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Abstract. Recently, many researches have been done to examine the behavior of fiber reinforced
concrete (FRC) subjected to the static loading. However, a few studies have been devoted to cyclic
behaviors of FRC. A main objective of this paper is to investigate the cyclic behavior of FRC through
theoretical method. A new cyclic bridging model was proposed for the analysis of fiber reinforced
cementitious composites under cyclic loading. In the model, non-uniform degradation of interfacial
bonding under cyclic tension was considered. Fatigue test results for FRC were numerically simulated
using proposed models and the proposed model is achieving better agreement than the previous model.
Consequently, the model can establish a basis for analyzing cyclic behavior of fiber reinforced composites.

Keywords: cyclic fiber bridging relation; cyclic constitutive relation; fiber reinforced cementitious
composites; numerical modeling.

1. Introduction 

Cementitious Composites such as mortar and concrete have been and are still used as the most

conventional materials in construction for their workability and remarkable compressive strength.

However, the weakness and tendency to be brittle under tension, and particularly fatigue under

cyclic loading, remain the largest problem of such cementitious composites. 
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On the other hand, the introduction of fiber-reinforcement is known to improve significantly the

tensile behavior of concrete in terms of resistance to fatigue and impact loading as well as tensile

strength. Accordingly, fiber reinforced concrete (FRC) has been extensively adopted as cementitious

composite for structures likely to be subjected to cyclic loading such as airport pavement, highway

overlay, bridge deck and machine foundations (Balaguru et al. 1992). 

Recently, high performance fiber-reinforced cementitious composites (HPFRCC) such as ECC (Li

2005), SIFCON (Naaman 1991) and DUCTAL (Lafarge) were developed in order to provide high

strength or ductility according to the structure at hand. The improved mechanical properties and

durability of HPFRCC are promising for future applications to structures exposed to severe loading

conditions. However, due to the short history of these new materials, a little is known about the

fatigue properties and failure behavior of HPFRCC (Suthiwarapirak et al. 2004).

Empirical approach constituted the most common method applied to evaluate fatigue performance.

But, this approach requires time-consuming test data collection and processing for a broad range of

design cases which, in principle, is not applicable to other design cases (Zhang et al. 2000).

Therefore, establishing a mechanism-based cyclic bridging model capable to both predict the fatigue

life for a given FRC structure and design a FRC material for a given fatigue life as well as for

HPFRCC materials is of primary importance. Considerable progress has been realized over the last

few years in the area of micromechanics of failure under static loading condition (Li et al. 1991,

Lin et al. 1995, Kanda et al. 1999), but a few researches were devoted to cyclic loading condition

(Matsumoto et al. 1999, Zhang et al. 2000, Suthiwarapirak et al. 2004). Previous models assumed

that the sliding resistance degrades uniformly along the debonded interfaces without accounting for

the potential non-uniformity in the degradation process resulting from differences in the relative

sliding displacement along the matrix-fiber interfaces. 

Accordingly, this research proposes a cyclic fiber bridging model considering the non-uniformity

in the degradation of sliding resistance based on micromechanics. To achieve this end, a theoretical

model of a single fiber pull-out under cyclic load considering degradation of bond strength as well

as Cook-Gordon effect (Cook et al. 1964, Bentur 1990) is developed. The bridging models of single

fiber are applied for deriving the crack plane bridging model accounting for random orientation and

embedded length of fiber.

2. Fiber bridging behavior of FRC under cyclic loading 

In order to model the behavior of FRC, the material is classified into un-cracked body and

cracked body in engineering views. Before cracking, uncracked body is generally treated as an

elastic material, i.e., assumed to be linear elastic in tension up to cracking criteria. After a crack is

formed, stress is transferred over the crack by bridging action of fiber (Bentur 1990).

When the embedded fiber is loaded, the fiber is gradually pulled out from the matrix. Pull-out of

the fiber is processed by, firstly, a debonding period corresponding to the extension of fiber in a

debonding zone followed by fracture of the chemical bond, and then by a sliding period where the

debonding zone reaches the embedded end of he fiber causing the entire fiber sliding out of the

matrix (Lin et al. 1999).

