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Finite element modelling of reinforced concrete
structures with laboratory verification

Y.M. Chengt

Department of Ciil and structural Engineering, Hong Kong Polytechnic, Hong Kong

Abstract. The presence of reinforcement has a significant influence on the stress-strain behaviour of
reinforced eoncrete structures, expecially when the failure stage of the structures is approached. In the
present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement
is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement
coefficient. Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation
and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory
tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.
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1. Introduction

Since concrete is good in compression but weak in tension, reinforcement has to be used
to take up the tensile stresses and inhibit the growth of cracks in concrete. For concrete structures
subjected to corrosive environment, the development and propagation of cracks are very important
and have to be considered carefully. For such a composite material with different nonlinear
properties in compression and tension, analytical methods for describing the development and
growth of cracks are not possible. Simplified methods are adopted for strength estimation while
many empirical formulae are formulated for considering cracks in many building codes which
is necessary for routine design. For critical structures like nuclear plant or major sewage treatment
plant, finite element analysis is however considered to be necessary for a detailed study.

1.1. At present, reinforcement is usually modelled by the following models, One-dimensional
steel bar element through concrete element nodes

This approach has been used by many early researchers. but its pronounced shortcoming
is that the steel bar elements have to pass through nodes of concrete elements which are occasio-
nally difficult to be achieved in structures with complicated reinforcement layout unless the
layout of the mesh is also complicated.

1.2. The effective steel layered mode/

This approach is especially suitable to slab and shell structures where the reinforcement usually
covers the whole concrete plan uniformly in layers. It is however difficult to be applied to problems
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Fig. 1 Dimension of reinforced concrete truss plank.

with reinforcement oriented in arbitrary direction like the concrete truss plank as shown in
Fig. 1.

1.3. Embedded representations for reinforcement

Phillips and zienkiewicz (1976) developed an embedded representation in which the virtual
work integration is performed along the reinforcing laver and the reinforcement is aligned with
one of the local isoparametric element coordinate axes but not passing through the nodes of
concrete element. This description is better than the former 2 models but is still not suitable
for reinforcement with arbitrary orientation.

1.4. Modified embedded representations for reinforcement

Elwi and Hrudey (1989) have presented a formulation for a general reinforcing bar embedded
in general two-dimensional elements. The bar can be oriented with arbitrary direction and not
passing the nodes of concrete element, i.e., independent of mesh. The author has extended the
concept of Elwi to general three-dimensional elements with improvement and correction in the
transformation process.

Due to the combined action of transverse and longitudinal reinforcement, deformation in
concrete compressive zone may be confined by spatial frame action. This effect varies with
the quantity and spacing of steel in the structure. Although two dimensional plane stress analysis
is usually sufficient for the analysis of common reinforced concrete structures, a three dimensional
stress state actually always exists. When this effect becomes significant enough, such as in colu-
mum with spiral reinforcement etc., it is necessary to consider it in test and strength calculation.
The constraint action of reinforcement has also a significant effect on the development and
propagation of cracks in concrete.

For the influence of reinforcement on the constitutive relation of concrete, yield and failure
criterions etc., there are some common approaches which are:
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(1) Increase of concrete ultimate strain.

(2) Application of Kent-Park o-¢ curve (Kupfer er al. 1969, 1970).

(3) Compound steel element, ie., steel element is in axial-stress state as well as in bending
state.

(4) Considering steel bar as a one-dimensional element, meanwhile, its confining effect on
concrete is also put into account. This is the approach used by the authors in the present
paper.

A brief discussion on these concepts can be summarized as follows. The ultimate strain &,
of concrete can be increased in the presence of reinforcement (especially stirrups) because of
the restraint to the compressive strain of concrete at ultimate state which will improve the ductility
of structures. &, for reinforced concrete is hence greater than that of plain concrete. Unfortunately,
this consideration can not be readily applied to quantitative analysis using the dimension and
distribution of reinforcement. Several important parameters could be used to adjust the o-¢ curve
for concrete with the presence of reinforcement which include ratio of stirrups volume and
concrete volume surrounded by stirrups, spcing of stirrups, cover of concrete etc.. Such application
in finite element analysis appeared to be not rewarding at present because more material parame-
ters and complicated o€ relation are required. It is possible to describe reinforcement as a bending
element as well as an axial-stress element. This approach is much more complicated to be
used. In this paper, the author proposes an alternative in the formulation of the reinforcement
stiffness matrix for one dimensional steel bar element with arbitrary direction and take into
account the confining action of reinforcement by a confinement coefficient from the dimension
and location of reinforcement.

