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Inelastic buckling of tapered members
with accumulated strain
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Abstract. This paper is concerned with inelastic load carrying capacity of tapered steel members with
or without accumulated plastic strains resulted from previous loading histories. A finite element program
is developed using stiffness matrices of tapered members and is applicable for analyses with material
and geometric nonlinearity. Results of analyses are compared with other available solutions and with
experimental results.
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1. Introduction

Tapered members are frequently used for pin-based portal or gable frames in which maximum
moments occur at eaves and decrease to approximately zero at the supports. Since Amirikian
(1952) presented a simplified procedure for the analysis of such frames connected by hinges
at the top center of the frames, extensive works have been done on tapered members both
theoretically and experimentally (Bradford 1988, 1989, Bradford and Cuk 1988, Hwang, et al.
1991. Kitipornchai and Trahair 1972a, 1972b, Lee and Morrell 1974, 1975, Lee. et al. 1972, Lee
and Szabo 1967, Prawel, er al. 1974, Salter, er al. 1980, Shiomi and Kurata 1983).

By varying the depth. almost uniform stress distribution along the member length can be
achieved. Thus, the plastic zone could be more widely spread in a tapered member than a
prismatic one under severe loadings. A shaking table test on a tapered gable frame model was
conducted by Hwang. er al. (1991). The N-S component of 1940 EI Centro earthquake with
different intensities were applied on the one fifth scale structural model. The frame, braced
adequately in the lateral direction according to AISC specification, survived the largest intensity
at first but failed by lateral buckling when the same loading was applied again. This is attributed
to the accumulated strain resulted from previous loading cycles. From the strain measurement,
it was found that about 75% of the rafter was in the inelastic range before failure. Predictions
from various specifications showed considerable differences. All are conservative.

This paper is concerned with the capacity of tapered members with or without accumulated
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strains resulted from previous loading history. A finite element program is developed using stiffness
matrices of tapered elements, applicable for large displacement problems. Strain hardening, resi-
dual stresses, and initial strains can all be taken into consideration. The stiffness matrices are
derived from the total potential energy and then modified to account for large displacements.
They are applied to linearly tapered elements for rectangular and I-sections. For illustrative pur-
pose, elastic and inelastic buckling analyses are carried out on various tapered members and
on a planar frame. The results are compared with other available solutions.

2. Finite element formulation

One dimensional finite element models for thin-walled prismatic members have been developed
by many researchers since 1960s (Barsoum and Gallagher 1970, Bazant and Nimeiri 1973, Brad-
ford 1988, 1989, Chan and Kitipornchai 1987, Rajasekaran and Murray 1973, Yang 1984). For
tapered members, tapered elements is generally superior to uniform elements in convergence
and accuracy. Stepped-member idealization of tapered member in most cases accompany slow
convergence and inaccuracy because of imposed discontinuities and time-consuming data prepa-
ration. Shiomi (1983) and Salter (1980) had to use 30 uniform elements to represent a tapered
member.

The one-dimensional finite element model for tapered members is derived' from the energy
theorem. To handle large displacement problems, stiffness matrices derived from the standard
energy theorem using the displacement derivatives as generalized displacements are modified
by adding the correction matrix to the rotational degrees of freedom locations in the geometric
stiffness matrix (Argyris, et al. 1978, Elias 1986, Yang 1984). It is to be noted that the use of
the conventional geometric stiffness matrix may lead to large errors when applied to a simple
planar frame.

2.1. Stiffness matrices
Standard stiffness matrices for nonlinear analysis can be obtained either from the consideration

of the total potential energy or from the virtual work. The total potential energy of a structural
element is given by

n=uv—-v (1

where U=the strain energy and V'=the external work. For thin-walled members, U can be expres-
sed as

U= % f (o.e+2r,e, 20,6, )dv o

in which the strain tensor can be separated into linear and nonlinear components as follows.
e=¢g teéun (3)
&=w.+ -;—( u,+vi+w?)

2. =v-+w, H(u,u-+v.oy.twow.) 4)
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Fig. 1 Coordinate system and nodal degrees of freedom.

