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Variations of the stress intensity factors for a planar 
crack parallel to a bimaterial interface 
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Abstract. Stress intensity factors for a planar crack parallel to a bimaterial interface are considered. The
formulation leads to a system of hypersingular integral equations whose unknowns are three modes of
crack opening displacements. In the numerical analysis, the unknown displacement discontinuities are
approximated by the products of the fundamental density functions and polynomials. The numerical
results show that the present method yields smooth variations of stress intensity factors along the crack
front accurately. The mixed mode stress intensity factors are indicated in tables and figures with varying
the shape of crack, distance from the interface, and elastic constants. It is found that the maximum stress
intensity factors normalized by root area are always insensitive to the crack aspect ratio. They are given
in a form of formula useful for engineering applications.
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1. Introduction

In recent years, composite materials and adhesive or bonded joints are being used in wide range

of engineering field. Although a lot of researches have been made in terms of fracture mechanics

approach regarding interface, most of them generally involve two dimensional modeling (Erdogan

and Aksogan 1974, Cook and Erdogan 1972, Isida and Nogushi 1983, Afsar and Ahmed 2005, Itou

2007, Qiao and Wang 2004, Chen et al. 2003, Kao-Walter et al. 2006, Kaddouri et al. 2006, Huang

and Kardomateas 2001, Chang and Xu 2007, Takeda et al. 2004). Few works have been carried out

for the three dimensional crack problems except those of specially shaped cracks (Willis 1972,

Kassir and Bregman 1972, Shibuya et al. 1989, Lee et al. 1987). This is mainly due to the extreme

difficulties of solving such problems by mathematics and mechanics, or to the substantial

computation required in the numerical analyses. Itou (2007) investigated the stress intensity factors
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for an interface crack between an epoxy and aluminum composite plate under a tensile load. Qiao

and Wang (2004) presented an elastic deformable crack tip model which can improve the split beam

solution, and obtained explicit closed-form solutions for ERR and SIF for which both the transverse

shear and crack tip deformation effects are accounted. Kao-Walter et al. (2006) investigated the

crack tip driving force of a crack growing from a pre-crack that is perpendicular to and terminating

at an interface between two materials by the finite element method. Kaddouri et al. (2006) analyzed

the interaction effect between a crack and an interface in a ceramic/metal bi-material and discussed

the effects of the elastic properties of two bonded materials, the distance between the crack tip and

the interface. Huang (2001) presented a method for obtaining the mixed-mode stress intensity

factors for bimaterial interface cracks or cracks parallel to the bimaterial interface in half-plane

configurations. Chang and Xu (2007) proposed a pair of contour integrals Jkε, and presented the

relationship between Jkε and the generalized stress intensity factors. Takeda et al. (2004)

investigated the stress intensity factors for several crack configurations in G-11 woven glass/epoxy

laminates under tension at cryogenic temperatures by the finite element method, and obtained the

order of stress singularities at the tip of a crack. In the previous study (Chen et al. 1999), the

integral equations for the crack parallel to a bimaterial interface were formulated as a system of

singular equation. Then Noda et al. (2003) dealt with an elliptical crack parallel to an interface on

the basis of the above equations. Qin et al. ((2002, 2003) analyzed a planar crack terminating at an

interface using a hypersingular integral equation method, and given the mode I numerical solutions

of the stress intensity factors of a rectangular crack. In this study, the numerical method is proposed

for a rectangular crack parallel to an interface. The equations will be solved accurately by using

fundamental densities and polynomials to approximate unknown functions, where the fundamental

densities are chosen to express the stress fields due to the rectangular crack in an infinite body

exactly. Then the stress intensity factors will be indicated with varying shape of the crack, elastic

constants of materials, and the distance between the crack and interface. 

2. Hypersingular integral equations for a planar crack parallel to a bimaterial inter-

face

Consider a planar crack parallel to a bimaterial interface, under tension  at infinity as shown in

Fig. 1. Two dissimilar elastic half-spaces bonded together along the x − y plane, (see Fig. 1) with a

fixed rectangular Cartesian coordinate system x, y, z. 