Cyclic fiber bridging exhibits more complicated behavior then such monotonic one as conceptually

presented by Wu et al. (1994). This behavior is illustrated through Fig. 1 and Fig. 2 with schematic

diagrams of the distribution and direction of bond stress under loading/unloading cycles.
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Fig. 1 Distribution and direction of bond stress during unloading processes. (a) first loading, (b) during
unloading process, (c) end of unloading

Fig. 2 Distribution and direction of bond stress during reloading process. (a) end of unloading, (b) during
reloading process, (c) all reversed bond stress change back again, (d) further loading
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During the first loading cycle shown in Fig. 1(a), the fiber-matrix interface undergoes frictional

debonding with gradual extension of the debonding zone as pull-out load is increasing. During the

unloading phase following the first loading cycle, the interfacial bond stress of the fiber near the

crack plane acts in the opposite direction to resist fiber moving back to the matrix. Figs. 1(b) and

(c) picture the gradual extension of the length of reverse stress during the unloading process. 

The second loading cycle provokes the gradual shift of the direction of the shear stress along the

reversed zone from the exit point toward the embedded end as schematized in Fig. 2(b) until the

reverse stress reaches the previous reversed zone as shown in Fig. 2(c). If larger load is applied, a

new debonding region will be created to resist the load as illustrated in Fig. 2(d). Subsequent fiber

pull-out and slip-back under successive loading/unloading cycles will then progressively smoothen

and wear out the interface between fiber and matrix to finally degrade the frictional bond strength.

Therefore, the region where the stress act reversely and the region debonded have to be extended

with cycles for the case of constant amplitude displacement or loading.

Some models describing this phenomenon have been proposed recently for fiber reinforced

cementitious material (Matsumoto et al. 1999, Zhang et al. 2001, Suthiwarapirak et al. 2004).

Matsumoto et al. (1999) derived a theoretical cyclic bridging constitutive law assuming that the

fiber-matrix interface has constant bond strength as shown in Fig. 3(a) degrading with cycles.

However, fibers in cyclic loading are gradually pulled out and fiber interface degrades severely near

the crack surface, which causes non-uniform degradation of interfacial bond strength. Zhang et al.

(2001) suggested a semi-analytic crack bridging model for FRC. The authors subdivided the

debonding zone into reversal and non-reversal regions as in Fig. 3(b) so as to account for the

degradation of bond strength in the reverse stress region. However, the non-uniform degradation

between the newly created reverse region and the reverse region created at first unloading could not

be considered. Moreover, the proposed model was limited to fiber without chemical bond. 

Fig. 3 bond strength distribution of the debonding fiber during unloading
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3. Proposed cyclic bridging model

3.1 Scope and model assumptions

As reviewed in the previous chapter, several researchers proposed a cyclic constitutive law

describing fiber bridging under cyclic loading based on the micromechanics. However, the previous

model failed to consider the non-uniform degradation of bond strength and the chemical bond at the

fiber-matrix interface. Accordingly, this paper intends to derive new cyclic bridging constitutive

relations including the effect of chemical bond, non-uniform degradation of interfacial bond

strength. The newly proposed model expressed in closed equation form also considers pre-

debonding effect called Cook-Gordon effect. 

The main assumptions adopted in the proposed model are frictional bond strength degradation

occurs when the fiber slips in reverse direction, and reverse stress is created from the exit point

during unloading/reloading process conceptually presented by Wu et al. (1994).

In debonding period, the region where the stress acts reversely in the unloading procedure is

continuously increased with the load cycles increases. Therefore, three regions can be assumed

according to their behaviors. The one region, the reversal zone, is created at first unloading, and the

direction of bond stress continuously changes since the first loading. Therefore, it is assumed that

bond strength decreases uniformly with increasing load cycles. Another region, the non reversal

zone, is where the direction of bond stress has been not changed. In the non-reversal zone, bond

strength is assumed to remain constant because the direction of bond stress is not changed. And the

other is the transition zone. As the length of this zone is gradually expanded as the load cycles

increases, the non-uniform degradation provoked by the newly created region. In this transition

zone, the bond strength near the reversal zone, where is created in early loading stage, undergoes

much degradation, whereas the bond strength of newly created transition zone is almost same as the

strength of non-reversal zone. Therefore, linear distribution is assumed between the initial and

degraded strengths in the transition zone. 