28,\': = u,: + w\ + ( u\ u.: + v\ vi + w\ w,Z)

In the first one of Eq. (4) the term —;—w’ may be neglected when compared to w,. Using

the axis system shown in Fig. 1, the displacements may be written as

w={—¢&z—ny—0'w

u=¢—(y—y,)0
v=n+(x—x,)0 (5
The normal stress o. is
0_.:£+A—/[“ ——M")ﬁLig ® (6)

ALY LY

Neglecting higher order terms, the strain energy, U, can be obtained from Eq. (2) through
Eq. (6).

Linear and cubic interpolation functions can be adopted for axial and other degrees of freedoms
and the displacements in an elements are represented by their nodal values. Then the total
potential energy can be expressed in a matrix form as

=37 k7—F'F ™)

7T:{§|- §|. ni. 6.,. 0., 9y|- 0., Cz« f:- n-. 0., 6., 9,\-3 9'::} (8)

In the above equation, the subscripts | and 2 denote member ends. The stiffness coefficients
are then obtained from
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The above stiffness matrices obtained from the standard energy theorem may lead to large
errors when applied to even a simple frame (Argyris, ef al. 1978, Yang 1984). Thus, the geometric
stiffness matrix &, is modified by adding a three by three correction matrix, k. to the rotational
degrees of freedom locations in the geometric stiffness matrix. It is referred to as k,,. This transfor-
mation is necessary in order to ensure the continuity at the joints because the displacement
derivatives in large displacement problems are generally not continuous at member ends where
two or more members may be connected (Elias 1986). Yang and Argyris also obtained the above
correction matrix by considering the nature of moments undergoing finite rotations in three
dimensional space. Detailed expressions for the strain energy, stiffness matrices, and the correction
matrix are given in Kim (1992).

ki =kt k=

2.2. Tapered elements

For tapered members, the linear stiffness matrix and a portion of the geometric stiffness should
be reevaluated because the cross sectional dimensions are not constant along the member. For
convenience in calculations the following properties are used. For I-sections,

A=2bt,+t,h
_th | btk
=7+

_ b hig
L=+

[ = thb
" 24

1,
J= 3 ht+

2
3

All dimensions can be represented by their nodal values using linear interpolation. For rec-
tangular sections one can simply substitute #=0.0. By substituting Eq. (10) into the potential
energy expression and through Egs. (7) and (9), the stiffness coefficients for tapered elements
can be computed. All the integrations are carried out by using MACSYMA (1988).

bt} (10)

2.3. Tangent stiffness coefficients

After portions of the cross section become yielded. the cross sectional properties must be
reevaluated according to the assumped stress-strain idealization. Therefore, the strain energy
should be modified and the equilibrium equations become incremental in nature. The transformed
section is used to compute the tangent modulus of the cross section after yielding has initiated.
For a given strain distribution, the transformed section is obtained by transforming the thickness
of the plate segment of the cross section according to the ratio, E,/E. Shear modulus, G does
not influence the lateral buckling load much and it is therefore kept constant. The stress-strain
relation, the typical transformed section, and the residual stress type adopted in this study are
shown in Fig. 2 to Fig. 4.

Three types of residual stress are considered, Type A was used by Fukumoto and Galambos
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Fig. 4 Residual stress type.

(1966) Type B was used by Lee, and Type C was used by Young (1975). Type B satisfies the
torsional equilibrium condition. The magnitude of the residual stresses in flanges and webs

are given by
Type A: x =03

O, btl' (11)

o, {bt,+1,.(h—1))}
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Fig. 5 Flange tapered cantilever-centroidal loading.
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Fig. 6 Inelastic buckling of a simply supported beam
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Typical values are 0.5, 0.3 for o,., o, respectively for rolled sections- type B and a=0.08. b=0.29
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Fig. 7 Inelastic buckling of web tapered beam-columns

for type C.
2.4. Accumulated strain distribution

Strains accumulated during the previous loading history are assumed to be linear across the
cross sections. Without knowing the previous load cycles, to predict the exact equilibrium paths
is impossible. Therefore, the simple assumption is made that accumulated strains are added
to each nodal points of the member. Only major axis strains are considered. The inelastic zone
may be spread over large portion of the member under severe loadings. It is assumed that
the accumulated strain at the larger end of the tapered member is equal to the yield strain
and that it is linearly decreased to zero along the member. The measured strain distribution
along the rafter of the gable frame from Hwang, er al's (1991) tests before the last loading is
shown in Fig. 10a (linearly interpolated). The assumed strain distribution along a member length.
for ap=0.5, 12, is shown in Fig 8, where g, is an index indicating the inelastic zone of the
member.