Suppose that the upper half-space is occupied by an elastic medium with constants  and

the lower half-space by an elastic medium with constants , here  are the shear

modulus, and  are the Poisson’s ratio. The planar crack is assumed to be located at a distance

h above, and parallel to the bimaterial interface. The displacements in the upper space I due to the

crack disturbance can be expressed in terms of Somigliana’s identity as

(1)

In which  is the unknown displacement discontinuity across the

crack surfaces (S±),  denotes the tractions in the j-direction at a point  of the

upper crack surface generated by a unit concentrated body force in the i-direction applied at a point

 in the half space.
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The corresponding stress field is given as follow

(2)

Using the boundary condition, the hypersingular integral equation for unknown function can be

obtained.
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Fig. 1 A planar crack parallel to a bimaterial interface
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(4c)

(4d)

(4e)

 (4f)

(4g)

(4h)

(4i)

(4j)

Eqs. (3a)-(3b) enforce boundary conditions at the prospective boundary S for crack. Here,

 represent the loadings on the crack surface due to internal or external loadings, which

can been obtained from the solution for the loadings of the uncracked solid. The integration 

should be interpreted in a sense of a finite part integral in the region S. 

3. Numerical methods of singular integral equations

Consider a rectangular crack parallel to a bimaterial interface, under tension  at infinity. Here

the dimensions of rectangular crack are 2a×2b. In the numerical solution, it is necessary to express

the singular stresses, which are specific at the crack tip. In the present analysis, the fundamental

density functions are chosen to express the stress field due to a single interface crack exactly and

the following expressions have been used to approximate the unknown functions. 

(5)

Here, the following expressions can be applied, where the unknowns are coefficients of the

polynomials:
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Using the approximation method mentioned above, we obtain the following system of algebraic

equations for the determination of coefficients ail (i = x, y, z), which can be determined by selecting

a set of collocation points.

(6)

The number of unknowns in Eq. (6) is 3l. As examples,  are expressed as follows

 (7a)
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(7c)
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In Eqs. (7c) and (7d), the integrals can be evaluated numerically because of no singularities in the

integral. However, the integrals in Eq. (7a) and Eq .(7b) have a hypersingularity of the form 

when  and , and it cannot be evaluated in the present form. Using the Taylor's

expansion with the local polar coordinates system ,  as shown in Fig. 2,

the following expressions are given, and they will be applied to evaluate the integral.
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(8)

Here

,

,

Using the concept of finite-part integral method and the relations (8), the hypersingular integrals

in Eq. (7a) and Eq. (7b) can be reduced in the following form.

(9a)

(9b)

where , and  and  are known functions, which

can be expressed as a combination of Eq. (8). Now the integrals in (9) are general ones, and can be

calculated numerically. The notation  means a distance between a point  in question and

a point on the fictitious boundary of the crack as shown in Fig. 2.

4. Numerical results and discussion

Consider a rectangular crack parallel to bimaterial interface under a uniform tension load . In

demonstrating the numerical results of stress intensity factors (SIFs), the following dimensionless

factors FI, FII and FIII will be used. 
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(10)

In the following discussion, the maximum stress intensity factors FI and FII appearing at (0, b) (or

(0, −b)) will be mainly considered. In addition, the results using Murakami’s  parameter will

be also discussed (Murakami 1985, Murakami and Endo 1983, Murakami and Isida 1985,

Murakami and Nemat-Nasser 1983, Murakami et al. 1988). Here “area” is the projected area of the

defect or crack. For the cracks subjected to tension  (Murakami 1985, Murakami and Endo

1983)

For the crack subjected to shear  (Murakami and Isida 1985, Murakami and Nemat-Nasser

1983, Murakami et al. (1988):

where “area” is the projected area of the crack or defects. In this paper, for rectangular crack,

area = 4ab. However, it should be noted that area = 20b2 when , and area = 20a2 when

. 

(11)

4.1 Compliance of boundary condition and convergence of numerical solutions

Figs. 3(a)-(c) show the compliance of boundary condition along the crack surface for a/b = 1,

, , , where the collocation point number is 400(20×20),

polynomial exponent are taken as . It is shown that the remaining stresses 
, and  on the surface are less than , when . 
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Fig. 3 Compliance of boundary condition for , , ν1 ν2 0.3= = μ2/μ1 0= h/2b 0.4=

