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Abstract. The determination of the stress intensity factors is investigated by using the surface integral
defined around the crack tip of the structure. In this work. the integral method is derived naturally
from the standard path integral J. But the use of the surface integral is also extended to the case where
body forces act. Computer program for obtaining the stress intensity factors K; and Kj is developed,
which prepares input variables from the result of the conventional finite element analysis. This paper
provides a parabolic smooth curve function. By the use of the function and conventional element meshes
in which the aspect ratio (element length at the crack tip/crack length) is about 25 percent, relatively
accurate K; and Ky values can be obtained for the outer integral radius ranging from 1/3 to 1 of the
crack length and for inner one zero.

Key words: stress intensity factor; J-integral; surface integral: smooth curve function

1. Introduction

In 1928, Richart, et al. pronounced for the first time that microcracks are occurred prior to
stresses and strains of concrete being sufficiently large to make tension-fracture. Also, Neville
(1959) applied Griffith’s theory to concrete in the first place, where he insisted on that this
theory can be used only approximately in concrete, because concrete’s strength might be dependent
on not critical stress criterion but critical strain criterion.

In the first experimental paper applying fracture mechanics concept to concrete, Kaplan (1961)
concluded that LEFM was adequate failure criterion for concrete by way of bending test of
concrete beams that had various crack length. On the other hand, Kesler, et al. (1972) tested
central cracked plates which were made of mortar and concrete. From the test, they reported
that LEFM is not a proper fracture criterion for concrete because of variance of fracture toughness
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according to crack length. But Saouma, e al. (1982) reanalyzed the test results using quarter
point singular triangle elements at the crack tip zone, in which they concluded that Kesler,
et al's opinion was not valid and LEFM can be applied to concrete in an engineering point
of view.

In fact, seeing that property of concrete material, only macroscopic analysis is still useful.
But assumption of perfect elasticity for concrete and consideration of linear parts for load-displa-
cement diagram can make nonlinear effects unimportant. Moreover if specimen’s size are suf-
ficiently large so that plane strain condition remains, it is thought that fracture property of
concrete can be decided by LEFM.

To trace crack propagation by LEFM, first of all, stress intensity factor(SIF) values are to
be calculated. Then, from these SIF values, displacements and stresses of crack tip zone can
be obtained. Moreover crack propagation can be decided by comparing these values with fracture
toughness of the material.

These SIF values can be obtained easily from general formula utilizing stress function in
the case of simple geometry. But numerical techniques like finite element method(FEM) must
be applied for the case of complicated ones. So, FEM was used as a typical method for obtaining
a solution of the fracture problem in the last 20 years.

There are several methods to obtain SIF by FEM. First, SIF can be determined from compari-
son of theoretical values of displacement field and stress field at the crack tip zone with finite
element analysis results (Barsoum 1976, Owen and Fawkes 1983, Jin, Jang, Choi and Eum 1989).
But this method requires the use of fine element division and singular elements to represent
stress singularity at the crack tip zone. Second, strain energy release rate method (Irwin 1956)
and fictitious crack extension method, (Hellen 1975) which requires a FEM analysis for different
crack length twice. Third, SIF can be obtained from line integral values which are independent
of the used contours, especially Rice’s J-integral (1968) has been widely used. But this method
has an inconvenience to define the integral contour in advance.

By the way, Babuska and Miller (1984) proposed the surface integral method which can directly
calculate SIF K; and K. But, here, since displacement field of crack tip zone was introduced
in asymptotic expansion form. there are some difficulties. Droz (1987) also obtained SIFs by
the surface integral method, but quite a few differences with analytical solutions could be seen
in his results.

It is the purpose of this paper to introduce surface integral method by modifying conventional
J-integral method, to propose special smooth curve function, and finally to make a post-processing
program that can easily and more correctly calculate SIF by surface integral method.

2. Surface integral method
2.1. Surface integral method and stress intensity factor

The surface integral method is based on the energy of the crack tip, strain field and stress
field at near the crack tip. So. SIF K; and K, can be directly obtained by this method in which
singular element and fine element division are not necessary. Since this method is very similar
to formulation of the J-integral, it is assumed that any body forces are not considered and
external forces are not applied to the crack surfaces.

In the integral contour and domain of Fig. 1, closed contour I'* can be defined as follows.
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A

Fig. 1 Contours and domain of surface integral

I"":I“+F(~1+I';+FC2 (1)

And considering integral direction, J-integral for path I is as follows.