3. Solution procedure

The element stiffness matrices are transformed and assembled to the global stiffness matrices
through the direct stiffness procedure. Linearized buckling load is computed from the bifurcation
analysis, which assumes that the initial equilibrium state is undeformed but stressed. The condition
to satisfy then is that the determinant of the coefficient matrix of the equilibrium equation
be equal to zero, ie.,

det (K, (A)+K,(1))=0 (14)

In elastic buckling cases, the above equation is a standard eigenvalue problem because the
elastic stiffness matrix is independent of the loading and the geometric stiffness matrix is propor-
tional to the loading. However, in plastic buckling problems, both matrices are nonlinearly depen-
dent upon the applied loadings. Thus. an iterative procedure is needed to establish the Eq.
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Fig. 8 Inelastic buckling of web tapered simple beam under a moment at one end.

(14). The following scheme is adapted in this study. For a given load factor, A,
(1) Solve the structure using elastic properties, calculate the member forces.
(2) Using displacements from the above, at each nodal points, compute the strain distributions
including strains due to residual stress, accumulated strains, etc.
(3) Compute stress resultants for the above strain distributions using assumed models for
the stress-strain relation.
(4) Calculate the unbalanced member forces.
(5) Adjust the strain distributions from the unbalanced forces.
(6) Repeat Step 3 to 5 until the value of the unbalanced forces are within the given tolerance.
(7) Construct the transformed section according to the current updated strain distributions.
(8) Compute the tangent stiffness matrices by assuming linear variations for the section proper-
ties.
(9) Solve the eigenvalue problem.
The lowest eigenvalue is searched by the secant method with the Sturm sequence check. Bisec-
tion and parabolic interpolation are used together to isolate the lowest eigenvalue.

4. Numerical examples

4.1. Elastic buckling

4.1.1. Tapered column

In Table 1. dimensionless critical loads of a hinged bar with tapered ends and with the prismatic
central portion is evaluated for various taper ratios. The cross section is rectangular with 7,=1.0
mm, /=100 mm, and E=71240 Mpa. Due to symmetry. only half of the bar is modelled by

using 6 elements. Results from this study agree well with available theoretical solutions (Timoshe-
nko and Gere 1961).
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Table | [(P,L*/(EL),]

~ -

1 ‘ ' |
: - j

{ T 1

Taper m
ratio 0 0.2 04 0.6 0.8
Y Pcr Timo Pcr Timo Pcr Timo Pcr Timo Pcr  Timo
0.1 6.49 648 7.60 7.58 8.69 8.63 948 946 9.82 9.82
0.2 7.01 7.01 8.00 7.99 8.92 891 9.56 9.63 9.83 9.82
04 7.87 7.87 8.61 8.59 925 9.19 9.67 9.70 9.85 9.84
0.6 8.60 8.61 9.10 9.12 9.50 9.55 9.75 9.76 9.86 9.85
08 9.26 9.27 9.51 9.54 9.70 9.69 9.82 9.83 9.86 9.86

1 :() 9.87 9.87 9.87 9.87 9.87 9.87 9.87 9.87 9.87 9.87

4.1.2. Flange tapered cantilever beam

Elastic buckling load of a flange tapered cantilever beam which has the tapering ratio of
0.167 is investigated in this example. At the support (larger end), sectional dimensions are p=12
in, /=24 in. £,=0375 in., and ¢,=05 in. The load is applied at the centroid of the tip of
the cantilever and the critical load is non-dimensionalized by P,/*/(EL ), where the subscript
I denotes the larger end. The results from this study and those of Bradford's (1988) are in
good agreement. They are shown in Fig. 5. However, Chan's (1990) predictions differ considerably
when the taper ratio is small. Rapid decreases in the buckling loads are notable as the taper
ratio decreases.