Table 1(a) Convergence of the results FI and FII when , 

h/2b

a/b n 0.2 0.3 0.4 0.5 1.0 2.0

1 FI 6 1.828 1.312 1.0928 0.9765 0.8017 0.7609

7 1.833 1.314 1.0932 0.9765 0.8017 0.7609

8 1.850 1.315 1.0932 0.9765 0.8017 0.7609

FII 6 0.4626 0.2146 0.1175 0.0698 0.00962 0.00083

7 0.4709 0.2212 0.1183 0.0699 0.00962 0.00083

8 0.4716 0.2213 0.1183 0.0699 0.00962 0.00083

16 FI 6 2.900 2.078 1.7127 1.5095 1.1629 1.0453

7 2.923 2.083 1.7131 1.5104 1.1632 1.0453

8 2.943 2.085 1.7131 1.5104 1.1632 1.0453

FII 6 0.9492 0.4852 0.2888 0.1848 0.0367 0.00550

7 0.9690 0.4957 0.2893 0.1850 0.0368 0.00550

8 0.9706 0.4958 0.2893 0.1850 0.0368 0.00550

μ2/μ1 0= ν1 ν2 0.3= =



Variations of the stress intensity factors for a planar crack parallel to a bimaterial interface 325

Table 1(a) shows the convergence of stress intensity factor FI, FII at (0, b) when a/b = 1, a/b = 16,

,  where the collocation point number is 20×20. It is shows that the present

method gives the results with good convergence when . The convergence becomes worse

as  due to the large effect of interface. On the other hand, Table 1(b) indicates that 30×30

boundary collocation points have convergence to the fourth digit when a/b = 1 and to the third digit

when a/b = 16.

Table 2 gives the comparison between the results of square and disk crack parallel to a bimaterial

interface (Noda et al. 2003) for , 

4.2 Effect of Poisson’s ratio

Table 3 shows the results of different Poisson’s ratio when a/b = 16, h/2b = 0.4. It is shown that

the results vary depending on Poisson’s ratio by about 11%. The effect is not vary large even when

Poisson’s ratios are changed form  to . Therefore in the

following calculations we simply assume ν1 = ν2 = 0.3. 

ν1 ν2 0.3= = μ2/μ1 0=

h/2b 0.3≥
h/2b 0→

ν1 ν2 0.3= = μ2/μ1 0=

ν1 ν2,( ) 0 0.5,( )= ν1 ν2,( ) 0.5 0,( )=

Table 1(b) Convergence of the results FI and FII when , 

h/2b

a/b n 0.2 0.3

1 FI 6 1.835 1.310

7 1.836 1.311

8 1.836 1.311

FII 6 0.4708 0.2207

7 0.4710 0.2209

8 0.4710 0.2209

16 FI 6 2.936 2.078

7 2.940 2.081

8 2.939 2.080

FII 6 0.9695 0.4852

7 0.9699 0.4959

8 0.9698 0.4958

μ2/μ1 0= ν1 ν2 0.3= =

Table 2 Comparison between the results of square and disk crack parallel to a bimaterial interface

FI FII

h/2b Square Disk Square Disk

2.0 0.7609 0.6414 0.0008 0.0006

1.0 0.8017 0.6673 0.0096 0.0070

0.5 0.9765 0.7782 0.0699 0.052

0.4 1.093 0.8507 0.1187 0.0879

0.3 1.3146 0.9868 0.2213 0.1613

0.2 1.8503 1.2991 0.4716 0.3457



326 Chunhui Xu, Taiyan Qin, Li Yuan and Nao-Aki Noda

4.3 Stress intensity factor of a rectangular crack parallel to a bimaterial interface

The maximum values of FI, FII appearing at . Table 4 shows the maximum stress intensity

factors FI and FII at x = 0, y = b when , , and .

If h/2b ≤ 0.5, , the FII value is lager than 10% of the FI value, and cannot be ignored. In

other cases, however, the value of FII is only several percent or less of the value FI. The values of

FIII are smaller than FI and FII, are not given in this paper. Fig. 4 shows the distribution of the stress

intensity factors FI, FII when h/2b = 0.2, 0.5, 2.0. 

