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Yield mechanisms of stepped cantilevers subjected
to a dynamically applied constant tip force

B. Wangt

School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 2263

Abstract. Previous studies of a stepped cantilever with two straight segments under a suddenly applied
constant force (a step load) applied at its tip have shown that the validity of deformation mechanisms
is governed by certain geometrical restrictions. Single and double-hinge mechanisms have been proposed
and it is shown in this paper that for a stepped cantilever with a stronger tip segment, ie. Mo>Mo.,
where My, and My, are the dynamic fully plastic bending moments of the tip and root segments, respecti-
vely, the family of possible yield mechanisms is expanded by introducing new double and triple-hinge
mechanisms. With the aid of these mechanisms, it is shown that all initial deformations can be derived
for a stepped cantilever regardless of its geometry and the magnitude of the dynamic force applied.
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1. Introduction

In a typical high pressure piping system, such as those in a nuclear power station, a sudden
rupture may cause an unbalanced load due to the escaping fluid which results in a sudden
motion of the pipe. This phenomenon is called pipe whip. Modeling the deformation of a pipe
run under pipe whip is a complex problem. The simplest approach is to formulate a small
deflection analysis in which the pipe is treated as a rigid-perfectly plastic cantilever beam under
an end load. The effect of geometry change and material elasticity are neglected in the governing
equations and axial forces are normally ignored. This leads to substantial simplification of the
analysis and gives useful guidance for design purpose. Different beam configurations, such as
straight, circular and bent cantilevers have been analyzed under this approach in the literature
i order to provide insight into pipe whip responses, see Lee and Symonds (1952), Martin (1964),
Yu, et al. (1985), Wang, et al. (1993), Wang (1994) and Reid, et al. (1995a, b).

The problem considered in this paper is a stepped cantilever with two straight segments, desig-
nated as AC and CB, under a step load applied transversely at its tip A. Based on the small
deflection and rigid-perfectly plastic material assumptions, this problem was first analyzed by
Hua, er al (1988) for those with M,,<M,, where M,, and M,, are the dynamic fully plastic
bending moments of the tip and root segments AC and CB, respectively. But for a stepped
cantilever with M,,>M,,, no complete family of solutions has been obtained. It is intended
in this paper to discuss deformation modes more complex than the double-hinge ones given
by Hua, et al. (1988). All possible yield mechanisms are discussed in this study under various
geometrical and loading conditions. As such, it provides a complete family of solutions for a
stepped cantilever with My, >M,,.
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Fig. 1 Bending moment diagram for a single hinge mode with the hinge assumed in AC.

Fig. 2 Bending moment diagram for a double-hinge mode with the hinges in AC and at C, respectively.

The invalidity of a single hinge mechanism for a stepped cantilever under a step tip load
was first discussed by Hua, er al (1988), as shown in Fig. 1. If the dynamic fully plastic bending
moments in segment AC, My, is larger than that in CB, M,,, when the magnitude of the suddenly
applied tip load F is high enough, a hinge would appear in AC and the yield criterion would
be violated in segment CB. To solve this problem, Hua, e al. introduced a double-hinge mecha-
nism, indicating that two plastic bending hinges appear simultaneously in segment AC and
at connection C, as shown in Fig. 2. However the validity of this mode is governed by the
length of CB. As the shear force at C, Q¢ is not zero, the yield criterion may be violated at
B when CB is beyond a certain length. The validity of this double-hinge mechanism requi-
res,

QCL2 _M2,0S MZ.O )
or

4Mor (L —X)
L S 02 1
S 3oy~ M) g

where L, and L, are the lengths of AC and CB, respectively, and x is the hinge position in
AC determined by Eq. (13) of Hua, er al. (1988).
To remove the above constraint, and as will be discussed in the following, to investigate the
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aspects which Hua, et al. (1988) had not discussed, new double- and triple-hinge modes are
proposed in this paper. It will also be shown that these new mechanisms are all complete solutions,
viz. satisfy all the kinetic conditions and the yield criterion. Furthermore, it shows that with
the new modes, a complete family of yield mechanisms is constructed for a stepped cantilever
with M,,>M,, under a step tip load. No further yield mechanism is needed.