Fig. 4 Assumed bond stress distribution of fiber in debonding period
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In pull-out period, bond stress region is also divided into three regions that are the embedded

zone, pull-out zone and transition zone as shown in Fig. 5. In the pull-out region, fiber undergoes

pull-out from the matrix at first loading and never slips back into the matrix. Fiber in the embedded

region is not experiencing pull-out from the matrix. Therefore, it is assumed that bond strength of

embedded zone decreases uniformly with load cycles. In the transition region, fiber undergoes pull-

out from the matrix and slip-back into the matrix. Accordingly, the corresponding distribution of

bond strength may be non-uniform. Bond strength near the crack plane is stronger than that of

deeper embedded region because of larger wearing out during push/pull of fiber. The bond strength

is thus assumed to have linear distribution between the embedded and pull-out zones.

3.2 Cyclic bridging model for single fiber in debonding period

3.2.1 First loading stage

The fiber bridging relations during the first loading stage are identical to those of monotonic fiber

bridging. For simplicity, Cook-Gordon effect is considered as a pre-debonding at the instant of

cracking with assumption that bond strength in pre-debonding region is zero instead of the

additional displacement induced by the elastic stretching of the fiber in the pre-debonding region (Li

et al. 1993). This assumption is illustrated through Fig. 6 showing the distribution of bond strength

in fiber.

The pull-out behavior of fiber is generally represented by the relation between pull-out stress, σf,

and a exit-end slippage, δ, of fiber. The relative pull-out displacement between fiber and matrix in

debonding period is calculated as follows (Hsueh 1996, Lin et al. 1999, Zhang et al. 2001)

(1)

where εf (x), εm(x) are the strain of fiber and matrix at distance x from fiber exit, respectively. Both

fiber and matrix are assumed as linear elastic until failure, and the bond strength is assumed as

uniform distribution. Also, the end effect and Poisson’s effect are neglected. The assumptions can

be found detail in Lin et al. (1999) and Zhang et al. (2001). The proposed models are derived based

on the Eq. (1) using newly developed conditions and assumptions.

δ x( ) εf x( ) εm x( )–( ) xd∫=

Fig. 5 Assumed bond stress distribution of fiber in pull-out period
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Elastic stretching of debonded fiber in pre-debonding region

When the fiber is loaded, the portion of fiber in pre-debonding region slides out frictionally until

friction of the whole pre-debonding region is activated. The P-δ relation is given by

for (2)

where δ is the fiber pull-out displacement, ap is the pre-debonding length, δp is the pull-out

displacement when all the portion of fiber in pre-debonding region is stretched out, Gd is the

chemical bond strength and η is load sharing factor between fiber and matrix, Vf Ef /VmEm.

Debonding of bonded region

The fiber-matrix interface undergoes debonding which extends the activated fraction of the

interfacial zone towards the embedded end of the fiber. The crack opening displacement is given by

stretching of the debonded portion of the embedded fiber, and pull-out load increases with the crack

opening displacement due to extending debonded interface area. The P-δ relation is given by

for (3)

where τ is the initial bond strength of fiber, δfd is the fiber pull-out displacement at full debonding

and le is the embedded length.
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Fig. 6 Fiber pull-out processes in debonding period
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3.2.2 General unloading case
Unloading starts once the maximum displacement is achieved. As mentioned previously, a zone

where the interfacial stress acts in the reversed direction is created to resist moving back of fiber

during unloading. The length of this reversed zone mainly depends on the unloading load and bond

strength at the interface. 

After a fiber has undergone N times of cycles, the bond stress of fiber is assumed as shown in

Fig. 7. When unloading starts, the change of load, ΔP, can be expressed by

(4)

and the corresponding change of fiber end slippage, Δδ, is calculated using Eq. (1) as following

(5)

Accordingly, the relation between slippage and force can be expressed as following Eq. (6) by

substituting Eq. (5) into Eq. (4).