2. Deformation of steel bar

Consider the reinforcement embedded in a concrete element as shown in Fig. 2. It is assumed
that reinforcement element is in axial stress state and fine bonding exists between bars and
surrounding concrete. Thus the local axial strain €, along the bar is determined by the general

Fig. 2 Concrete element with steel bar.
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concrete strain field as follows,
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where [ m, n are the directions of the steel bar. Eq. (2.1) can be exprssed in another form
as
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where [B] is the conventional strain displacement matrix

[C] is the matrix in Eq.(22)
{d} is the displacement vector
[B]=[C][B]=strain displacement matrix for the steel bar

The stress-strain relation for the reinforcement bar is given by
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In the six stress components as shown in Eq. (2.3), only the term o, is not equal to zero.
From Eqgs. (22) and (2.3), it follows that:

{ot=[D1[Clel=[D'ILCIBNd} (2.4)

The stress {o'} and strain {&'} in the local axes can be determined from Egs. (2.1) to (24)
and can be transformed to global axes easily. The stress in the steel bar is expre-
ssed in a special way in Egs. (2.3) and (24) because we want the formulation of the stiffness
matrix for the steel bar to resemble that of the concrete element and that the reinforcement
can be located in any position in the concrete element.

The stiffness matrix of a concrete element containing reinforcement is given by:

ko= trtoumas | tevorsn

n
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Fig. 3a Steel bar in global coordinate. b Steel bar in local coordinate.

=KO+K® 2.5)

The first term in Eq. (2.5) is the contribution of concrete to the element stiffness matrix which
is given by the conventional way. The second term in Eq. (2.5) represents the contribution of
the steel bars to the element stiffness matrix. It can be expressed by Eq. (2.6) as

Nr XJ
K(’e): ZA‘f [B(<‘)]T[Q_] [B((’)]dx' (26)
i=1 X7

where Nr is number of steel bars in element e
A, is area of steel bar i
x' is curved coordinate as shown in Fig. 3a
X, X, are the coordinates of the two ending points referring to the global axes
[B]=conventional strain displacement matrix for isoparametric element

[D]=[C]"D]LC]

r Pm P’ Fm mnl’ nl*
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It is noted that a full matrix [D] is obtained for the global constitutive matrix as compared
with that in the local axes [D]. The direction cosines of any point P on the steel bar can
be obtained easily by the orientation of the reinforcement.
The term dx’ in Eq. (26) can be replaced by the following formula from Fig 3a as
dc _dy _ dz

R 28

In the local coordinate system as shown in Fig. 3b, dx” is given by
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m n
where I, m’, n' are direction cosines of point P in local coordinate which will be discussed
in details later. Using Egs. (2.8) and (2.9), an important relationship relating the local and global

coordinates is obtained as,

dx
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With Eq. (2.10), Eq (2.6) can be rewritten as follows,
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As seen in Eq. (2.11), this integration can be obtained if any point referring to the global

coordinate system. Yamaguchi (1991) presented an approach using a lower-order element by
simple mathematical manipulation and Elwi and Hrudey (1989) presented an approach associated
with higher-order element by an iterative procedure. The mixed iteration process which wil be
discssed in the following section can be viewed as an extension of the works by Elwi. From
co-ordinate transformation, we have

ox 0x 0Ox
dx o gy o || %
_| 9y dy 9y
4 G “an o ||
dz 0z 0z
dz 0F on O d¢&
ie, {dxt=[J1{d0} (2.12)
Inverting Eq (2.12), we have
{d}=071""{dx} (2.13)
Eq. (2.13) can be rewritten in an incremental form as
{Aw}=[J]""{AX} (214)

Now the essential steps in the solution process can be summarized as follows.