J= '—j (Wdy_f,‘ULI dS) (2)
rE

Where W is strain energy density, ¢ is traction vector normal to the plane n, U, is displacement
vector, and ds is the element of arc along the path I

Here, any sufficiently smooth function ¢ is considered, which has unit value on the contour
I, and in the area 2, and has 0 value on the I" contour and outside area of £2 And from
Fig. 1, it can be seen that dy=0 in the path I.=1I¢ + - And considering 7=0 in the crack
surfaces I, following expression can be made.

f (wdy—tiu;,ds) =0 (3)
r

e

And about contour I following expression can be written.

f(WdY’tlunld5)¢:0 4)
r

Therefore, integral about closed contour I'* can be represented as follows.

J= ‘jﬁ(wnl_liuzzl)¢ds (5)

Where n, is x directional component of outward unit normal vector and is equal to dy/ds.
Changing Eq. (5) to the surface integral about area (2* by use of the Green's theorem

and considering W= %—q;&,-, following expression can be obtained.

J= —%f *{O'izui.z—o'il U )@ 1—2Acnup)@.tdn (©)
o)
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Since displacement v at near the crack tip obtained from FEM analysis can be regarded
as a approximate values for the analytical solution u, v can be represented as follows.

yRu=Ku'+Kyu" ()

where u’, u” are as follows.

0 3
(2x—1) cos= —cos5 6
I— 1 r 2 2
=44 V7 [

.6 .3
2k+1) sin~ s1n20

2x+3) sin—Q + sini 6 ®)
2 2
—(2k—3) cosg - cos% 0

In the above expression, u is the shear modulus, x is (3—w)/(1+v) in plane stress condition
and (3—4v) in plane strain condition, where v is Poisson’s ratio.
A similar expression can be considered for the stress field. That is,
o(v)® o(u)=K,o(u")+Kyo(u") )

Inserting Eqs. (7) and (9) to Eq. (6), and representing this formula separately with respect
to MODE 1 and MODE 1I, following result can be obtained.

!’i_

[\
N

b
4u

J= =K@y, 1. 0)— 5 Ku (v, 1", 0) (10)
where content of function @ is
D(v, u® qb):fn[{G,-g(g“)vi.z“dn(ﬁ)u?.1} o
—{oi(u)vatoa(y)ub} ¢ . ]d02 (11)

where, a=1 1
After denoting o;(u“)=o;; inserting Egs. (7) and (9) to Eq. (11), following expressions for
a=1 II can be obtained.

D'=D(v, u', ®)=K, ®|+K, D}
P'=B(y. u". )=K, PV+K; P (12)

Q{:f *{(0{2”7,2_0{1U5.1)¢.1‘2(0§i”f_1)¢.2} g
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fP”*f {ohui ,—olul Yoi—2ozul )2} d02 (13)
By the way, J-integral value has the following relation with K; and K in mixed mode.
J= i——lE; +—(—l” (14)

In this formula, £* is E in plane stress condition and E/(1—v?) in plane strain condition
respectively. In here, let @' and @” of Eq. (12) have components of MODE I, MODE II respecti-
vely, and equivalencing Egs. (10) and (14), following expressions are obtained.

2 2

Di=— - di=0, @/"=0, d%”‘—E* (15)
So, the final expression obtaining K, can be made from Eq. (12) as below.
% %
K——ETQD“ ~£ (. u" 9) a=1 11 (16)

For the purpose of comparison with Babuska and Miller's proposal for K,, each term in
Eq. (16) were replaced under hypothesis of plane strain condition. That result is as follows.

K:‘——‘L f [:O'lz(u)vz —on(v) ulil @,

—{o(u)vytop(v)u®:t ¢.]dN (17)
2.2. Smooth curve function
In this study, a new smooth curve function of parabolic type was presented and comparison
of results that are obtained from use of this function, Babuska and Miller’s function, and Droz’s
function was given in various manners.

The smooth curve functions used are as follow.

