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Abstract. Having established the initial geometry and cable force of a typical three span suspension
bridge under permanent load, the additional maximum response of the cable and the stiffening girder due
to live load are determined, by means of an analytic procedure, considering the girder first hinged at its
ends and then continuous through the main towers. The problem of interaction between the cable and the
stiffening girder is examined taking under due consideration the second order effects, whereby, through
the analogy to a fictitious tensioned beam under transverse load, a closed –form solution is achieved by
means of a simple quadratic equation. It is found that the behavior of the whole system is governed by
five simple dimensionless parameters which enable a quick determination of all the relevant design
magnitudes of the bridge. Moreover, by introducing these parameters, a set of diagrams is presented,
which enable the estimation of the influence of the geometric and loading data on the response and
permit its immediate evaluation for preliminary design purposes. 
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1. Introduction

The suspension bridge is the structural system which is adequate for crossing very long spans and

as such it has been established over many years in the engineering history of mankind, achieving

nowadays a high level of performance in all the technologically advanced countries (Ryall et al.

2000, Wai-Fah et al. 1999) .

In the typical configuration of a three span suspension bridge with a deck supported by earth

anchored cables, a primary characteristic representing always an essential design decision, is the

continuity or not of the stiffening girder over the supports of the main towers. Although the

majority of the constructed suspension bridges follows the scheme of the hinged connection of the

girder with the towers, the continuous girder may be sometimes adopted, for example when a better

runnability has to be ensured, or in order to overcome the maintenance problems arising from the

expansion joints. 

Such a structural system - either with hinged girders or not - consisting of a main and two side

spans, has been tackled analytically in the past, through the so called deflection theory which has
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been developed many years ago, taking in consideration the deformability of the cable and the

following identical deflection of the girder. The procedure involved in order to take into account

these second order effects leads, according to the classical publications on the subject (Steinman

1935) and (Timoshenko 1943), to cumbersome and laborious calculations which do not permit an

overview of the influence of various factors on the structural performance of the system.

Clearly, the subsequent development of the finite element method and the use of computer

programs with nonlinear analysis capabilities, has overrun the above method. An analogous

procedure in this numerical direction has been published as early as in (Brotton 1963), whereas the

application of these methods to the analysis of suspension bridges is shown in (Jennings and Mairs

1972) and (Arzoumanidis and Bienek 1985) . 

As these discretization methods cannot show on a quantitative basis the relative influence of the

design parameters (main and side span lengths, cable profile, cable section area, girder moment of

inertia, dead and live load) on the response, there is an obvious need for more direct and simple

methodology helping to understand the behavior of the structure and providing a tool to perform

quickly an analytically correct preliminary design. Of course, there are also design criteria regarding

e.g. aerodynamic actions which have to be additionally taken into account, but, even if a sensitivity

analysis of structural dynamic parameters is useful for the design (Liu et al. 1999), the problem of

static response remains of essential importance.

An interest towards this direction has been already expressed through the works of (Cobo et al.

2001), (Clemente et al. 2000) and (Wollmann 2000), but none of these publications enable a direct

analytic control of the suspension bridge behavior, on the basis of the above mentioned initially

selected design parameters, especially in the case of a continuous stiffening girder. 

The present paper is also oriented towards the same issue, aiming to provide a simple tool for the

analysis of a suspension bridge on a purely analytical base, by considering firstly a two-hinge

stiffening girder and secondly a continuous one, in order to determine the response of the cable and

the girder under the action of the live load.

After reviewing the derivation of the fundamental equation of the deflection theory by considering

the influence of the deformed geometry under an applied live load , the problem is reduced to that

one of a fictitious tensioned beam transversely loaded, permitting in this way the determination of

the unknown additional cable force through a simple quadratic algebraic equation which, although

“approximative”, provides nevertheless an absolutely satisfactory accuracy.

