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Abstract. This paper examines local vibrations in the stay cables of a cable-stayed bridge subjected to
wind gusts. The wind loads, including the self-excited load and the buffeting load, are converted into
time-domain values using the rational function approximation and the multidimensional autoregressive
process, respectively. The global motion of the girder, which is generated by the wind gusts, is analyzed
using the modal analysis method. The local vibration of stay cables is calculated using a model in which
an inclined cable is subjected to time-varying displacement at one support under global vibration. This
model can consider both forced vibration and parametric vibration. The response characteristics of the
local vibrations in the stay cables under wind gusts are described using an existing cable-stayed bridge.
The results of the numerical analysis show a significant difference between the combined parametric and
forced vibrations and the forced vibration.

Keywords:  cable-stayed bridge; stay cables; parametric vibration; wind gust response.

1. Introduction

Stay cables (hereinafter abbreviated to ‘cables’) are important components of cable-stayed bridges.

Due to their large flexibility, relatively small mass, and very small structural damping, they often

exhibit large-amplitude vibrations. The local dynamic behavior of the cables of a cable-stayed
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bridge under dynamic excitation, such as from winds or earthquakes, can easily be compared to that

of a harp whose strings have been plucked. Forced vibrations of this kind have been thoroughly

analyzed (Abdel-Ghaffar et al. 1991, Tuladhar et al. 1995, Caetano et al. 2000, Caetano et al. 2000,

Au et al. 2001). 

Another type of excitation was recognized in the 1980’s. It corresponds to the combined forced

and parametric vibrations of cables of cable-stayed bridges due to bending vibrations of the girder

and/or towers. The coupling between the deflections of the tower and girder and those of the cables

at the supports is responsible for the parametric vibration, i.e., the local parametric vibration of

cables excited by girder and/or tower oscillations (Uhrig 1993). This is believed to result in some

reported oscillations that cannot be reasonably explained by other phenomena (Yoshimura et al.

1989). 

Generally, if a cable is subjected to axial time-varying displacement at a support due to the global

motion of the girder and/or towers, the tension force within the cable changes. When the natural

frequency of the global modes in a cable-stayed bridge is close to twice or same as that of the

cable, the varying tension force of cables can induce lager-amplitude vibration in the cables. Since

multi-cable systems are widely used in cable-stayed bridges, the natural frequencies of the global

modes easily become close to the natural frequencies of the stay cables. During vibration tests on

the Hitsuishijima cable-stayed bridge (420 m, steel, Japan), the Yohkura Bridge (77 m, timber,

Japan), and the Tatara Bridge (890 m, steel, Japan), the local parametric vibrations in some stay

cables under excitations in the first some global modes are observed (Fujino et al. 1997).

Kovacs was the first to point out the possibility of parametric vibration in cables. Takahashi

calculated the instability boundaries of the main instability regions of the simple parametric and

combination resonance of a flat-sag cable using the harmonic balance method and the eigenvalue

method (Takahashi 1991). Fujino examined the linear and nonlinear internal resonances of the stay

cables of a cable-stayed bridge and derived a 3-DOF analytical model for a local cable based on

global modes, then performed laboratory tests to check the validity of the approach (Fujino et al.

1993, Wanitchai et al. 1995). Lilien and Pinto da Costa studied the vibration amplitude caused by

parametric excitation of cable-stayed structures and developed non-dimensional analytical formulae

that can be applied to any stay cable to calculate threshold amplitudes and limit cycle amplitudes

produced by parametric excitation (Lilien et al. 1994). Pinto da Costa dealt with the nonlinear

vibrations of inclined cables excited by periodic motions of their supports and discussed the

nonlinear behaviors of cables (Pinto da Costa et al. 1996). 

These studies established the instability criteria for the fundamental instability regions. In the

studies, the cables were given periodic time-varying displacements. However, the studies did not

explain the local vibrations in stay cables of cable-stayed bridges under environmental and service

loadings, e.g., wind, earthquakes, and traffic loading, which contain a broad spectrum of excitation

frequencies.