(1) Function introduced here

1 . r<R
n= —1 > 2R R.(R,—2R,
o (R.—R)’ ret (R.—R.) r+ ((R —R) ) N R <r<R, (18)

(2) Babuska and Miller’s function

{ 1 : osr<%Rf

o(r)= 5

' RN p 2 . 1

1—4(r—~§ ) /R, i SRSr<R (19)

(3) Droz's function

_J1—F/R} : r<R,
‘7’(’)_{ 0 . 2R (20)
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In above, R; and R, denote the inner and outer integral radius respectively.
2.3. Surface integral method considering body forces

When body forces f; are considered in Fig. 1, J-integral over the domain 2 encompassed
by the path is called J'-integral, and following expression can be made.

:f (wn,—tiy; 1)d5_f Siujd2 21)
r 2
And expression for the J'-integral over the I', and 2. is as follows.
= —f (wn,—tiu; 1)ds+f Sfiu,,dN2 (22)
rS né‘

In here, using smooth curve function, integral over the closed surface £2* can be expressed
like below.

“f *f,-ui,lqbdﬂ—f *[(w—o,lu,;,)Q.—(cf,-zu,;1)¢.2}d{2+ fiui.MPd-Q (23)

By the way, since displacement v obtained from the FEM analysis can be considered approxi-
mation of analytical solutions u, “which are obtained from application of external forces and
body forces together, followmg expression can be made.

vRu=u +k,u +k,,u
o(v)~a(u) a—b—k,a +k,,o (24)

In here, u,. o, mean displacement and stress by the application of the body forces only. Substitu-
ting Eq. (25) to Eq. (24) and then arranging, following expression can be obtained.

J':K,{—;—cb(z. u’, d))—é—w(l; u’, ¢)}

wkd Lo un o-Luis ut o) es)

here function w is as follows.
w(f u®, ¢)=fn*ﬁuih¢d9: a=I 11 (26)
In Eq. (26), since terms about MODE I and MODE Il were separately represented, SIF, when
considering body forces, could be obtained from the comparison Eq. (26) with Eq. (14). That

is, following expression for K*(a=1I II) can be obtained.

Ko=—L ot ut o= 5 v w9 a=1 11 @

3. Numerical example and consideration
3.1. Programming

In here. contents of computer program pertaining to differentiation and numerical integration
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Table 1 Numerical example: simple beam with concentrated load
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Model No.ofelements No. of points Aspect ratio Model No.ofelements No. of points Aspect ratio
A 48 179 1.00 D 48 179 1.00
B 84 297 0.50 E 84 297 0.50
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Fig. 2 AP2, BP2, CP2 Fig. 3 DP3. EP3. FP3

with respect to various functions in Eq. (16) and Eq. (27) were not represented in order to
be brief. It can be seen that SIF is calculated by using FEM results as a input data in this

program.
3.2. Simple beam with concentrated load

In this paper. results obtained only from simple beam with concentrated load (Table 1) in
pure mode and mixed mode were represented due to limited pages. Size of the beam used
in the numerical example is 36 in. length and 2 in. thickness. and the beam has central crack
of 3.17 in. depth in lower edge. And aspect ratio appeared in Table | means ratio of element

length at the crack tip with reference to crack length.
Various results obtained from the numerical analysis were given in below. To begin with,
explanation about titles used in Fig.2 to Fig.22 is necessary. That is, first character means model
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name, and the second represents kinds of smooth curve function used in this program, in which
P. B, and D mean this study’s function, Babuska and Miller’s function, and Droz's function
respectively. And number 2, 3, etc. appeared in third place means number of gauss points used
in numerical integration. Finally, fourth character is used only in case of necessity. That is,
B means consideration of body forces and I means investigation according to variance of inner
integral radius.

For MODE 1 case, degrees of convergence with respect to magnitude of mesh sizes were
compared in Fig2. In the figure, the axis of abscissa and ordinate represent outer integral radius
and SIF respectively. A 2X2 integration and this study's smooth function were used in above
calculation. For this problem, analytical solution K,=0.6011 kip/in** (Ewalds and Wanhill 1984)
was investigated. For mixed mode, calculation results obtained by 3X3 integration were given
at Fig. 3 and Fig. 4. Numerical results for this problem were K;=0.1132 kip/in*”, K,= —0.089
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kip/in"* (Jin, Jang, Choi and Eum 1989). From these figures, it could be known that the more
fine mesh were used, the more rapid convergence were obtained.

Effectiveness of this study’s smooth curve function was tested to model C and model F by
3X3 integration, and these calculation results were given in Fig. 5 through Fig. 7. To be seen
in these figures, results were similar to ones obtained from the use of Babuska and Miller's
function. In here, results by Droz’s function were not plotted in another way, since Droz’s function
is equal to one obtained by setting R,=0 for this study’s function.