Stage 1 Suppose one point P with its coordinate value (X,, Y,, Z,) is given. The following
quantities are evaluated:

(@) Xo=2N, (0. 0, 0) X,
Y,=ZN, (0. 0, 0) Y,
Z,=2N, (0. 0, 0) Z,

which is the values of the coordinates of the origin of the local coordinate system
&n¢ in the global coordinate system.
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(b) The trial direction cosines given below are evaluated as.
L={(X,~ X)) +Y,~ Yo +(Z,~ Z(,)2> v

L= XX

L
»— Y
moy=— Y L 0
Ho= ZQ—Z()
1] L

(¢) If L—0, then £=0, n,=0 and =0 and stop here (converged), otherwise continue the
following steps.
(d) Divide L into N sections, saly N=100, and AL=L/n,
AX:AL'I(}
AY:AL'm()
AZ:AL'no
(e) set iteration counter k=0
set &=m=¢=0,
set X=X, Yi=Yo, Yi=Y.. Zi=2,

Stage 2 L=((XP—Xk)2+(Y,;—Yul+(zp—zk)2)“f

IF L—0, then p=k, p=k and p=k and stop here (converged), otherwise continue.

Stage 3. From (2.14)

A& AX

An (=] AY

Ag A¢ (2.15)
Stage 4. Compute the followings terms and the corrector

X, =ZEN}X,

Yk’:mkxi

Z,/=3N}'Z, (2.16)

Because of the error produced from linear approximation, (X, Y;, Z;) is not exactly equal to
X, Yi. Z)) and a modification as given by Eq. (2.17) is required.

AY Xi— Xy

AY' = YA-_ YAI

AZ' Z,—Z (2.17a)
and

AL/ AX

An' [ =L | AY

A&/ AZ' (2.17b)

Therefore
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s & A& Ag/

M+t | = | m |+ | An | + | An/

Gor & AG, pavey (2.17¢)
X X AX

Zisy Z, AZ (2.17d)

go to Stage 2 and continued the iteration.
The direction cosines of steel bar in global coordinate, ie., (I m, n), can be defined by the
following if its curve axis is given,

and

/ TI/L
X
N R R [ RS AW AT
m oy ' L‘[(dx)*( dy)(dz)]
ox'
" a9z 'L 2.18)

Cgrved steel b'ar is usally described by straight line, parabola or arc which can be expressed
using three points, namely, starting point, ending point and any other point near middle part
of steel bar. Similary, the coordinate of curved steel bar in local coordinate can also be expressed

by a parabola of its three critical point & & and another point corresponding to that in global
coordinate as follows,

axll

i" 8‘5 /Lﬂ
, _ ﬁ , B axl/ 2 dx” 3 axv , |12
L I L‘[( af)*( an)( ac)]
’ ﬁ ’
" oc /L (2.19)

For sake of convenience, the steel bar can be divided into several segments and linear approxi-
mation and interpolation can be employed to determine the direction cosines of the steel bar
in the local coordinate system. In computer programming, a pre-processor can be employed
to deal with this part of calculation before the main program starts, and this approcah has
been adopted by the author. The advantage of the present approach as compared with that
by Elwi is the correction of the present approach as compared with that by Elwi is the correction
of the deviation from linear approximation which can be critical for curved bars. Even if curved
steel bar is not present, this method is still appealing because the steel bar can be oriented
in arbitrary direction but not passing the nodes of the three-dimensional concrete element while
the method by Elwi is limited to two-dimensional problems only.

3. Analysis of influence from reinforcement constraint

There are many laboratory tests and theoretical studies on effective constrained zone of reinfor-
cement in tensile zone of concrete. Such constraint is empirically incorporated into formulae
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for spacing of cracks or bond slip for the control of crack width. This confinement can be
produced by the transverse reinforcement (secondary bars or stirrups) and by contribution of
residual tensile strength of crack concrete (tension stiffening). Giuriani et al (1991) based on
some rigorous assumptions and test analysis proposed a series of empirical equations concerned
with two confining action due to the trnsverse reinforcement and the residual tensile stress trans-
mitted by the faces of crack. In finite element analysis, however, crack phenomenon is generally
modeled by smeared model which neglects the influence of crack width on the geometry of
structures. In this paper, the confining action of reinforcement on concrete compressive zone
is considered by the use of a confinement coefficient. Some basic and reasonable assumptions
about the confining action can be set out as follows,
(1) The nearer the reference point (gauss point) of concrete and steel bars, the stronger will
be the confining action.
(2) The larger the diameter of steel bars, the stronger will be the confining action.
(3) The more uniform distribution of the reference points of reinforcement around concrete,
the stronger will be the confining action.
(4) The denser the reinforcement, the stronger will be the confining action.
(5) The more reinforcement presence in an element, the stronger will be the confining action.
A confinement coefficient which can reflect the above assumption can be readily written below