Using this result also for the case of a continuous stiffening girder, the problem reduces to that

one of restoring the compatibility of deformation of three fictitious tensioned beams subjected to a

transverse load and applied end moments, 

It is shown that the behavior of the whole system is governed by five dimensionless design

parameters, namely :1) the sag to span ratio of the cable, 2) the initial strain of the cable under the

dead load, 3) the ratio of live to dead load , 4) the ratio of the deflection of the simple girder under

the dead load to the cable sag and - for the case of continuous girder - 5) the ratio of the side to

main span.

The determination of the maximum static response of the system under the most unfavorable

location of the live load for each specific case, is made possible using only these five dimensionless

parameters, through a direct procedure easily programmable in a personal computer. This procedure

enables also a parametric study resulting in dimensionless diagrams which show the influence of

these parameters on the maximum cable force, the maximum span and support bending moments, as

well as the maximum deflection of the stiffening girder. 
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2. Analysis

The earth anchored structural system is depicted in Fig. 1, with one main span of length L and

two equal side spans of length Ls. It is assumed, following the usual practice, that the height of the

tower over the deck practically equals the main cable sag and moreover, that the cable overrides the

top of the towers without friction. The last assumption permits one to ignore in this context the

influence of the deformation of the towers on the system’s response. 

Now, the horizontal component Hg of the cable tensile force is appropriately calibrated with

respect to the desired sag f , so that for the existing dead load g (cable self weight included), the

deck takes an absolutely horizontal position. The same conditions also hold for the side spans of

length Ls and cable sag fs. According to the previous assumption it will be

Hg = g*L2/(8*f ) = g*Ls
2/(8*fs) (1)

and consequently, as the two cable parts exhibit the same curvature, it must hold

fs = L · β 2
· λ (2)

where

β = Ls/L and λ = f / L (3)

In this way the bending of the girder is kept to a negligible level, given the small distance of the

hangers. Nevertheless the action of an additional live load p on the girder tends to deform the cable

and this additional cable deflection η will be imposed exactly the same on the stiffening girder, due

to the assumed inextensibility of the hangers. The resulting increase in cable force will be

represented by its horizontal component Hp. The purpose of the analysis consists in determining

both these quantities. 

The girder should be able to restrict the cable deflection due to the live load and at the same time

to resist the bending resulting from this same deflection, as mentioned above. 

The girder is subjected to a total load q(x), consisting of the permanent load g, a live load p

acting on a specified length and the actions qc(x) of the hangers directed upwards which, due to the

small distances of the hangers, can be considered as continuously distributed (Fig. 2). It is

q(x) = −qc(x) + g + p (4)

The loadings g and p can be considered uniform but the loading qc(x) changes along the girder

length. As this loading is applied also to the cable, the latter assumes a new funicular shape

different from the initial parabolic one due to the uniform load g. 

According to Fig. 3, the new cable geometry is described by z(x), equal to

Fig. 1 Structural layout 
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 z(x) = y(x) + η(x) (5)

and the vertical equilibrium of an elementary cable segment yields 

(6)

with (Hg + Hp) representing the horizontal component of its total axial force. 

As the girder deflection η(x) has to obey to the classical beam equation

(7)

on the basis of Eqs. (4) and (6) and given that (d2y/dx2) represents the negative cable curvature R

under the load g, it may be obtained

(8)

qc x( ) d
2
z

dx
2

------- Hg Hp+( )=

EI
dη

4

dx
4

-------- q x( )=

EI
d
4
η

dx
4

--------
d
2
η

dx
2

--------– Hg Hp+( ) p
Hp

R
------–=

Fig. 2 Acting forces on the girder 

Fig. 3 Cable deformation under direct action of live load
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This equation which is the basic differential equation of the “deflection theory of suspension

bridges” (Timoshenko 1943, O’Connor 1971), may be recognized as the equation of a fictitious

simple beam, having a transverse load (p – Hp/R) and subjected to an axial tensile load (Hg + Hp),

according to the second order theory of beams (Fig. 4). This equation applies for a two-hinged

stiffening girder, but nevertheless is also valid for a continuous girder, simulated by a fictitious

continuous beam under the same transverse and axial load as above, taking into account the effects

of the second order theory. 