As stated above, the current study is based on the assumption that the cantilever is made
from rigid-perfectly plastic materials and each straight beam segment has a uniform section
and density. The deflection is small so only initial phase of the response is considered. This
small deflection analysis is particularly useful in revealing the initial positions of the plastic
hinges where the failure begins. And the idealized material model greatly simplifies the analysis
while maintains the main issue of the problem. Also the analysis assumes that the dynamic
load, F is a step load, ie. a suddenly applied constant force at the beam tip, and the shear
force Q is neglected in the yield criterion.

For the development of the paper, we follow the increasing magnitude of the step load F.

We first introduce a single hinge mode, then examine the situation where the yield criterion
is violated. This violation leads to the derivation of three different double-hinge mechanisms.
Further increase in the magnitude of the step load results in the invalidity of these double-hinge
modes and raises the necessity of three-hinge mechanisms. The analysis is always carried out
in the following four steps:

(1) It is assumed that one, two or even three hinges may form somewhere simultaneously
in the beam segments for a single, double or triple-hinge mechanism, respectively.

(2) Based on the free-body diagram obtained by cutting the beam segments at the supposed
hinge locations and using d’Alembert’s principle, one translational and one rotational equa-
tions are obtained for each segment;

(3) After eliminating the terms of angular accelerations, an expression relating the step load
and hinge positions is obtained;

(4) The following conditions are checked:

a. the yield criterion in each beam segment is not violated;
b. the angular acceleration is in the assumed direction;
c. the hinge position obtained is inside the segment concerned.

Some of these conditions will produce a range of load in which a particular mode is valid,

or impose a restriction on the geometry of the beam.

It is necessary to emphasis again that the present paper is restricted to the cantilevers with

M,,>M,,. For those with M, =M, and My, <M,,, refer to Johnson (1972) and Hua, er al. (1988),
respectively.

2. Theoretical modeling

2.1. Single hinge mechanism

For completeness and in order to provide an insight into the problem, a single hinge mechanism
is first examined. A simple static analysis shows that when

F<F(): (2)

there would be no yield in the beam. If F2F,, a hinge may appear at beam root B or in
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Fig. 3 Single hinge mode H..

segment CB. Assuming that a hinge is formed in CB at x measured from C, as shown in
Fig. 3, the equations of translational and rotational motions are given as

F= L[(erx)z—x] + ‘ﬂx 3 3)

F(L,+x)—My,= 4‘3"—[@1 +x)? —x3]3+ %%8 3, @)

where y and w4, are the densities of unit length of segment AC and CB, respectively, & is the
angular acceleration at the hinge.
Combining the above equations produces,

_ Moo Lu(Li+20 L1+ o)’ ] )
(Lo F30) L+ GLFx)x°

This is the relationship between the hinge position and the magnitude of the force applied
at the beam tip. substituting x=L, and 0 into Eq. (5) gives the force magnitudes when a hinge
is formed at B and C, respectively,

Mo Lul Ly +2L) L+ llzL% 1

F=E(L) = 3O+ i3 L+ L) 3 ©)
and
Fo=F (=22 ™
1

These correspond to the highest and lowest magnitude of the dynamic force for a single
hinge to appear in CB. It is clear now that with F,<F<F,, a plastic hinge will form at B
and with F, <F<F, a hinge will form in CB with the position determined by Egq. (5), and
with F=F,, the hinge will appear at C. Because M;,;>M,,, the hinge at C will be formed at
the end of CB connected with AC with the bending moment being M,,. It is not difficult to
prove that as long as FXF,, the validity of this single hinge mode is always maintained since
there is no violation of the yield criterion anywhere in the beam.

With F2F,, assumlng that a hinge is still formed at C, the shear force at C, Q¢, will not
be zero. As shown in Fig 4, the governing equations of the beam are,

F=Qc= ’J—LZB ®

L —My,= ‘l;_1 L? 8. )



Yield mechanisms of stepped cantilevers 449

Qe
FJ' MM(TC -
A ”( l )Mo.a
Qc
Qc

| MO,Z __________ _l
MorlL No_ _ ~ ]

Fig. 4 Shear force and bending moment diagram for a single hinge mode at C indicating possible
yield criterion violations in AC and CB when F>F,.