as,
@;=a<i>ﬂ 31
/4.7=}N>f[ i (‘Ej‘ )]X—cl/— (3.2)

where ¢,—influence coefficient

U;— confining coefficient of reinforcement in reference point j of concrete in one element.
When no reinforcement is in the element, set y, to 1.0.

D;—diameter of bar in reference point / in the same element which combined with L;
based on assumption 2 and 3

L;— distance between reference point i of reinforcement and reference point j of concrete
in the same element

C,,—deviation coeficient of reinforcement distribution which reflecting assumption 4 can
be determined by formula (3.3). When no reinforcement is in the element. set C,

to 1.0.
[o}
C\jj:z- (33)
L,‘"‘l’: ?
o= N, (34)
. L.
- i/
L ———J—NV (3.5)

N;—total number of reference points of steel bars in one element based on assumption
5

a, f. y—parameters, generally, y=10, a=04-0.5, f=1/3-1/5, which can be obtained by trial
and error from several computations so that ¢,= 1.0 without reinforcement and ¢,=04
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with significant reinforcement

In the present work, cracked concrete is modeled by the smeared crack model. Concrete in
tension is modeled as a linear elastic strain-softening material and the maximum tensile stress
criterion will be employed to distinguish elastic behaviour from tensile fracture. The present
work is an extension of that by Hinton (1988) and the elasto-viscoplastic model for concrete

and steel followed that adopted by Hinton with the modification given in the follow sections.

The yield surface F, defines the onset of viscoplastic behavior and the strength limit surface
F; defines the intiation of material degradation. In Hintons, (1988) study, these functions are
described in terms of the first and second deviatoric stress invariants /, and J, only which can

be expressed as
Fyo, o)=ClL+(c'I;'+3pJ)"*— 0, =0
Fi(o, o)=Cl,+(c*1°+3BJ5)"—0,=0 (3.6)

Typical values of ¢ equal to 0.1775 and B equal to 1.355 have been adopted by Kupfer, Hilsdor-
fand Rush (1969). Inelastic volume dilation is kown to occur in concrete material near the ultimate
stress. This kind of dilation, however, may be confined by transverse and longitudinal reinforce-
ment. especially in cyclic loading or dynamic response. Therefore, a modification to invariant
I, can be written as,

71:@‘/(01"%02‘*'03) (3.7)

Eq. (3.6) keeps in original forms with 7, replaced by 7, in Eq. (3.7). During inelastic straining,
both surfaces F, and F; change which depend on the amount of the accumulated damage expres-
sed as the viscoplastic energy density W,.

Fio. (W, k)=0
F=(o. o(W,)=0 (38)

where oy(W,, K) defines the change of the yield stress level in uniaxial compression oy,
o(W,) defines the change of the failure stress level in uniaxial compression o

w, is the viscoplastic energy density defined as
WFﬂJ%%m (39)
k is the viscoplastic work density in the softening range. It is defined as
k=m—m#fam%m (3.10)
ir

and t, and W,/ are the time and viscoplastic energy density when the strength limit is reached.
In the present study, the constitutive behaviour of concreate under compression is given by

0<0.5f,, elastic

05 fu<0<075 fu  H=033

075 fu<o<fs H=0.1

o=f, H'=0 3.11)

where H' is the hardening parameter
An exponential function will be used to describe the post-failure behavior. The function oy(W,,
k) is defined by the expression,



Finite element modelling of reinforced concrete structures 603

Table 1 Material parameters (units in N, mm).

Material Property Concrete Steel
E 284E3 200E3
v 0.2 /
f!or f 340 280.0
& 0.0035 /
f 34 280.0
Gy 0.1 /
a 04 in egs. (3.1),
B 1/5 and (3.2)
Y 1.0
q(kN/m)

Az

/

12] Al

24:]
20: E

o T T T T T T T T —mm
2 4 6 8 101214 16 18

Fig. 4 Loading-maximum displacement.