0 ±b,( )
a/b 1 2 4 16, , ,= μ2/μ1 0 0.1 0.5 2, , ,= h/2b 0.2 ∞–=

μ2/μ1 0.1≤

Table 3 Dimensionless stress intensity factors FI and FII a/b = 16, h/2b = 0.4 

μ2/μ1 = 0 μ2/μ1 = 0.5 μ2/μ1 = 2.0 μ2/μ1 =

FI ν1 = 0, ν2 = 0 1.7133 1.0918 0.9309 0.798

ν1 = 0.5, ν2 = 0.5 1.7133 1.1378 0.8995 0.760

ν1 = 0, ν2 = 0.5 1.7133 1.0413 0.8849 0.798

ν1 = 0.5, ν2 = 0 1.7133 1.1688 0.9224 0.760

ν1 = 0.3, ν2 = 0.3 1.7133 1.1135 0.9192 0.800

FII ν1 = 0, ν2 = 0 0.4035 0.1985 0.1554 −0.084

ν1 = 0.5, ν2 = 0.5 0.4033 0.2137 0.1449 −0.082

ν1 = 0, ν2 = 0.5 0.4035 0.1979 0.1464 −0.084

ν1 = 0.5, ν2 = 0 0.4033 0.2204 0.1490 −0.082

ν1 = 0.3, ν2 = 0.3 0.4034 0.2055 0.1513 −0.075

∞

Table 4(a) Dimensionless stress intensity factors  and  ν1 = ν2 = 0.3

h/2b μ2/μ1 0 0.1 0.5 1 2 0 0.1 0.5 1 2

0.2 a/b = 1 1.8503 1.2948 0.8689 0.7534 0.6786 1.3085 0.9157 0.6145 0.5328 0.4799

a/b = 2 2.8567 1.6926 1.0589 0.9058 0.8082 1.6984 1.006 0.6295 0.5385 0.4805

a/b = 4 2.9431 1.7903 1.1387 0.9765 0.8713 1.4715 0.8952 0.5694 0.4883 0.4357

a/b = 16 2.9630 1.8123 1.1621 0.9978 0.8932 1.4010 0.8569 0.5495 0.4718 0.4223

(a/b = 1)/(a/b = 16) 0.6245 0.7145 0.7477 0.7551 0.7597 0.9340 1.0686 1.1183 1.1293 1.1364

0.3 a/b = 1 1.3146 1.0988 0.8406 0.7534 0.6935 0.9297 0.7770 0.5945 0.5328 0.4905

a/b = 2 1.9787 1.4871 1.0358 0.9058 0.8206 1.1764 0.8841 0.6158 0.5385 0.4879

a/b = 4 2.0812 1.5832 1.1138 0.9765 0.8850 1.0406 0.7916 0.5569 0.4883 0.4425

a/b = 16 2.0961 1.5946 1.1357 0.9978 0.9076 0.9911 0.7539 0.5370 0.4718 0.4291

(a/b = 1)/(a/b = 16) 0.6271 0.6891 0.7402 0.7551 0.7641 0.9380 1.0306 1.1071 1.1293 1.1431

0.4 a/b = 1 1.0928 0.9827 0.8182 0.7534 0.7063 0.7728 0.6950 0.5786 0.5328 0.4995

a/b = 2 1.5983 1.3357 1.0145 0.9058 0.8314 0.9502 0.7941 0.6031 0.5385 0.4943

a/b = 4 1.7133 1.4373 1.0929 0.9765 0.8960 0.8567 0.7187 0.5465 0.4883 0.4480

a/b = 16 1.7249 1.4449 1.1135 0.9978 0.9192 0.8156 0.6932 0.5265 0.4718 0.4346

(a/b = 1)/(a/b = 16) 0.6335 0.6801 0.7348 0.7551 0.7684 0.9475 1.0026 1.0989 1.1293 1.1493

FI FI

*

FI FI

*
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Table 4(a) Continued

h/2b μ2/μ1 0 0.1 0.5 1 2 0 0.1 0.5 1 2

0.5 a/b = 1 0.9765 0.9114 0.8014 0.7534 0.7169 0.6906 0.6446 0.5668 0.5328 0.5070

a/b = 2 1.3876 1.2273 0.9948 0.9058 0.8419 0.8250 0.7297 0.5914 0.5385 0.5005

a/b = 4 1.5018 1.3344 1.0745 0.9765 0.9061 0.7509 0.6672 0.5373 0.4883 0.4531

a/b = 16 1.5192 1.3407 1.0942 0.9978 0.9298 0.7183 0.6339 0.5173 0.4718 0.4396

(a/b = 1)/(a/b = 16) 0.6428 0.6798 0.7349 0.7551 0.7710 0.9614 1.0169 1.0957 1.1293 1.1604