(6)

where τN and τN'  are the bond and reverse bond strength at N-cycles, respectively. Length of

reversal zone at first cycle is x1. Length of transition zone at N cycles is xN. Debonding length at N

cycles is ln. This relation holds when reverse stress is created in reversal zone. i.e., x < x1.
When further slippage occurs, the bond stress in the transition zone changes its direction as shown

in Fig. 8. In this period, the bridging relation can be calculated by the same method used in Eq. (6).

PΔ
πdf

------- τR x ap–( ), τR τN τN′+( ) 1 η+( )= =
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Fig. 7 Reverse stress in reversal zone during unloading
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First, it is derived the relation between the change of force and bond strength and the relation

between the change of force and bond strength. Then, the relation between the change of slippage

and force can be expressed as

(7)

where , , τ1 and τ1'  are the bond and reverse bond

strengths at first cycle, respectively. This relation holds for the reverse stress created in the transition

zone, i.e., xN > x > x1.

As bond strength degrades with increasing load cycles, larger reversal zone must be created to

attain the minimum slippage (or minimum load). After the change of reverse stress reaches the end

of the transition zone, a new reverse stress zone is created as show in Fig. 9, and expressed by

(8)

This relation holds in the newly created reversal zone, i.e., lN > x > xN.

When the reverse stress reaches the end of debonding region, the stretched fiber contracts because

of chemical bond (see Fig. 10). The amount of change in load, ΔPG, depends on the chemical bond

strength, and the relation between change of load and displacement, ΔδG, is calculated by 

(9)

Then, the total changes of load, ΔP, and slippage, Δδ, are
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Fig. 8 Stress state of fiber for change of bond stress in transition zone
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, (10)

This relation holds for the contracted state of chemical bond, i.e., x = lN, ΔδL is the change of

slippage until x = l and ΔPL is the change of load until x = l.

3.2.3 General reloading

When reloading starts, the direction of the shear stress along the reversed zone gradually changes

toward the opposite one. After the end of reversal stress zone reached the previous reversed zone, a

new debonding length is created because there is no further reverse shear stress to be created. The

relations established for the unloading case remain effective before creation of the new debonding

zone. 

Due to the degradation of bond strength under cyclic tensile load, the maximum fiber-end

slippage or force at reloading period is less than the corresponding value at the last cycle when the

length x reaches the end of the reversed stress region. In order to attain the maximum fiber-end

slippage or further slippage, pull-out of the fiber has to be larger than that in the previous cycle with

a new debonding length being developed as shown in Fig. 11.

The further slippage by new debonding is given by

(11)
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Fig. 9 Stress state of fiber for change of bond stress in non-reversal zone

Fig. 10 Stress state of fiber in contracting state
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where lN+1, length of debonding region after reloading, is lN + ΔlN, lN is length of debonding region

before reloading, xN is length of reversal stress region before reloading. ΔPND is the change of load

during new debonding.

3.3 Cyclic bridging relation for single fiber in sliding period

The fiber slides out of the matrix once the debonding length reaches the end of an embedded

fiber. The relations between pull-out load and fiber slippage under cyclic load are derived.

3.3.1 First loading case

In this period, the pull-out load is the same as the one of the monotonic loading case (Lin et al.

1999). The external load is equilibrated with frictional bond strength of fiber, and expressed as

(12)

where δ0 is the fiber end slippage when full debonding is attained, Crack width, w, is 2δ and β is

slip-hardening factor. This relation is valid for δ < le − ap+ δ0. Equations for unloading and

reloading are derived based on the Eq. (12). 

3.3.2 Unloading case

As in the case of debonding, the direction of the shear stress along the reversed zone gradually

changes back. Once the reversal stress reaches the end of embedded fiber, push-in sliding occurs. 

During unloading, the direction of bond stress changes back from the exit end of embedded fiber.

The relation between load and slippage is the same as the one during unloading of fiber in

debonding period.