The deflection η(x) of a simple beam due to a transverse load q and subjected to a tensile force

H, is obtained from the following expression (Timoshenko 1956)

(9) 

whereas due to a concentrated moment M at the left or at the right support (Fig. 5), it is respectively

   or   (10)

with 

(11)

2.1 Single span (hinged) stiffening girder

For the case of a two-hinged stiffening girder, the deflection function η(x) in Eq. (9) can be
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Fig. 4 Acting forces on the fictitious beam

Fig. 5 Tensioned beam under transverse and end-moment loading
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approximated quite satisfactorily for practical purposes, according to an established result of the

second order theory of beams (Roik 1983), from the relation

(12)

where W1 represents the (first order) deflection line of the simply supported beam under the load (p

– Hp/R) and Pcr its buckling load, equal to (π2 EI/L2).

Now, the increase Hp of the cable force Hg of a cable fixed at its ends is related to its additional

deflection η through the relation (Timoshenko 1943) 

(13) 

where, for ratios λ between 1/8 and 1/12, i.e., the prevailing range for suspension bridges, the

length Lc is given with good approximation from the expression 

(14)

with α representing the inclination angle of the line connecting the two cable ends, which for the

examined case equals zero.

The omission of the second integral term in the right side of Eq. (13) affects for long spans very

little the overall accuracy, so it can be written more simply

(15)

It is understood that the unknown magnitude Hp can be determined from the condition that the

deflection curve η(x) according to Eq. (12) - or (more strictly) according to Eq. (9) - must also

satisfy the “cable equation” (15). 

Now, in the usual design practice, two loading configurations for the live load p have to be taken

into account, namely one acting on the left half of the girder span and the second one extending

over the whole span. The first loading yields the maximum deflection and subsequently the most

unfavorable girder bending, whereas the second one yields the maximum value of cable force. 

In the first case the load p is equivalent to the action of a symmetrical load (p/2) over the whole

span and an antisymmetric one (p/2), as shown in Fig. 6. The deflection line η(x) of the fictitious

beam can be equally evaluated from the superposition of the deflection ηsym due to symmetric

loading (p/2 − Hp/R) over the whole span and of the deflection ηant due to the antisymmetric loading

(p/2) according to Fig. 6. It is noted that this superposition is possible, given the constant axial load

of the beam. After these considerations and given that

(16)

the last Eq. (15) is written
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It is obvious that this relation is valid also for the second case where the fictitious beam is loaded

with (p – Hp/R) over its whole length. 

According to the previous examination, ηsym can be determined with satisfactory accuracy from

the expression

(18)

where W1 represents the deflection line of the simple beam under the transverse load 

(p* – Hp/R) with p* equal either to p/2 for the partial loading of the left half of the span, or to p

for the loading of the whole span. 

The deflection line W1 of the beam results according to the well known Mohr’s theorem, as the

bending diagram of the simply supported beam under the load (M1
0/EI), where M1

0 is the function

of the bending moment of the beam due to the loading (p* – Hp/R).

It is obtained

(19) 

Substituting Eqs. (18) and (19) into Eq. (17), leads to the following algebraic equation for the

unknown Hp
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Fig. 6 Characteristic positions of live load on the fictitious beam
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At this stage the following dimensionless parameters may be introduced

(21)

as well as the unknown parameter of the problem

(22)

It is noted that the parameter G represents the ratio of the deflection of the simply supported

girder under the dead load to the cable sag, multiplied by the factor (48/5), whereas the parameter å

represents the strain of the cable at its lowest point due to the dead load g. 

The last Eq. (20) can now be written 

(23)

where

(24)

so that Z may be readily determined from the above quadratic equation according to the expression

(25)

with 

   and   (26)

On the other side, substituting into Eq. (17) the exact expression of η(x) from Eq. (9), performing

the indicated integrations and considering the above introduced parameters, the following equation

is obtained 

(27)

with 

(28)

It is found that the value of Z obtained from Eq. (25) differs from the exact solution of the above

not directly solvable Eq. (27) by less than 1‰, a fact which allows to consider the former value as

the proper solution of the problem. 