1.0 a/b = 1 0.9765 0.7899 0.7658 0.7534 0.7429 0.6906 0.5586 0.5435 0.5328 0.5254

a/b = 2 1.0314 0.9992 0.9366 0.9058 0.8807 0.6131 0.5941 0.5568 0.5385 0.5236

a/b = 4 1.1550 1.1079 1.0190 0.9765 0.9422 0.5775 0.5540 0.5095 0.4883 0.4711

a/b = 16 1.1630 1.1205 1.0389 0.9978 0.9663 0.5499 0.5298 0.4912 0.4718 0.4569

(a/b = 1)/(a/b = 16) 0.8396 0.7049 0.7371 0.7551 0.7502 1.2559 1.0544 1.1064 1.1293 1.1499

2.0 a/b = 1 0.7610 0.7592 0.7554 0.7534 0.7516 0.5382 0.5369 0.5342 0.5328 0.5315

a/b = 2 0.8018 0.9229 0.9117 0.9058 0.9006 0.4767 0.5487 0.5420 0.5385 0.5354

a/b = 4 1.0196 1.0092 0.9877 0.9765 0.9668 0.5098 0.5046 0.4939 0.4883 0.4834

a/b = 16 1.0454 1.0343 1.0112 0.9978 0.9883 0.4943 0.4890 0.4781 0.4718 0.4673

(a/b = 1)/(a/b = 16) 0.7280 0.7340 0.7470 0.7551 0.7605 1.0888 1.0979 1.1362 1.1293 1.1374

a/b = 1 0.7534 0.7534 0.7534 0.7534 0.7534 0.5328 0.5328 0.5328 0.5328 0.5328

a/b = 2 0.9058 0.9058 0.9058 0.9058 0.9058 0.5385 0.5385 0.5385 0.5385 0.5385

a/b = 4 0.9765 0.9765 0.9765 0.9765 0.9765 0.4883 0.4883 0.4883 0.4883 0.4883

a/b = 16 0.9978 0.9978 0.9978 0.9978 0.9978 0.4718 0.4718 0.4718 0.4718 0.4718

(a/b = 1)/(a/b = 16) 0.7551 0.7551 0.7551 0.7551 0.7551 1.1293 1.1293 1.1293 1.1293 1.1293 

FI FI

*

∞

Table 4(b) Dimensionless stress intensity factors  and  ν1 = ν2 = 0.3

h/2b μ2/μ1 0 0.1 0.5 1 2 0 0.1 0.5 1 2

0.2 a/b = 1 0.4716 0.2202 0.0438 0 -0.0279 0.3335 0.1557 0.0310 0 -0.0197

a/b = 2 0.9027 0.3420 0.0613 0 -0.0384 0.5367 0.2033 0.0364 0 -0.0228

a/b = 4 0.9706 0.3713 0.0680 0 -0.0434 0.4853 0.1857 0.0340 0 -0.0217

a/b = 16 0.9740 0.3767 0.0697 0 -0.0449 0.4605 0.1781 0.0329 0 -0.0212

(a/b = 1)/(a/b = 16) 0.4842 0.5845 0.6284 -- 0.6214 0.7242 0.8742 0.9422 -- 0.9292

0.3 a/b = 1 0.2213 0.1336 0.0327 0 -0.0222 0.1565 0.0945 0.0231 0 -0.0157

a/b = 2 0.4409 0.2347 0.0508 0 -0.0328 0.2621 0.1395 0.3020 0 -0.0195

a/b = 4 0.4958 0.2631 0.0572 0 -0.0373 0.2479 0.1316 0.0286 0 -0.0187

a/b = 16 0.4987 0.2657 0.0587 0 -0.0387 0.2357 0.1256 0.0278 0 -0.0183

(a/b = 1)/(a/b = 16) 0.4438 0.5028 0.5571 -- 0.5736 0.6640 0.7524 0.8309 -- 0.8579

0.4 a/b = 1 0.1188 0.0796 0.0222 0 -0.0161 0.0840 0.0563 0.0157 0 -0.0114

a/b = 2 0.2444 0.1509 0.0377 0 -0.0256 0.1453 0.0897 0.0224 0 -0.0152

a/b = 4 0.2897 0.1772 0.0439 0 -0.0299 0.1449 0.0886 0.0219 0 -0.0178

a/b = 16 0.2912 0.1787 0.0451 0 -0.0312 0.1377 0.0845 0.0213 0 -0.0147

(a/b = 1)/(a/b = 16) 0.4080 0.0445 0.4922 -- 0.5160 0.6100 0.6663 0.7371 -- 0.7755

FII FII

*

FII FII

*
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In Table 4, the ratios of the results of a/b = 1 and a/b = 16 are also shown as (a/b = 1)/(a/b = 16).