 This paper uses the in-plane vibration model of stay cables following the idea proposed by Pinto

da Costa et al. (1996), and the analysis of local vibrations in cables considers the vibration

characteristics of an existing steel cable-stayed bridge under sinusoidal excitations, by a moving

vehicle or an earthquake. The following conclusions were reached (Wu et al. 2001, Wu et al. 2003).

1) Parametric vibrations of cables in the second unstable region occur under vertical sinusoidal

excitation. The amplitudes of cables induced by parametric vibration is of the same order as

that induced by forced vibration. 

2) Parametric vibrations of cables in the principal unstable region appear under torsional
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sinusoidal excitation, but only after considerable time has passed. 

3) The amplitudes of local parametric cable vibrations under excitation by a moving vehicle are

small since the amplitude of the girder is small. 

4) Parametric vibrations in cables do not appear when a moderate ground motion is applied in the

longitudinal direction of the bridge.

The other form of excitation related to cable-stayed bridges is wind loading. Stability in wind is

an important consideration in the design of cable-stayed bridges, so the parametric vibration of

cables under wind loading should be also examined. 

In this study, the local vibrations in the cables of an existing cable-stayed bridge under wind gusts

are analyzed. A two-step approach is used to study the local vibrations of the stay cables (Wu et al.

2001, Wu et al. 2003). The global gust vibration of the bridge is investigated first, followed by an

examination of the local vibration of the cables.

Local vibration analysis of a cable considers both forced vibration and parametric vibration. In

this study, a time domain gust analysis method is used in the analysis of an existing cable-stayed

bridge. The time-domain gust approach for cable-stayed bridges considers such time-serial response

characteristics as simultaneity and the instantaneous acquisition of the vibration value (Zhu et al.

2005). It is difficult to analyze using the frequency domain approach (Jain et al. 1996, Xu et al.

2000, Boonyapinyo et al. 1999). According to Scanlan’s theory, gust analysis must consider both

the self-excited load and the buffeting load (Scanlan et al. 1990, Jain et al. 1996, Simiu et al. 1996,

Ding et al. 2000). It is essential, therefore, to convert these two wind loads into time domains using

a computer simulation technique. In this paper, the self-excited load is converted using the rational

function approximation (Wilde et al. 1996, Chen et al. 2000), while the buffeting load is converted

using the multidimensional autoregressive (AR) process (Iwatani 1982, Iannuzzi et al. 1987).

The local vibration of the cable is obtained using a cable that is fixed at one end and has relative

time-varying displacements at the other end. The time-varying displacements at the cable supports

are obtained from the global vibration. 

The properties of local vibration in cables subjected to wind gusts are derived by means of

numerical analysis of an existing steel cable-stayed bridge.

2. Global vibration analysis due to wind gust

The global response of a bridge in wind gusts is analyzed by defining the coordinate system and

aerodynamic forces as shown in Fig. 1. The wind blows lateral to the girder of the bridge and the

aerodynamic forces are defined as lift LW, drag DW, and moment MW. Vibration of girder consists of

Fig. 1 Wind force and displacement components at a point along bridge axis
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vertical displacement h, horizontal displacement p, and torsional displacement α. The wind gust is

applied to the girder, and isn’t applied to the tower. 

2.1 Buffeting loads

The buffeting loads per unit span can be expressed based on quasi-steady theory. The steady state

wind loads are not considered in the present analysis (Chen et al. 2000, Ding et al. 2000). 

,

,

(1)

where CD, CL and CM are the drag, lift and moment coefficients obtained from wind tunnel tests on

a cross-section of a girder model, CL' and CM' are the slopes of CL and CM, α0 is the effective attack

angle of the oncoming wind, ρ is the air density, U is the mean wind velocity, A is the deck height

and B is the deck width.

Fluctuating part u(x,t) along the wind direction and fluctuating part w(x,t) in the vertical direction

are calculated through simulations using the autoregression (AR) model. The calculations are done

in such a manner that the target power spectrum and coherence to the fluctuating wind velocity are

satisfied (Iwatani 1982, Iannuzzi et al. 1987).