Eliminating & from Egs. (8) and (9) gives
_ 3My,

1

F _ZQC

Combining the above expression with Eq. (7) gives
1
Qc= 3 (F,—F) (10)

Eq. (10) shows that the shear force at C is zero only with F=F, and when F> F,, Q- becomes
non-zero and turns to the opposite direction of F. When this happens there appears three possible
violations of the yield criterion. First, the maximum value of the bending moment will happen
in AC rather than at C, thus it may exceed M,; if F is large enough, as indicated by Fig.
4; and second, since Qc is not zero, the yield condition at B or in CB may be violated if
CB is long enough, or thirdly, violations in both AC and CB may happen simultancously.
Therefore, it is necessary to check the yield condition in both AC and CB respectively for the
validity of this single hinge mode.

First assuming that the yield criterion in CB is not violated and ¢ is an arbitrary point in
AC measured from A. For segment A¢ the governing equations of motion for a single hinge
mode at C produce

F—Q:Z/Af(Lr 5)9 1)
and
Fé—M="4 &(Ll—g)i'& 12

If M, reaches the maximum at & Q.=0. From Egs. (9), (11) and (12), we have
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Eliminating ¢ from Egs. (13) and (14) gives the relationship F=F(M,). And let M;<M,,,
we have the condition for no violation of the yield criterion in AC

F<F,=F(M,,) (15)

No closed-form expression of F; can be achieved and from Egs. (13) to (15), we may see
that F; is a function only decided by beam parameters L,, My, and M,,. It is understood that
when F>,< F<F;, a valid single hinge mode at C will appear; and when F2 F;, the yield criterion
at ¢ in AC will be violated and a new mode should be introduced. Typically, this can be done
by assuming an additional hinge appearing at the point where the maximum bending moment
occurs. It should be noted that with the new hinge introduced, all governing equations should
be re-derived and the yield criterion in each beam segment re-examined. This will be shown
in the following sections.

Now we check the yield criterion at B for the single hinge mode at C. Assume that there
is no violation of the yield criterion in AC, for segment CB, we have

QcL,—Mo,=Mp. (16)
If Mz<M,,, the above equation gives

F<Fi=Fy+20c=F,+ 4%“ :( L31 + Ii )Mo,z. (17)

This is the condition for no violation of the yield criterion at B. With Egs. (15) and (17)
both satisfied, there is no violation anywhere in the stepped beam and the single hinge mechanism
at C remains valid.

Comparisons between the values of F; and F, are difficult. When L, , we have F;— F>( < F);
and when L,—0, it gives F;~>wo (> F;). Thus there exists a limiting length of CB. When L, is
longer than the limit, with F>F, B may fail simultaneously with C, indicating that a double-
hinge mode C-B will appear, also there is a possibility that a failure occurs in CB rather than
at B so a C-H; mode appears; or when L, is less than the limit, AC may fail simultaneously
with C if F>F; and this leads to a double-hinge mode H,—C. In the following section the
length limit of CB and these double-hinge modes are discussed.

2.2. Double-hinge mechanisms

The single hinge mechanism has shown some restrictions on its validity and this leads to
the need for double-hinge mechanisms. The double-hinge mechanisms can be analyzed similarly
and their validity needs to be examined as well. There are three possible double-hinge modes,
ie. Hi—C, C—H, and C—B modes, corresponding to the violation of the yield criterion in
segment AC, CB and at B, respectively when the single hinge is at C. It will be shown that
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Fig. 5 Double-hinge mode H;—C.

these double-hinge mechanisms are all valid but subjected to some restrictions as well and
further hinges are needed to be introduced into the system.

22.1. Hi—C mode

Assuming that under the dynamic tip load, there appears a hinge, H; at x measured from
A in AC and at C simultaneously in the stepped beam, as shown in Fig. 5. The relative angular
velocities at the hinges are 3 and 9, respectively. Employing d’Alembert’s principle, the governing
equations for segment H,C are

Q=1 (Li—xPd, (18)
My, —M02=-%‘ (Li—x) . (19)
For segment AH,, we have
F= ,ulx< ( ).9c+ 01>, (0)
Fx—My,= sz((% —%) S+ ;'91). Q1)

Eliminating 9, and J. from Egs. (19) to (21) yields

My, _ 3(Mo —My))
. AL, —x) 22)

This gives the relationship between the magnitude of the applied force and the hinge position
in AC. With the value of F given, all the unknowns can be solved. It should be noted that
when &:=0, the double-hinge mechanism is at a transition state where it converts to the single-
hinge mode at C, or vice versa. Denoting the dynamic load and position of H; at this transition
state as Fp and xp, from the Egs. (19) to (21) we have