The ratio of FI is 0.62-0.77. On the other hand, the ratio of  is . Fig. 4 shows FI,

FII vs. h/2b, and Fig. 5 shows ,  vs. h/2b. It is seen  and  are insensitive to a/b. The

 parameter  is found to be effective for engineering use because the effect of a/b on  is

small. In the other words, different shaped cracks have almost the same values of .

FI
* 0.93 1.16– 1≅

FI
* FII

* FI
* FII

*

area FI
* FI

*

FI
*

Table 4(b) Continued

h/2b μ2/μ1 0 0.1 0.5 1 2 0 0.1 0.5 1 2

0.5 a/b = 1 0.0699 0.0493 0.0149 0 -0.0113 0.0494 0.0349 0.0105 0 -0.0080

a/b = 2 0.1474 0.0982 0.0271 0 -0.0194 0.0876 0.0584 0.0161 0 -0.0115

a/b = 4 0.1850 0.1215 0.0329 0 -0.0235 0.0925 0.0608 0.0165 0 -0.0118

a/b = 16 0.1852 0.1228 0.0339 0 -0.0245 0.0876 0.0581 0.0160 0 -0.0116

(a/b = 1)/(a/b = 16) 0.3774 0.4015 0.4395 -- 0.4612 0.5639 0.6007 0.6563 -- 0.6897

1.0 a/b = 1 0.0096 0.0073 0.0025 0 -0.0021 0.0068 0.0052 0.0018 0 -0.0015

a/b = 2 0.0215 0.0160 0.0053 0 -0.0043 0.0128 0.0095 0.0032 0 -0.0026

a/b = 4 0.0339 0.0250 0.0081 0 -0.0065 0.0170 0.0136 0.0041 0 -0.0033

a/b = 16 0.0368 0.0272 0.0089 0 -0.0073 0.0174 0.0129 0.0042 0 -0.0035

(a/b = 1)/(a/b = 16) 0.2609 0.2684 0.2809 -- 0.2877 0.3908 0.4031 0.4286 -- 0.4286

2.0 a/b = 1 0.0008 0.0006 0.0002 0 -0.0002 0.0004 0.0003 0.0001 0 -0.0001

a/b = 2 0.0009 0.0007 0.0005 0 -0.0004 0.0005 0.0004 0.0003 0 -0.0002

a/b = 4 0.0036 0.0027 0.0009 0 -0.0008 0.0018 0.0014 0.0005 0 -0.0004

a/b = 16 0.0055 0.0042 0.0015 0 -0.0012 0.0026 0.0020 0.0007 0 -0.0006

(a/b = 1)/(a/b = 16) 0.1455 0.1428 0.1333 -- 0.1667 0.1538 0.1500 0.1429 -- 0.1667

FII FII

*

Fig. 4 Variation of FI and FII when μ2/μ1 = 0, ν1 = ν2 = 0.3
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6. Conclusions

In the present paper, a planar crack parallel to a bimaterials interface was considered. The stress

intensity factors for a rectangular crack were calculated with varying the aspect ratio of crack,

elastic constants of materials, and the distance between the crack and interface. The conclusion can

be made as follows.

(1) The problem is formulated as a system of hypersingular integral equations correctly. The

unknown functions of singular integral equation are approximated by using fundamental density

functions and polynomials. The results show that the present method have convergence to the third

digit when a/b = 1−16 and  in Fig. 1. (see Table 1).

(2) The stress intensity factors are indicated in tables and figures with varying the shape of crack

a/b = 1−16, distance form the interface , and the elastic constants 
when ν1 = ν2 = 0.3 (see Table 4). The effect of Possion's ratio is not vary large, i.e. by about 11%

when a/b = 16, h/2b = 0.4.

(3) The  parameter  is found to be effective for engineering use because the effect of

crack shape a/b on  is small. In other words, different shaped cracks have almost the same values

of .
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