In Fig 8 through Fig. 13, results obtained from being outer integral radius varied and inner
integral radius fixed to zero likewise in the case of Fig. 2 through Fig. 7 were plotted. For
K, and K, degrees of convergence were excellent in the region 1/3 Re,,.,~Re,... where Re,,,
means crack length. From these figures, it could be known that more excellent results were
obtained by the use of fine mesh generation and 3X3 integration.

In Fig. 14 through Fig. 16 results obtained by fixing external radius to crack length and by



550 Chi-Sub Jin, Heui-Suk Jang and Hyun-Tae Choi

FP2, FP3 FP2, FP3
0.18 0.08
n
¢ N
v Mo\~ 0
RN A - R i ST o=
= ", g
5 0.1 S, \
¢ < -0.05
= -]
: LA §
[ o V "\—’K\\h ............. e
g 0.05 g NI
> )
J -0.15 —
FP2 FP3 NUMERICAL[10] EP2 FP3 NUMERICAL(10]
0 -0.2
) 05 1 15 2 25 3 a5 0 0.5 1 15 2 25 3 as
RADIUS (in) RADIUS (In)
Fig. 12 FP2, FP3 Fig. 13 FP2, FP3
CP2l, CP3I FP2I, FP31
1 0.2
; N ;
’ ]
0.8 ! '
/) 018 1
= ‘ = !
¢ 08 JRPESN PRASASADAS APaApAR- g o=~ B ;' P e B tod 2 i "".*""' .
§ % ..................................
g """""\..,\ g 0.1 \
04 - \
> \ g N
0.05
0.2 \ \ N
\ CP21 CP31 EXACT[17] FP21 FP31 NUMERICAL({10]
0
0 05 1 15 2 25 3 35 ° 0 05 1 15 2 25 3 35
RADIUS (in) RADIUS  (In)
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incrementing inner radius gradually from zero to crack length were given. In here, it could
be known that very similar values to exact ones were obtained right away but the values were
diverged when inner radius were more than about 2/3 Re ... The reason for above results may
be thought as a reduction of the integral area. That is, it can be thought that number of integral
points are not sufficient to express properties of surface integral.

Also, cases considering body forces (0.839X10°* kip/in') were studied. Numerical solutions
obtained from other numerical technique for this problem were K;=0.6181 kip/in** in MODE
I, and K,=0.1006 kip/in*”, K;= —0.0940 kip/in*? mixed mode. Calculation results were plotted
in Fig. 17 through Fig. 19, and it could be seen from these figures that degrees of convergence
were excellent.

In Fig. 20 through Fig. 22 results obtained by 2X2, 3X3, 4X4, 5X5 numerical integrals for
the same model were given. In here, it could be known that results obtained by 4X4 and 5X5
integrals had not any other good performance with respect to the results obtained by 33 integral.
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A tensioned-plates which have a notch in one edge were analyzed for the purpose of comparison
with the Droz’s results. From the comparison, it could be known that Droz's results had quite
a few differences with respect to analytical solution or numerical solution, and then this study’s

results are more excellent.

4. Conclusions

In this study, to determine the stress intensity factors used in LEFM more easily, a general
formulation based on the surface integral method was induced and then a computer program
related was studied. In this program, surface integral was being carried out by preparing results
of FEM analysis, using not singular elements but general 8-noded isoparametric elements at

the crack tip, as a input data.
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A new smooth curve function was suggested and above surface integral method was exten-
ded to the case where body forces act.

By the use of smooth curve function proposed in this study and conventional element
meshes in which the aspect ratio (element length at the crack tip/crack length) is about
25%., very similar K; and K, values to the theoretical one or other numerical ones could
be obtained for the outer radius ranging from 1/3 Re ... to Re,. and for the inner radius
zero.

In the variation of the inner integral radius from zero to Re,.. fixing the outer radius
to Re,.. results approximating to the exact values were obtained directly. But it could
be seen that the results are diverged when the inner radius are larger than about 2/3
Re .. due to reduction of the integral area.

In the numerical integration. more excellent results could be obtained in 3X3 integral
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than in 2X2 integral, but there are little differences between 3X3 integral and over 4X4
integrals.
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