(3L1‘"2XT1)X% - My,
2(L1“X71)3 M Moz

F=

i,

or
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AM—Dx3h—3(M— DL x4 +6ML xn—2ML}=0 (23)
and
Fn:—Q—L;ﬁL M,,. 4)
XTj
<L1 - 3 )Xn

Note that Fp is a function of beam parameters and its expression is identical to Eq. (14),
thus from the definition of F; in Eq. (15), we find that

F}ZFTI. (25)

This indicates that with F,<F<F;, a single hinge mode at C will happen, and with F> F;,
a double-hinge mode H,—C will appear. The physical meaning of Fp is that it is the least
magnitude of F to have a double-hinge mode H,—C and x5 is the furthest location hinge
H, may appear in AC from tip A. With increasing magnitude of F(>Fp), hinge H, appears
closer to A :

The validity of this double-hinge mode requires that the yield criterion at B is not violated,
ie.

Q CLZ—MO.ZS sz 5
or from Egs. (18) and (19),

2M,> _ 4(L _X)M 3
L,< L= ‘ cul 26
SO0 T 3(My—My) 20)
As long as the above inequality is maintained, the double-hinge mechanism H,;—C is valid.
Note that hinge position x is a function of F, hence the above inequality also becomes a function
of F. The equation in (26) shows that the maximum Q. happens at the transition state where
x=xp, which has the maximum value of x, thus if

T = AL —x )Mo,
L L= 300, ~ My @

there will be not violation at B and the double-hinge mode H,—C stands valid no matter how
large the dynamic load is. L, is the length limit of CB as discussed in the last section. Note
that x5, is determined by Eq. (23) and is only a function of beam parameters, so is L,. If
Eq. (27) is not satisfied, there may be a yield at B and a triple-hinge mechanism H,—C—B
may appear.

A similar analysis was given by Hua, e al. (1988) for this particular mode. They also analyzed
stepped beams with M,;<M,,, for which both single and double-hinge modes were reported
and a complete set of solution was achieved.

222 C—H, mode

This mode happens when there are simultaneous failure at C and in L, if F is large enough
and L,>L,. Derivations of the governing equations are similar to the above. Assuming that
the second hinge H, is formed at x in CB measured from C, i% and 92 are the relative angular
velocities at the hinges, as shown in Fig. 6, we have for CH,
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Q=4 29, (28)
Qex—My—Mo=4 x*b; (29)
for AC
rro=mn (-4 oL o) 30)
FLl—MO,zszL%(— §+—L3—1){92+% ;'9C>. 31

After simplification, it produces

1 , 4, 2L, ) 32)

F:3M02<Tl +;+ xz
This gives the relationship between the load magnitude and the hinge position in CB. Putting
x=1L,. we have

_ 1 4 2L

F5—3M(]_2<L1 + Lz + L% )
Therefore, under the load of F,<F<F;s, there will be a double-hinge mode C—B with a hinges
at C and B simultaneously; and when F> Fs, the two hinges will be at C and x in CB, ie,
mode C—H,. The position of hinge H, is determined by Eq. (32) when the value of F is given.

(33)
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Fig. 6 Double-hinge mode C—H,; and its shear force, bending moment diagrams.
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As shown in Fig. 6, the maximum value of bending moment happens in AC, thus the validity
of this mechanism depends on that the yield criterion in AC is not violated. To check this,
let ¢ be an arbitrary point in AC, then we have

F—Q;:M((—(xﬂl_—z{) ;'92+<L1—§>79c), (34)
F¢-M;=4 G(—(xul—g) 3, +<L1——3£) SC>, (35)

and
Q <+Qc:u1(L1—§)<—<x+—Ll—21L> 5'92+(L—12_{—> i'9c). (36)

If M; reaches the maximum at { Q.=0. Putting Eq. (28) into (36) yields

ﬁ‘—f X+ 2x(Li—)—(Li— ¢y
1

BC: (Ll—oz 82. (37)
Eliminating F from Egs. (34), (35) and with (37) gives
- _x o 2x (L €N\, x (L L))
w=ue(-3+25 (% ) (5 -1)) 9

Finally, combining Egs. (28), (29) and (38) leads to
_pof vy 2 (L _ &Y\, x (L _{\\12uMy
m=¢(~rrzig (5 ) w5 -5))

2 Li=H\2 3 7 3 1o
Clearly, if
A, 2 (L _ ¢, x (L _¢ |\ 12uMoy
G( 2+ (Li—$) < 2 3 )+ (L,—¢&Y ( 2 3 )) o <M, (39)

the double-hinge mechanism C—H, will remain valid when F> F.