2.2 Self-excited loads

The linearized forms of the self-excited force for sinusoidal deflection components h(x,t), p(x,t),

and α(x,t) are summarized as follows (Scanlan et al. 1990, Jain et al. 1996, Simiu et al. 1996, Sun

1999, Chen et al. 2000). 

,

,

(2)

where k = ωB/U is the reduced frequency, ω is the natural circular frequency, and Hj
*, Aj

* and Pj
*

are the flutter derivatives of the deck’s cross section. 

From Eq. (2), it is clear that the self-excited load is dependent not only on wind speed but also on

frequency. In order to transform those frequency-dependent loads into frequency-independent loads,

Roger proposed a modal method that employs the rational functions of the Laplace variable and

introduces ‘lag’ coefficients that make the resulting frequency-dependent self-excited aerodynamic

forces independent of the frequencies by (Rogar 1977). The application of rational function
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approximation for flutter and gust analysis of bridges has been the subject of previous studies

(Wilde et al. 1996, Chen et al. 2000). 

By applying the rational function to Eq. (2), the self-excited lift Lse, moment Mse and drag Dse on

the girder can be expressed as follows. 

,

(3)

where  is the vector coefficient of the partial fractions (lag coefficient), N

is the number of partial fractions, [Q1], [Q2] and [Ql+2] are the matrices of the unsteady

aerodynamics, and Dl is a parameter.

If the harmonic vibration is assumed, the rational functions in the frequency domain can be

deduced as follows

(4)

By using non-dimensional flutter derivatives (Hj
*, Aj

* and Pj
*), which are obtained through wind

tunnel tests on a deck’s cross-section, the matrix [Q(ik)] can be expressed as follows. 

(5)
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, (6)

where wij is the weighting factor, , and kn is the n-th set of reduced 

frequency for which tabular data are available. 

2.3 Gust response

The equations of motion for a bridge structural system under wind loads can be expressed as

follows. 

(7)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, {F} = {Fse} +

{Fbuf} is the load vector that consists of buffeting wind loads {Fbuf} and self-excited wind loads

{Fse},  is the displacement vector representing the displaced shape of the bridge,  is the

velocity vector and  is the acceleration vector. 

The modal analysis approach is used to compute the state space equation of the extension system

expressing the gust response. Subsequently, the global response of the girder under wind gust is

obtained by solving Eq. (7) using the Runge-Kutta method.

3. Local vibration analysis of cables considering parametric vibration

An in-plane model of an inclined cable on a cable-stayed bridge is shown in Fig. 2. The cable in

this model is fixed at one end and has time-varying displacements (X(t), Y(t)) at the other end.

Because the bridge deck and the tower vibrate simultaneously, the displacements X(t) and Y(t) are

relative components, not absolute components. 

The main girder and the main tower are vibrated in the three dimensions, and then the stay cables

are also vibrated in the in-plane and out-of-plane direction. The present study focuses the in-plane

vibration of stay cables, in which the axial force of cable is supremacy, and ignores the out-of-plane

vibration of stay cables. Therefore, the following are assumed for the local vibration analysis of the

cables under wind gust.
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Fig. 2 Geometry of Stay-cable and its boundary conditions



Cable vibrations in a cable-stayed bridge under gust 519

(1) The first modes of the cables are considered in the analysis. 

(2) The effect of dampers installed on the cables is omitted. 

(3) The quasi-steady theory is used to deal with the aerodynamic damping of the cables subjected

to wind. The gust response of the cables for both the global buffeting vibrations of the whole

bridge and the local vibrations of the stay cables is neglected. 

(4) Lateral (out-of-plane and coupled in-plane and out-of-plane) vibrations are not considered. 

The equation of motion for a flat-sag cable is given below (Wu et al. 2001, Wu et al. 2003). 

,

(8)

where uc and vc are the displacements in the axial direction (x direction) and in the normal direction

(y direction) of the cable (see Fig. 2), m is the mass per unit length of the cable, P is the initial

tension of the cable, ΔP is the additional tension produced by local vibration in the cable, v0 = mg/

2P(−x2 + Lx) is the initial shape of the cable, E is the Young’s modulus of the cable, Ac is the cross

sectional area of the cable, L is the span of the cable, g is the gravitational acceleration and t is the

time.

