar strain tensor,

satisfying

εij = uj,i + εji3φ3.

μ, α, β, γ, K, α0, λ1, λ0 are material constants, ρ is the density, j is the microinertia, j0 is the

microinertia of microelements, φ* is the scalar point microstretch function, λk is the component of

microstress tensor, εijk permutation symbol, K* is the coeffcient of thermal conductivity, C* is

specific heat at constant strain, T is the temperature change, T0 is uniform temperature, ν = (3λ + 2μ +

K)αt1, ν1 = (3λ + 2μ + K)αt2, where, αt1 and αt2 are the coeffcients of linear thermal expansion. The

comma notation denotes spatial derivatives. For L-S theory, τ1 = 0, n0 = 1, For G-L theory, τ1 > 0,

n0 = 0. The thermal relaxation times τ0 and τ1 satisfy the inequality τ1 ≥ τ0 > 0 for G-L theory only.

However, it has been proved by Sturnin (2001) that the inequalities are not mandatory for τ0 and τ1
to follow. Also for C-T theory, τ0 = τ1 = 0. 
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where 

Appendix C 

Appendix D 
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