2.2 Continuous stiffening girder

The fictitious continuous beam according to Eq. (8), may now be considered as a system of three

simply supported beams having the same axial load, a respective transverse load and additional end

moments appropriately applied, in order to guarantee the continuity at the supports (Fig. 7). 

Referring now to the fictitious continuous beam loaded symmetrically as shown in Fig. 7, the

support moment M is determined from the requirement that the end slopes ϕL and ϕR of the

constituent simple beams have to be at each support equal. These slopes are obtained for the left

support on the basis of Eqs. (9) and (10).
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Using the above introduced dimensionless parameters according to the Eqs. (3), (21), (22) and

(28), the support moment M is determined according to the following expression

(29)

where 

(30)

Moreover, the deflection η(x) for each constituent beam according to Eqs. (9) and (10) can be

expressed as follows

For the left span

(31)

For the middle span

(32)

For the right span

(33)

According now to Eq. (15) the increase Hp of the cable force Hg, is related to the additional

deflection η, through the following equation
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which, taking into account the introduced parameters, can be written
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Fig. 7 Continuous girder under transverse and axial load
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where 

(36)

The unknown value Z may be determined from the condition that the deflection curve η(x),

according to Eqs. (31)-(33), must satisfy the “cable equation” (15). This equation is written in its

final form as follows

 

(37)

This transcendental equation is not directly solvable. Nevertheless it is possible to obtain quickly an

accurate solution by the method of successive approximations, if as starting value Z0 is taken that

one which results from the previously examined model of the two-hinged main span girder,

according to Eq. (24). It is important to note that the value of the solution Z of Eq. (37) is always

less than Z0 by no more than 8% and this fact allows its quick and accurate determination. 

3. Determination of the maximum response

3.1 Two-hinged stiffening girder

In order to obtain the maximum values of the response, the following loading patterns have to be

considered

1. For the maximum values of the cable force Hp, the live load p extends over the whole length of

the girder. 

2. For the maximum span bending moment Mmax , as well the maximum deflection ηmax , the live

load p extends over the left (or the right) half of the central span.

The last two quantities, approximately located at the quarter of the span, can be directly

determined according to the exact expression (9). Of course this procedure must be based on a

value of Z which is determined for the specific location of the live load p, by taking into account

the half value of it as previously stated. 

Splitting the considered loading into a symmetric and an antisymmetric part as previously

examined (Fig. 6), it is noted that the antisymmetric loading develops no additional cable force and

the beam behaves like a simply supported one having the half span and subjected to the half live

load. Then, superposing the relevant magnitudes at the quarter and at the middle of the span in the

full and the half length beam respectively on the basis of Eq. (9) and taking into account the

existing relation

(38)

the following expressions are obtained using the previously introduced dimensionless parameters. 
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and

(40)

where 

(41)

represents the bending moment of the freely supported beam of length L under the dead load g. 

3.2 Continuous stiffening girder

In order to obtain the maximum values of the response, the following loading patterns have to be

considered (Fig. 8)

1. For the maximum values of the cable force Hp , the live load p extends over the whole length

of the bridge. 

2. For the maximum span bending moment Mmax , as well the maximum deflection ηmax, the live

load p extends over the left half of the central span.

3. For the support moments minMs and maxMs , yielding the maximum tensile stress at the top and
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Fig. 9 Splitting of loading in symmetrical and antisymmetrical part 

Fig. 8 Characteristic positions of live load for maximum response
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bottom fibers of the girder respectively, the live load p extends from the left end of the bridge

to the center of the main span.

In the above second and third cases the loading is considered as superposition of a symmetrical

(p/2) and an antisymmetrical (p/2) one (Fig. 9). As the antisymmetrical loading (p/2) does not yield

a cable force according to Eq. (16), the cable force results each time from the symmetrical loading

(p/2) only. However, the antisymmetrical loading (p/2) applies to the modified continuous beam as

shown in Fig. 10 and, as the loading term (Hp/R) vanishes, it provides an essential contribution to

the final values of bending moments as well as the girder deflections. It is noted that the above

superposition is valid, as the tension load (Hg + Hp) is held constant. 