The following equation describes the assumed responses uc(x,t) and vc(x,t) of the cable, which at

one support receives displacement component X(t) in the x direction and displacement component

Y(t) in the y direction. 

, (9)

where Ti(t) is the time function of the i-th mode of the cable. 

Inserting Eq. (9) into Eq. (8) yields a nonlinear equation of motion of the cable. Applying a

Galerkin method produces the following nonlinear equation of motion, which considers both

structural damping and aerodynamic damping. 
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4. Global gust response of studied bridge

Oshima Bridge is a steel cable-stayed bridge in Nagasaki, Japan. The main span of this bridge is

350.0 m and the side spans are 160.0 m. The towers are A-shaped, and the cables are a two-plane,

multiple system (Wu et al. 2001, Wu et al. 2003). A general layout of the bridge and the numbering

of the cables are shown in Fig. 3. The girder in the three-dimensional FE model is a single central

Fig. 3 General view of the cable-stayed bridge (unit: mm)
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spine with offset links to the cable anchor points. The towers and piers are modeled using three-

dimensional linear beam elements based on the cross-section properties of actual towers and piers.

The cables are modeled as linear truss elements with initial tension. The nonlinear behavior of the

cables due to their sags is taken into account by using an equivalent modulus of elasticity (Gimsing

1997). Regarding the boundary conditions, the girder is free to move in the longitudinal direction

and restrained at the supports in the vertical and transverse directions. Only the rotational

component around the longitudinal axis is restrained. The tower bases are restrained in all degrees

of freedom. The logarithmic decrement of modal damping of the bridge is 0.02 and the time

interval of numerical integration is 0.05s. 

Because each cable is represented by a single truss element, the FE model is called an OECS

model (One-Element-Cable System) (Abdel-Ghaffar et al. 1991). The natural frequencies of the

global modes obtained using a MECS model (Multi-Element-Cable System) differ by no more than

1.0% from those obtained using the OECS model (Wu et al. 2003). About this bridge used in this

paper, the multi-cable system is adopted and this girder is steel, then the weights of cables are slight

and the force of cables are relatively slow. So the influence of cable vibrations on global vibrations

is extremely small. At the same time, the excitations are environmental or service loadings, not the

severe excitations used in (Caetano et al. 2000). Therefore, focused on this bridge, this indicates

that the local cable vibration can be separated from the deck-tower-cable global vibration. 

The natural frequencies of the single cable model obtained from the Irvine equation (Irvine 1981),

in which the cables are fixed at the supports, agree well with those obtained from the MECS model.

Therefore, it can be concluded that the separation of cable vibrations from the global vibration is

valid in the present cable-stayed bridge. Some of the main natural modes obtained from the OECS

model are shown in Fig. 4. 

The global vibration analysis in this study takes into account the aerodynamic forces of the girder.

The static drag, lift, and moment coefficients of a typical deck on this bridge are listed in Table 1.

Fig. 4 Modal shapes of the global vibration

Table 1 Aerodynamic coefficients (α= 0)

CD = 0.85, CL = 0.19, CM = 0.01

C'D = 0.00, C'L = 3.42, C'M = 1.00
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Although it was originally desirable to obtain the self-excited coefficients Hj
* and Aj

* through

testing, the present study employs the aerofoil case coefficients. The self-excited coefficients, Pj
*,

which concern the horizontal vibration, are evaluated using quasi-steady theory, and the

aerodynamic lift and the pitting moment with the horizontal vibration are neglected. The turbulence

spectra are defined as the von Karman spectrum (Panofsky 1984), in the longitudinal direction 

(11)

and in the vertical direction 

(12)

The atmospheric coherence is set using the exponential estimation by Davenport (Davenport 1961).

(13)

where Lu
x = 80 m, Lw

x = 40 m, σu = IuU, σw = IwU, Iu = 0.10, Iw = 0.05, K is the coherence decaying

coefficient, ΔL is the distance between two generated spots, and f is the frequency. The coherence-

decaying coefficient is assumed to be 8.0 for both the longitudinal and transverse velocity

components. 