After complete reversal of the bond stress, the fiber is pushed into the matrix. During the push-

back of the fiber, the sliding distance and interfacial bond strength becomes the main contributor of

Δδ. As mentioned previously, bond strength region is assumed as shown in Fig. 12 during

unloading process. Since chemical bond has already been destroyed during debonding period, no

need is to consider it in sliding period. Equations for unloading are derived based on the Eq. (12)

using these conditions and assumptions. The relation between force and fiber slippage is given by

P πdf 1 β δ δ0–( )/df+[ ] τ le δ– ap– δ0+( )[ ]=

Fig. 11 Stress state of fiber in new debonding state
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for (13)

where δp is the slippage in sliding period, calculated by . τE,N+1 is bond strength of fiber

at exit-point. When both segments were considered, shorter embedded side is in sliding period and

longer embedded side is in debonding period. Therefore crack width w can be calculated by

. Although δ0 and δdebond have been changing continuously

during the cyclic loading, amount of slippage by them were relatively small with respect to slippage

by total sliding distance. Therefore, it is assumed that δ0 and δdebond are constant and the same for

each other during sliding processes. The change of the bond strength at exit-point during the slide-in

process can be expressed as follows.

P πdf 1 βδp/df+( ) τN le δp–( ) 1

2
--- τE N 1+, τN–( ) δmax,N δP–( )+⎝ ⎠

⎛ ⎞
=

δmax,N δp δmin,N> >

δp δ δ0–=

w δdebond δslide+ δdebond δp δ0+ += =

Fig. 12 Bond stress of fiber in push-in state
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(14)

where δmax,N and δmin,N is the maximum and minimum fiber end slippages at N cycles. 

3.3.3 Reloading case

As in unloading case, when reloading starts, the direction of the shear stress along the fiber

gradually changes back. After complete change of direction, pull-out sliding occurs. When the

slippage is less than maximum value of previous loading as shown in Fig. 13(a), relation between

load and slippage is derived as 

(15)

If slippage exceeds the previous maximum value, fiber in embedded region slides out as the

length of embedded fiber decreases as shown in Fig. 13(b). The load in this period is given by

(16)

where embedded length of fiber, , is calculated by .

τE N 1+, τN τE τN–( )
δmax,N δp–

δmax,N δmin,N–

-------------------------------+=

P πdf 1 βδp/df+( ) τN le δp–( ) 1

2
--- τE N 1+, τN–( ) δmax,N δP–( )+=

P πdf 1 βδp/df+( ) τN le δp–( )[ ] πdf 1 βδp/df+( )τNle N 1+,= =

le N 1+, le δp–

Fig. 13 Bond Stress of fiber in pull-out state
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3.4 Crack plane model

The crack bridging in fiber reinforced cementitious composite can be obtained by averaging over

the contributions of fibers crossing the crack plane. As the constitutive law relates the fiber bridging

stress as a function of the crack opening displacement under monotonic loading (Li et al. 1991), the

bridging stress change-crack opening displacement change relation (Matsumoto et al. 1999) is

obtained by

(17)

where Vf = fiber volume fraction, Lf = fiber length, p(φ) and p(l) are the probability density

functions of the orientation angle and the embedded length. 

To account for inclined fiber effect, it is adopted the simple representation that load increases with

angle of inclination of fiber (Li et al. 1990). This snubbing effect could be represented by the pull-

out force of a fiber inclined at an angle (φ) by

(18)

where f is snubbing coefficient,  is a single aligned fiber bridging force derived in

section 3.2 and 3.3.

For some fibers, the fiber rupture strength may depend on the inclination angle. In certain high

strength synthetic fibers such as PVA, this may be a result of local compression buckling of the

bending at the exit point from the matrix. This effect is expressed by strength reduction factor

(Kanda et al. 1998)

(19)

where  is the reduced strength considering strength reduction factor,  are the tensile strength

of fiber and f ' is strength reduction factor.

4. Verification of the proposed model

4.1 Parameters for analysis

To verify the proposed cyclic bridging model, the analytical results are compared with

experimental works of Zhang et al. (2000, 2001), in which they conducted the cyclic bridging tests

of fiber reinforced concrete with 1% volume of steel fiber. Tests were controlled with constant

maximum and minimum crack widths. As a result, cyclic crack bridging behavior of fiber

reinforced concrete was obtained. 