Considering now the fictitious modified continuous beam as shown in Fig. 10, the support

moment Mant is determined by requiring the end slopes ϕL and ϕR of the constituent simple beams at

the inner support to be equal. The following expression is obtained 

(42)

where

(43)

Examining first the above Case 2, Mmax and ηmax which are approximately located at the quarter

point of the central span, are determined by superposing their value due to the symmetrical loading

(p/2) on the complete system with that one at the center of the right span of the above modified

continuous beam, under the loading (p/2). It is

(45)

and

ηmax = (ηsym)(x=L/4) + (ηant)(x=L/4) (46)

where ηsym is the deflection function of the central span under the symmetrical load (p/2) and ηant is

the deflection function of the right span (L/2) of the modified continuous beam under the same load,

according to Fig. 10.
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Fig. 10 Fictitious beam for antisymmetrical loading 
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On the basis of Eqs. (9), (10) and Eqs. (44), (45), as well as of previous considerations, it is obtained

(47)

and

(48)

where msym and mant are taken from Eqs. (30) and (43) respectively.

The examination of Case 3 as previously explained, gives the following results, on the basis of

Eqs. (29) and (42)

(49)

where the alternative plus and minus sign in the equations, refers to the minMs and maxMs

respectively. 

As already noticed for the last two cases, in the expressions 46 ÷ 48 that value of Z is considered,

which is obtained from the symmetrical loading (p/2) on the system. 

4. Numerical procedure

Once the design data of a suspension bridge are known, namely the main and side span lengths L

and Ls respectively, the cable sags f (approximately equal to the tower height) and fs (according to

Eq. (2)) , the cable section Ac, the permanent load g, the live load p, the girder moment of inertia I

and the moduli of elasticity E and Ec for the girder and cable respectively, the procedure of the

analysis goes along the following steps, which can be directly performed by a computer program

4.1 Two-hinged stiffening girder

1. Determination of the four dimensionless parameters G, λ, γ, and ε through Eqs. (3) and (22), on

the basis of Hg calculated from Eq. (1)

2. Determination of the value Z and consequently of Hp from Eq. (25), according to the

expressions (24) and (26), as well as of the bending moment Mg
0 of the simply supported

girder through Eq. (41).
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3. Determination of the ratio Z from Eq. (25) anew, by taking into account the half value of the

parameter γ previously used.

4. Evaluation of the magnitudes Mmax and ηmax from the Eqs. (39) and (40) respectively, after

determination of the respective value D from Eq. (28)

4.2 Continuous stiffening girder

1. Determination of the five dimensionless parameters G, λ, β, γ, and ε through Eqs. (3) and (21),

on the basis of Hg calculated from Eq. (1)

2. Determination of the value Z0 through Eq. (25), according to the expressions (24) and (26). 

3. Determination of the maximum cable force from Eq. (37) using the expression (30), through

successive approximations, substituting for γS = γ in both equations and using Z0 as the starting

value. The procedure converges rapidly to a smaller value differing not more than 8% from the

initial one. 

4. Evaluation of Mmax and ηmax from Eqs. (47) and (48) respectively, after determination of the

value Z from Eq. (30) using expression (37) , by substituting for “γs” and “γ ”, the values 0 and

γ/2 respectively 

5. Evaluation of minMs and maxMs from Eq. (49), after determination of the value Z from Eq(37)

using expression (30), by substituting for both “γs” and “γ ”, the value γ /2.

5. Parametric study

On the basis of the above relations and for the constant values of λ = 0.1 and ε = 0.002 which

represent logical design decisions, the diagrams showing the variation of the ratios (Hp/Hg), (Mmax/

Mg
0) and (ηmax/L) are first determined (Figs. 11 to 16), for the cases of hinged and continuous girder

having a span ratio β equal to 0.35. The influence of the variation of β in the case of continuous

girder is also separately considered under a constant value of γ = 0.20 and depicted in Figs. 19 to 21

The ratio (Hp/Hg) is, for both the cases of hinged and continuous girder, independant of the

stiffness factor G, depending only on the loading ratio γ (Figs. 11 and 12, respectively). This ratio