Using the AR model to simulate a fluctuating wind, the frequency domain of the power spectrum

being considered ranges from 0.05 Hz to 5.0 Hz. The total time is 1200s with a time interval of 0.1s.

Regarding the rational functions approximation, matrices [Q1], [Q2], [Q2+1] and [Q2+2], and

parameters D1 and D2 are quantified as follows with the number of partial fractions N is assumed to

be 2.

,

,

Fig. 5 shows the results of per- 2×2 term, both tabular values and approximate values, with the

reduced wind velocity as a parameter. This approximation function provides sufficient precision in

all cases. Fig. 6 reflects a fluctuating wind u(t), w(t) and power spectra of the middle of the main

span. The power spectra of the approximate values match well with those of the tabular values.

Fig. 7 shows the r.m.s responses at the middle of the main span in time domains and frequency

domains at wind speeds of U = 30, 40, 50, and 52 m/s. 52 m/s is the design wind speed for the

girder of this bridge. The first 100 natural modes of this bridge (about up to 10 Hz) are considered.

The gust analysis in the frequency domain takes into account the modal coupling (Scanlan 1988),
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which is proposed by Chen et al. (2000). The validity of the global gust response analysis is

confirmed by the good agreement of these two methods. 

5. Local vibration characteristics of cables under turbulent wind

The local cable vibration is analyzed using the calculated responses of the girder and towers. The

responses of the girder at the fixed point for the left cable are not the same as those at the fixed

point for the right cable, since the torsional and vertical gust responses are included in the response

analysis of the girder. Therefore, 20 cables on each side of the girder are analyzed. The cables are

numbered sequentially from the side span to the main span. The cables on the left side are labeled

C1~C20, and the cables on the right side are labeled C21~C40. Since the bridge is symmetric, the

cables on the left side (see Fig. 3) are used for the numerical calculations.

5.1 Global modes and local modes

Fig. 8 demonstrates the relationship between the natural frequencies of the global modes and the

cables. This figure shows the first natural frequencies of the cables (corresponding to the second

unstable region), the natural frequencies multiplied by 2 (corresponding to the principal unstable

Fig. 5 Approximation using rational functions
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region), and the natural frequency divided by 2 (corresponding to the second super-harmonic

resonance region). 

Since the natural frequency of the 3rd vertical mode of vibration is close to the first natural

frequencies of cables C18 (C38) (values in parenthesis are for the cable on the right side), the local

parametric vibration in the second unstable region in these cables may occur. According to this

figure, the cables in which local nonlinear vibration may occur are listed in Table 2. 

5.2 Local cables characteristics

Fig. 9 shows the maximum responses of all cables and the girder at the fixed points of the cables under

Fig. 6 A fluctuating wind loads u(t), w(t) and power spectrum of the middle of main span (U = 30 m/s)
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a wind with a velocity of U = 30 m/s. The damping constants hc of the cables are assumed to be 0.001.

The maximum responses of cables C12 (C32) and C19 (C39) are seen to be greater than those of

the other cables. Fig. 9(c) shows that the ratio of the maximum response of cable C32 to that of the

Fig. 7 r.m.s value of vertical, torsional and lateral displacements of the middle of main span

Fig. 8 Relationship between natural frequencies of global modes and natural frequencies of cables
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Table 2 Cables in which local parametric vibration may occur

Global Mode
Frequency

(Hz)

Local cable vibration

Second
unstable region

Principle
unstable region

Second super-harmonic
resonance region

1st vertical mode 0.310 --- ---
C1, C2, C19, C20

(C21,C22,C39,C40)*

2nd vertical mode 0.423 --- --- ---

3rd vertical mode 0.692
C18, C19, C20

(C38, C39, C40)
---

C10, C11
(C20, C21)*

4th vertical mode 0.815
C4, C17

(C34, C37)
--- ---

5th vertical mode 0.931
C5, C15

(C25, C35)
--- ---

6th vertical mode 1.124
C12

(C32)
C2

(C22)
---

1st torsional mode 1.192
C8, C9

(C28, C29)
C1

(C21)
---

*Fig.s in parenthesis are the cables on the right side.