(W, k)=ayf". )
oW, k)=af'+H'e
O'()(I’V,,, k)=a2ﬁ.'+H2’E & VV/,SVV/;/
o (W, K)=F

where &=y /(&)
(W, )=aflexp(—ak) | W,>W/ (3.12)

in which ¢, defines the limit for elastic behavior (typically a;=0.4—0.5), & defines linear hardening
position (@=0.7—08) and a models the degradation after failure (a.=10—50). H/’ and HY
are plastic modulus (H,'~1/3E, H,’~1/9E). The parameter /. is the static compressive strength
of concrete. ¥ is equal to 2/3 under loading and —2/3 under unloading

The failure stress will be assumed to be a linear function of the viscoplastic energy density.
and the function g(W,) is defined by the expression

FW)=Bf/(1=B=W,)  O<W,<W/ (3.13)

The parameter f, and B; are determined from experiments. From [1], 3, is from 1.836 to 2.291
and B is from 0.792 to 2.365.
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The computer program used by the author is based on that by Hinton (1988) with major
improvement in the reinforcement modelling technique and considered the concrete confinement
coefficient as mentioned before. The use of Fortran 90 with dynamic data management is also
adopted in the enhancement of this program.

4. Numerical study of reinforcement truss plank
4.1 Static Example

The problem under consideration is the 1X2 m composite reinforcement truss concrete plank
as shown in concrete. During the load tests, the two edges of the plank was simply supported
and a uniform line load was applied at the center. Due to symmetry, only one-quarter of structure
needs to be considered in analysis. Some parameters for the tests are shown as following Table
L.

From Fig. 4, we see that two analytical results with and without confining action represented
by 41 and A2 respectively fit experimental result represented by E very well before yield of
structure. The two analytical curves almost overlap due to the model assumption that before
concrete yields, confining action plays no role in structural behavior. Obvious difference amongst
the three results appears after many concrete gaussian points have yielded. 42 fits better E than
A1, which means that confining action of reinforcement is important and should be considered
in analysis. The confinement coefficient proposed by the author appears to be reasonable from
this study.

4.2. Dynamic example
In situation where it is difficult if not impossible to simulate the effect of dynamic loads

acting on a structure by using equivalent static loads, analysis methods have to be employed
which take into account the important dynamic effects. These methods are based on classical
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theory of vibrations and structural dynamics. For lumped parameter system such as those resulting
from a finite element discretization, the equations of motion can be written in matrix forms
as

(M 31+ CCIR LK ] Ixb=1{P@))
@.1)

Here in this paper predictor-corrector form of Newmark’s method has been recommended (Hinton
1988). The sample is described as above. but the loading system is specially designed as shown
in Fig. 5.

In finite elemtnt programming, stress state of a specific reference point in every element is
either in elastic state, one-way crack, two-way crack. yield, failure, crushed etc. determined by
a series of criterions. The load history adopted in the present study is sown in Fig. 5. Point
A (P, t)) is obtained at the time when the total number of yielded gauss points in proportional
to total number gauss points up to a specific limit, ie.

Ne >
NN - P
where N, is number of yielded gauss points of concrete
N, is number of gauss point of concrete. in reduced integration scheme. N,=15 for
20 nodes brick element
N, is nuber of element
Pimi 18 @ specific limit, py,,;,=0.02-0.06

When A (P, 1)) is given, extends ¢, to t» such that =2, and P.=0. thus we obtain point
B (P», ). Stretching AB to C and set P, to —0.6P,. After simple deduction. #; can be obtained
as 2.61. Repeating the above procedure, point D (P,, ;) in loading history is readily determined
with P,=0 with 1,=3.2,, and E(Ps. t5) with Ps=0.6P, and 7,=3.8¢,.