The above inequality might not be maintained, then the yield criterion in AC will be violated.
These will result in another hinge being introduced at the position where the maximum bending
moment happens. Hence, a triple-hinge mechanism applies with three hinges appearing simulta-
neously in AC, at C and in CB. Details of this new triple-hinge mechanism are presented in
section 2.3.

223 C—B mode

This double-hinge mode can be regarded as a special case of a C—H, mode. In the last
section, the range of the dynamic load magnitude for this C—B mode has been identified as
F,<F<Fs with L,>L,. There are two points which need to be addressed for this mode. First,
when the second hinge is at B, there will be a concentrated shear force there, thus Eq. (28)
should be changed as

Qc—Qs="2L38s. (40)
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And in the rest of the governing equations, hinge position x should be replaced by L, and
subscript 2 substituted by B. The unknowns are Q¢, 3¢, @ and 33 and they can be easily
solved with the value of F given.

Secondly, the yield criterion in AC also needs to be checked. Egs. (34) to (36) are modified

as
F—ngyl{(—<L2+L1—§)3B+<Ll—-§> i"}c), @1)
F{—M;:J‘g §’2<—<L2+L1——§:> .'93+<L1—§) Bc), “2)
and
Q 4+Qc=ul(L1—§)<—(Lz+—L‘T_L> 93+<'I‘§{—> i"}c), 43)

where ¢is an arbitrary point in AC measured from A. If M, reaches its maximum at § Q =0.
After simplification, we have

4M,, ﬂzL% Ly 1Y 6M, 2 1 — 2 _ 24, 4o
al et e el (4 e oo 3t )

Cl_

ALr= Lot 3L
1

(LI_OZBC_%

.. ,Ule
193 - D)
(Lr<Y+XLr@ﬂa+5%L§
1
M;=uléﬂ[—<%+%‘ —4§L>93+<~% —%)Bc]. (44)

Substituting & ¢ and J; into Eq. (44) gives M =M (). If M;<M,,, the double-hinge mode C—B
is valid; otherwise, the yield criterion in AC is violated and a new hinge should be introduced
there, leading to the mode H,—C—B.

There is no need to use Egs. (39) and (44) to examine the validity of modes C—H, and
C—B. Boundaries of load magnitude will be derived from corresponding triple-hinge mechanisms,
as will be seen in the following section, which define the load ranges of valid double-hinge
modes.

2.3. Triple-hinge mechanisms

As discussed in above sections, there exist two possible triple-hinge modes, H,—C—H, and
H,—C—B. It will be shown in the following that which mode appears depends on the length
of CB and with these two modes, a complete family of yield mechanism will be achieved and
no further modes are needed.

23.1. H,—C—H, mode

The overall analytical approach is similar to other sections of this paper. Assuming that the



456 B. Wang

Mo,z (
He

Q

Mo,z(W & E >M0 2
Xz '
G

A \ >M

X1

AN\
o]

Fig. 7 Triple-hinge mode H,—C—Ho..

hinge in AC, H, and in CB, H, is formed at x; and x,, measured from A and C, respectively,
and there is a third hinge at C shown in Fig. 7, &, 3¢ and 9, are the relative angular velocities
across the corresponding hinges.

Equations of motion for each segment lead to the following: for segment CH,

Qc=4x38., (45)
chz_Mo.z—Moz:‘%z x5 ;92§ (46)
for segment H,C
Qc = (L1—x1)<_<xz+ L—lgx_l‘> {92 +<AE_X1_> 9C>, (47)
Mo—Mao= (Ll—x1)2<—< £ +%xl—) 8, +<—L%> 9C>; (48)
for segment AH,
F—_—,U1X1<_<XQ+L1_ xz_l> ( +—x§ '9C+121 '91>a (49)
Fx,—M,,= %x‘f(—(xﬁ—Ll X ).92+< i‘_,j )SC+ 2x .9) (50)
From Egs. (45) and (46),
5 12M,
322?522—, (51)

Combining Egs. (45) and (47) gives
% X3+ 2x(Li—x)—(Li—x\)
1

BC: (Ll_xl)z 192.