Fig. 9 Maximum responses of the girder and the cables (U = 30 m/s, hc = 0.001)
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Fig. 10 Response of the girder and cable C12 (U = 30 m/s, hc = 0.001)
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girder is around 6. 

Since the torsional and vertical gust responses at the fixed points of the cables are included (refer

to Eq. (14)), the responses of cables C12 and C32, and cables C19 and C39 differ, even though they

have the same natural frequencies. 

5.2.1 Parametric and/or forced vibrations in Cables C12 and C32

The response properties of Cables C12 and C32 are discussed first. The time responses and

spectra of the girder and cables C12 are shown in Fig. 10.

The predominant frequencies of the girder response are about 0.310 Hz and 0.423 Hz, while those

of cable C12 are 0.310 Hz and 1.146 Hz. It is necessary to examine the reason why the vibrations

of cables C12 and C32 become great even when the 6th vertical mode (1.124 Hz) is not

predominant, as can be seen in Table 2. 

The response of the cable may include components of the parametric vibrations and nonlinear

forced vibration with harmonic resonance, super-harmonic resonance or sub-harmonic resonance.

These are attributed to the nonlinear equation of motion for the cable, i.e. Eq. (10). In other words,

the properties of a cable cannot be distinguished because the response of the cable includes

components of both parametric vibration and forced vibration. Therefore, in order to determine the

response characteristics of cables C12 and C32, it is essential to distinguish the component of

parametric vibration from that of forced vibration. 

This problem is solved by analyzing the response of the cable and neglecting the component of

parametric vibration B1(t) in Eq. (10). The maximum responses of cables C12 and C32 under forced

vibration are listed in Table 3.

Since the maximum amplitude of cable C12 under forced vibration is close to that of the cable

under the combined effect of parametric and forced vibrations, it can be concluded that the

influence of parametric vibration in C12 is small while that of forced vibration is great. 

Parametric vibration in the secondary unstable region in cable C32 occurs because the maximum

amplitude under parametric and forced vibrations is almost twice greater than the maximum

amplitude under forced vibration. 

5.2.2 Second super-harmonic resonance in cables C19 and C39

The characteristics of cables C19 and C39 are discussed herein. As shown in Table 4, the

vibration in cables C19 and C39 is generated under the combined effect of parametric and forced

Table 3 Maximum responses of cables C12 and C32

Cable
Girder maximum

amplitude (m)

Cable maximum amplitude (m)

Parametric and forced vibration Forced vibration

C12 0.0766 0.2427 0.2512

C32 0.0615 0.3613 0.2219

Table 4 Maximum responses of cables C19 and C39

Cable
Girder maximum

amplitude (m)

Cable maximum amplitude (m)

Parametric and forced vibration Forced vibration

C19 0.2155 0.3913 0.2698

C39 0.1922 0.5469 0.2600
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Fig. 11 Response of the girder and cable C19 (U = 30 m/s, hc = 0.001)
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vibrations. This is because the maximum responses under combined parametric and forced

vibrations are twice those of the maximum responses under forced vibration. The vibration may be

either the parametric vibration in the principle unstable region or the second super-harmonic

resonance, as shown in Table 2. From the spectra of the girder and cable C19, shown in Fig. 11, the

most predominant frequency of response of the girder is about 0.310 Hz, while that of cable C12 is

close to 0.616 Hz. It may be concluded that the second super-harmonic resonance occurs in cable

C19 because the ratio of the dominant frequency of the girder to that of C12 is approximately 0.5.

In order to explore this aspect, a numerical filter based upon Fourier transformation is used to keep

Fig. 12 Response of the girder and cable C19 using filter (U = 30 m/s, hc = 0.001)
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the component of the response within the predicted frequency domain and to remove those outside

the predicted frequency domain. As can be seen in Fig. 8, the frequency at which second super-

harmonic resonance may be generated in cable C19 is about 0.310 Hz, and the frequency in which

parametric vibration in the principal unstable region may be generated is 1.124 Hz. Therefore, the

evaluated region is about 10% smaller than the original region and is behind those frequencies. In

other words, the evaluated region of the response of the girder is within 0.310(1±10%) Hz ≈ 0.280~

0.340 Hz and 1.124(1±10%) Hz ≈ 1.024~1.224 Hz, respectively. 

Fig. 12 shows that the responses of the girder and cable C12 are in the range of 0.280~0.340 Hz

and 1.024~1.224 Hz. The response of cable C19 under parametric and forced vibrations in the range

of 0.280~0.340 Hz (Fig. 12(b)) is greater than the component of the response in the range of 1.024

~1.224 Hz, but is greater than that generated by forced vibration (Fig. 12(d)). 