Because loading period is much longer than the fundamental period of the plank. therefore,
the above loading system is similar to cyclic loading. Fig. 6 shows a relationship of loading
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Table 2 Material Properties (units in N, mm)

Material Property Concrete Steel bar
E 284E3 200E3
v 0.2 /
S O f; 50.0 280.0
& 0.0035 /
f 34 280.0
G, 0.1 /

and displacement hysteresis curve in which the two curves are translated form of loading-time
history and displacement-time result. The loading system is designed in this way so that influence
of confining action on hysteresis loop, which reflects energy absorption, can be shown because
more loading has to be added to the structures under consideration of reinforcement on plastic
behavior of concrete (the same quantities of gauss point yield are reached in these two cases).

A final conclusion is that maximum displacement dosen’t occur at the moment of maximum
load acted on plank because inertia forces play a part in dynamic analysis. It is near to the
maximu loading due to the fact that loading period is much longer than structural fundamental
period which is around 4 second and the loading is similar to static loading. Pronounced differe-
nce occurred shortly after many gaussian points of concrete have yielded which is similar to
that in the static example above. For this specially designed loading system. unloading point
4 in loading history of thw two situmation 4, and 4. is not the same which can be explained
by the confining action of reinforcement which increases the yield level so that A, has a higher
P, in loading history than A4, for the same unloading criterion Py

A

5. Laboratory and numerical study on reinforced concrete beam

Two simply supported concrete beams of 3 m span length are loaded with a point load at
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the middle of the beams. Relation of the applied load with deflection and stresses in reinforcement
and concrete as well as the development and propagation of cracks are monitored during the
tests. The dimension of the beams are 150 mm wide and 220 mm deep.The first beam is reinforced
with 2 number of 16 mm diameter high yield bars without ny stirrup. The second beam is
reinforced with three number of 16 mm diameter high yield bars at the bottom, 2 number
of 8 mm mild steel bars at top and 6 mm diameter mild steel stirrup at 100 nm spacing. The
cover to the reinforcement are 25 mm to the two beams. In the design of the reinforcement
for the two beams, they are designed to carry the same ultimate load using the code BS 8110.
The second beam requires more reinforcement because its has smaller lever arm as compared
with the first beam.

The beams are modelled with 10 number of 20 nodes brick elements and 108 nodes. Due
to symmetry, only half of the section is considered in analysis. The beam is divided into half
along its mid-depth so that there are totally 2 layers of brick elements and each layer composed
of 5 regular brick elements. 15 Gaussian points are on the surface of the elements. It is interesting
to note that the same finite elemnt mesh can be adopted for the two beams even though these
two beams possessed different number of steel bars with different layout. This is possible because
of the numerical modelling techniques as discussed proviously. The finite element model used
for the present analysis is shown in Fig. 7. The material parameters used for the present analysis
is shown in Table 2.

The relation between the maximum compressive strain at top fiber and the applied load
at the mid-section of the beam is shown in Fig. 8. It is encouraging to note that the prediction
of strain with the measured result is rather good for the two beams. Furthermore, beam 2 has
a higher first crack load as well as greater ultimate load as compared with beam 1. This is
mainly due to the presence of stirrups in beam 2 which has helped to confine the concrete
and hence a three-dimensional stress state is achieved. Since concrete has a greater strength
under a three-dimensional stress state, beam 2 should show greater strength as compared with
beam 1 and this is obtained in the present study. The top compression reinforcements in beam
2 have only minor contribution because they are small and are mild steel bars. In the present
study, the effect of the top bar is smaller than that of stirrup but this may not be the case
for other problems.

The relation between the maximum deflection and the applied load is shown in Fig. 9. It
is noticed that the prediction of the initial crack load is very similar to that obtained from
the test. Looking at Figs. 8 and 9, it is observed that the stiffness of beam 1 has a more noticeable
drop after initial crack as compared with beam 2. This is due to the presence of stirrups which
induce confining action on the concrete in beam 2. The comparison between the observed crack
pattern and the computed crack pattern are shown in Fig 10. It is observed that the prediction
of the crack pattern is in reasonable agreement with the measured result.

6. Conclusion

Reinforcement confinement coefficient and an effective method for modelling reinforcement
arbitrarily oriented in concrete are proposed in this paper. Two numerical examples showed
that the proposed model is reasonable. From laboratory and numerical tests, reinforcement confi-
nement is observed to be important and should be properly considered. The coefficient proposed
by the author can be used easily in finite element analysis and offers an attractive way in
modelling reinforcement confinement action.
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