4.2. Inelastic buckling
4.2.1. Prismatic members

Inelastic buckling loads of a simply supported W8X31 section under equal and opposite
moments at the ends are shown in Fig. 6a. The predictions of this study compares well with
those of Trahair and Kitipornchai (1972b). Stiff increases near the yield moment are due to
strain hardening. &,=110 &, and E,=FE/33.0 are used in this example. Also shown in Fig.
6b are the inelastic lateral buckling strength under an axial load and a moment at one end
of the same member. Again, the results are in good agreement with those of Fukumoto and
Galambos (1966).

422 Tapered members

Inelastic buckling loads of web tapered I-sections are computed and compared with the results
from the experiments conducted by Shiomi and Kurata (1983) —19 tests for the lateral buckling
and 5 tests for the in-plane strength. Comparisons are given in Fig. 7. Cross sectional dimensions
are referred to Shiomi and Kurata (1983). Residual stress type C is used in this study. Solid
line indicates the interaction equation for equivalent beams and columns. Despite the slight
scatter. the finite element program of this study performs better than the interaction formula
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Fig. 9 Inelastic buckling of a web-tapered simple beam under moment and axial force

in predicting both the out-of-plane and the in-plane strength of the tapered beam-columns.
4.2.3. Tapered members with accumulated strain

Because of the lack of test data. strain distribution along a member due to previous loading
cycles has to be assumed. It is therefore assumed that the yield strain is developed at larger
end of the member (Fig. 8) as an initial strain condition. A simply supported tapered beam
is considered in this example. Sectional dimensions are b= 1.5 in., 1,=1,=0.125 in.. and d=15.625.
1.75 in. for larger and smaller end respectively. The buckling moments are represented by dimen-
sionless factor M/M,, where M, being the buckling moment without initial strains. Fig. 8 shows
the degradation of the capacity of the tapered member as the accumulation of the strain increases.
Warping restraint greatly enhance the resistance of the member as seen in the figure. Buckling
moments of more slender members which fails elastically drop much faster than stocky ones.
However, the ultimate strength is maintained for members with small slenderness ratio even
though about half of the length of the member is left in inelastic range.

Inelastic buckling moments of the same member when a axial force is present are shown
in Fig. 9a and Fig. 9b for the slenderness ratio of 40 and 60 respectively. When the axial forces
are small, less than one tenth of P, there are only slight decreases in inelastic buckling moments
if only small portions of the member are in the plastic zone. However. as the inelastic zone
increases axial forces will reduce the resistence of the member. Both Fig. 8 and Fig. 9 show
similar trends, ie. ultimate strengths are retained until the inelastic zone reaches to a certain
part of the member. Afterwards, the buckling curves drop to form plateaus and decrease slowly
as the in=lastic zone increases. This is expected because the moment decreases linearly from
the larger end to zero at the smaller end so that the inclastic buckling is governed by the
weakening of the larger end of the member.

Fig. 10a shows the assumed accumulated strain distributions along the rafter of the tapered
gable frame during Hwang, er al’s test (1991) (linear variation between measured points is assumed).
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Fig. 10 (a) Strain distribution in the gable frame, ¢/¢,; (b) Envelope curve of the tapered gable frame.

Applying these strain distributions, the predicted buckling loads are compared with the experi-
mental results and other predictions by different codes in Fig. 10b. The finite element solution
gives very close predictions to the ultimate strength of the frame. Also shown is the prediction
when the strain hardening is neglected.

5. Concluding remarks

The effects of accumulated strain distributions along the tapered members due to previous
loading cycles such as earthquake ground motions are investigated. The program predicts closely
the elastic and inelastic buckling loads, with or without initial strains, of tapered and prismatic
members.

It is found that adequate lateral bracings and warping restraints are important factors influen-
cing the ultimate strength of tapered members. The ultimate strengths are maintained for stocky
members even when the inelastic zone is spread over about half of the member.

The finite element program of this paper can be used for further studies which include the
effect of the degradation of stiffness resulting from the previous cyclic loadings, other loadings
and boundary conditions.
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