The main object of this study is to propose the model to predict the cyclic bridging behavior with

various loading conditions. Therefore, all the analysis is conducted with the same material

parameters including the fiber degradation relation. Only the loading conditions (maximum and

minimum crack width of loading) are chosen according to the experimental conditions. The

proposed cyclic bridging relations are expressed as a function of the pull-out displacement (crack

width) and load. Material parameters used in the analysis are shown in Table 1. Because the lack of
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experimental data for the single fiber under cyclic pull-out load, the degradation parameters are

assumed based on the test results of the bridging stress degradation for crack plane.

4.2 Comparison between the analytic and the experimental results

A typical bridging stress-crack width curve during fatigue loading under deformation control is

shown in Fig. 14. From this figure, it can be found that the bridging stress at the maximum crack

width decreases gradually, whereas bridging stress at minimum crack width increases gradually.

Fig. 15 shows stress-crack width relation from the theoretical analysis results obtained by the

proposed method. It can be seen that the theoretical results agree well with the experimental ones

and describe accurately the characteristics. 

Experimental results are normalized with respect to the value at first loading to compare each

Table 1 Material parameters used in the analysis 

Property Value

Fiber
matrix

Fiber Fiber length Lf (mm) 25

Fiber diameter df (mm) 0.4

Fiber elastic modulus Ef (GPa) 210

Apparent fiber strength  (MPa) 1200

Fiber volume fraction Vf (%) 1

Matrix elastic modulus Em (Gpa) 35

Fiber-matrix 
interface

Friction bond strength τd (MPa) 4.9

Pre-debonding length (mm) 3.0

Snubbing coefficient f 0.75

Fiber interface
degradation 

N0 10

β1 (mm−1) 10

β2 (mm−1) 0.7

σfu

n

Fig. 14 Typical stress-crack width curve of fatigue
test (after Zhang et al. 2000)

Fig. 15 Stress-crack width curve by the proposed
method
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other, and given in Figs. 16(a)~(f) as the number of loading cycles. The calculated results are also

shown together in Fig. 16. Thick lines represent the analytical results by the proposed model. In the

analysis, the same material parameters were used for all case although the maximum and minimum

crack widths coincide with the experimental conditions. 

From these results, it can be found that these two models successfully simulate the two-stage

degradation law of crack bridging observed in the experiments. However the proposed method

Fig. 16 Comparison between experimental and analytical results
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appears to be in good agreement with the experimental results regardless of the crack width, while

the bridging stress theoretically computed by Zhang et al. (2001) underestimates the experimental

data for the case with small crack width. 

The overall bridging behavior of FRC in the small crack width is mainly governed by the

debonding behavior of the fibers, and the proportion of the debonding fibers in the matrix decreases

as the crack width become larger. Therefore the good agreement for the small crack width may be

considered that the proposed model describes the debonding behavior more precisely. However,

need is thus for further experimental studies on cyclic behavior of single fiber in order to investigate

the effect of individual parameters.

5. Conclusions

A new cyclic bridging model for the analysis of fiber reinforced cementitious composites under

cyclic loading has been developed. The developed model was based on the micromechanics which

describes the crack bridging stress in short randomly oriented fiber reinforced composites. In the

model, non-uniform degradation of interfacial bond strength under cyclic tension has been

considered. 

The model is based on the assumption that the bond strength of fiber/matrix interfaces is

degrading under cyclic loading. In the present model, bond strength in debonding period is divided

into three regions; non-reversal zone, transition zone, and reversal zone. The bond strength of

reversal zone is assumed as decreasing uniformly. In the transition zone, linear distribution is

assumed between the strengths of the reversal and non-reversal zones. In pull-out period, bond

strength is also divided into three regions; embedded zone, pull-out zone, and transition zone.

The accuracy of the proposed model was verified through an analytic example. The model is seen

to describe the experimental results accurately. Comparison between the analytic predictions and the

test results indicate that the proposed model is achieving better agreement than previous model. The

adopted methodology is also verified to be capable of simulating fatigue behavior of fiber

reinforced cementitious composites. Although further extensive researches are needed such as

development of a degradation model as well as verification with large number of experiments, the

proposed model can establish a basis for analyzing cyclic behavior of fiber reinforced composites. 
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