Fig. 11 Maximum cable force Hp for hinged girder Fig. 12 Maximum cable force Hp for continuous
girder (β = 0.35)
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Fig. 13 Maximum span bending moment for hinged
girder 

Fig. 14 Maximum span bending moment for
continuous girder (β = 0.35)

Fig. 15 Maximum deflection for hinged girder Fig. 16 Maximum deflection for continuous girder
(β = 0.35) 

Fig. 17 Maximum support bending moment causing
upper fiber tension (β = 0.35) 

Fig. 18 Maximum support bending moment causing
lower fiber tension (β = 0.35)
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results slightly less than γ, whereas the variation of the span ratio β, in the case of continuous

girder, does not affect its value practically at all for values of G greater than 200 (Fig. 19). The

values of the ratio are slightly less in the case of continuous girder than in the hinged one. The

above results are in good agreement with those found by (Chen et al. 2006), regarding the

estimation of the cable safety factor. 

Fig. 21 Influence of β on the maximum deflection (γ
= 0.20)

Fig. 22 Influence of β on minimum support bending
moment (γ = 0.20)

Fig. 23 Influence of β on maximum support bending
moment (γ = 0.20)

Fig. 19 Influence of β on the maximum cable force
Hp (γ = 0.20)

Fig. 20 Influence of β on the maximum span
bending moment (γ = 0.20)
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The ratio (Mmax/Mg
0) is, for both cases of hinged and continuous girder, very little influenced from

the parameter γ, as long the values of G are greater than 450 (Figs. 13 and 14, respectively),

whereas it is absolutely unaffected from the variation of β (Fig. 20). The values of this ratio are

slightly greater in the continuous girder than in the hinged one. 

The ratio (ηmax/L) is, for both cases of hinged and continuous girder, practically unaffected by

values of G greater than 300 (Figs. 15 and 16, respectively). However, increasing the span ratio β,

leads to an increase of this value (Fig. 21). The values of this ratio are somewhat greater in the

continuous girder than in the hinged one. From the Figs. 15 and 16 it may be readily certified that

for very long spans, the stiffening contribution of the girder becomes negligible – an already known

conclusion (e.g., Cobo et al. 2001 and Clemente et al. 2000) -, while for moderate spans this

contribution is clear as may be seen from the left portion of the curves. Moreover from the same

diagrams it may be concluded that increasing the dead load leads to an increase of the structure’s

stiffness, as already mentioned in (Imai and Frangopol 2000 and Cobo et al. 2001).

The support bending moment minMs causing the maximum tension on the upper fibers of the

girder, governs the design of the stiffening girder, as its value is about three times more than Mmax

for a given stiffness factor G (Fig. 17). It is also very little affected from the span ratio β (Fig. 22). 

The support bending moment maxMs causing tension on the lower fibers of the girder - a

peculiarity in itself regarding the nature of the continuous beam - is less than the respective minMs

for a given stiffness factor G, but it is more than the double of the maximum span moment Mmax

(Fig. 18). An increase of the span ratio β leads to an increase of the ratio (maxMs/Mg
0), for a given

loading ratio γ (Fig. 23). 

6. Conclusions

The problem of evaluating the static response of a suspension bridge with hinged or continuous

stiffening girder, under the additional action of the live load can be tackled directly with a minimum

computing effort. It is shown that the response is totally determined on the basis of five

dimensionless parameters, namely the sag-to-span of the cable (λ), the initial strain of the cable at

its lowest point under the dead load (ε), the loading ratio (γ), the stiffness factor (G) and the side-

span ratio (β). The procedure followed permits also the establishment of diagrams which show the

influence of the above design parameters on the response and moreover they allow very quickly its

quantitative assessment. However it should be pointed out that selecting a continuous stiffening

girder for long spans, does not improve the static performance as compared to the hinged-type

alternative, because of the high support moments, whereas the resulting span moments and

deflections are not decreased as could be expected. As it has been mentioned earlier, the continuity

of the girder concerns rather a constructional decision than the improvement of the structural

performance. 
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