Therefore, it can be confirmed that the second super-harmonic resonance occurs in cables C19

and C39. 

The parametric vibrations in the principal unstable regions of the cables are difficult to be

exhibited since, depending upon the magnitude of the exciting force, a certain amount of time is

needed to reach the maximum amplitude in this region (Wu et al. 2001, Wu et al. 2003).

5.3 Damping effect

In the present analysis, the damping constants hc of the cables are assumed to be 0.001. In fact,

this bridge use high-damping rubber dampers to counteract wind-induced vibrations in the cables.

Therefore, the maximum damping constant hc of the cables is 0.004-0.005. In this paper, the

phoneme of local cable vibration is not changed even the cable damping is changed a little. In order

to understand the effect of cable damping, the simple method changing the damping constant of

cable is used. The relationship between the maximum responses of the cables and the damping

constant are shown in Fig. 13.

For cables C12, C19, C32, and C39, the maximum amplitudes decrease as the damping constant

increases. Therefore, a damping constant of 0.004-0.005 is adequate for the cables on this bridge

under wind gust of U = 30 m/s. This also confirms that the damper is effective for reducing local

vibrations in the cables. 

5.4 Influence of turbulent wind speed

The above results are obtained for a wind velocity of U = 30 m/s, which is less than the design

wind speed (U = 52 m/s). Fig. 14 illustrates the maximum responses of the girder and cables when

the wind speed is blowing at a speed of U = 52 m/s. Under these conditions, local cable vibrations

have the same properties. Vibrations at higher frequencies do not appear in the girder even when the

wind speed is bellowing at U = 52 m/s. 

6. Conclusions

This study investigates the local vibrations in the stay cables of an actual cable-stayed bridge

under wind gusts. The study includes the global vibration and local vibrations analyzed using the

time-domain approach. The local cables vibrations take into account not only forced vibrations but
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also parametric vibrations.

The results of numerical analysis using an existing cable-stayed bridge reveal a significant

difference between the forced vibration and the combined parametric and forced vibrations. Among

environmental loadings and service loadings, wind loading has a much greater effect than traffic

loading and leads to large-amplitude vibrations in the girder and towers. Compared to the duration

of an earthquake, the total time of wind loading is considerably longer. For these reasons, local

vibrations in cables are more likely to occur in windy conditions than as a result of a moving

vehicle or an earthquake. 

Turbulent wind produces parametric vibrations in the second unstable region of cables. Parametric

vibration induces greater amplitudes than forced vibration. Second super-harmonic resonance occurs

in the bottom cables of this bridge. The half of the frequencies of the bottom cables is small and

prone to the first mode of global vibration, since the initial force of the bottom cables are relatively

small and the frequency of the first global mode is small in a steel cable-stayed bridge.

The damping adopted to counteract wind-induced vibrations in the cables effectively reduces local

nonlinear vibration in the cables.

For this steel bridge, the local cable vibration can be separated from the deck-tower-cable global

vibration, and the local cable vibration is discussed based on the global vibration. This study does

not consider the interaction between the bridge (deck/tower) and the stay cables since the laboratory

did not have the FE model needed to evaluate parametric vibrations of the cables. An appropriate

FE model for cables is now being formulated. 

The next subject for study is a gust response analysis of cable-stayed bridges that includes the

parametric vibrations and ellipse vibrations of the stay cables. Another subject is using this model to

evaluate the questionable problem: whether the in-plane cable model can be used to three-

dimensional cable-stayed vibration under wind gust; how much the difference between in-plane

cable model and the coupled in-plane and out-of-plane model is.
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