(52)
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And submitting Egs. (51) and (52) into (48) produces
M()l MOZ)

v 2y __u( 2
(Ly=x) = (Li—x1)x2 YRS 0. (53)
This shows a linear relationship between the positions of the two hinges in AC and CB,
—sz, (54)

where

(Mo —M,,)
K= el + 42 01 02 1).
<\/ WM,
Eliminating &, from Egs. (49) and (50) gives

3IMy, 6M02[/11(L1*x1)+1u2x2]x1
X1 U (Ly—x)x3 -

F=
With the linear relationship Eq. (54), it produces
3IMy, _ OMyK(u K+ po)x,

= 5 s 5
X (L —x)) (53)
or
_ 3M01 o 6M02£_[.11K+‘UQ(L[‘KX2)
F=T k% K] ' (6)

The above equations give the required relationships between the hinge positions and load
magnitude. It shows that when the load is larger, x; is smaller and x; is larger, indicating H,
and H, appearing farther away from C in terms of the increasing magnitude of the load. The
limit positions of H; and H, are 0 and L,/K respectively, happening at F—oo. However if
L,<L,/K, the hinge in CB may appear at B, then we have

3M()1 6M07(#1K+/.12)L KLQl
(Ll_’KLz) ,UOKLa

F,= (57)

There is also a transition state where & is equal zero, then the triple-hinge mode H,—C—H,
becomes a double-hinge mode C—H,, or vice versa. Denoting the value of F, x; and x, at
this state as Fy, A and Ap, respectively, and putting ¢,=0 in the governing equations, we
have

oL, 2 (L _Ap Ap L1 _ An \\12u M,
Mo A“( 27 An>< 3 )*( — i) 3 ) wan (58)

It is noted that the right-hand side of Eq. (57) is identical to the left-hand side of Eq. (39),
comfirming that when M;=M,,, the double-hinge mode C—H, is not valid any more and a
triple-hinge mode H,—C— H, appears. Substituting Eq. (54) into (58), the transition hinge positions
can be obtained,

<7(2+K)K'U‘M°2 )AT1—3(2(K+ K BMo> I)Lli%—BLHn—FLf:O. (59)
M U2My,

The corresponding value of F at this state can also be derived from Eq. (50)
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— 3IMy, _ 6M02K(ﬂ1K+ﬂ3)/lﬂ
An Uz (Ly—Ap)

The physical meaning of Fy is that it is the least magnitude of the dynamic force required
for this triple-hinge mechanism, and for A; (and Ap as well), it is the closest position to C
a hinge may possibly appear in AC (or CB). It is now clear that for a double-hinge mode
C—H,, the load range is Fs<F<F, and for a triple-hinge mode H,—C—H,, F>2F,

The requirement on the length of CB in this triple-hinge mode is given by

» — LI_ATI
Ly> Ap= T (61)
As long as L, satisfies Eq. (61), mode H,—C—H, will appear when F>F; otherwise, there
will be a different triple-hinge mode H,—C—B with the third hinge appearing at B.

Fy (60)

2.3.2. H,—C—B mode

This triple-hinge mechanism may actually appear in two situations: first as stated in the last
section, when Eq. (44) 1s not satisfied a double-hinge mode C—B turns into a triple-hinge mode;
the second situation happens when Anp<I.<L,/K and F2F; as given in Eq. (61), the hinge
in CB for a triple-hinge mode will appear at B. All the governing equations for this mode
are virtually the same as for mode H,—C—H, with substitutions of x, by L, and subscript
2 by B. The only exception is Eq. (50) in which a shear force at the beam root should be
introduced,

Qc—0s="4 x; 0 ©2)
After a lengthy manipulation, we obtain
My, —M,, RS _ 2[1_2 2] 4M,, Lz Li—x,
P+ A L= Lot 3ML2] I (2 + TR )
. A A «
3 1 | W 2 2
) (ngxl)z;g(‘__il%l_
8s= by — (64
(Ll—x1)2+2(L1—x1)Lg+—3“lfL§
1
F= %I___%x‘l‘ [_(L2+L1—X1);.93+(L1’_X1);9(‘:|. (65)

Putting Egs. (63) and (64) into (65) gives the required relationship between F and x,. With
the value of F given, all unknowns can be solved.

There is also a transition state in this mechanism at which the triple-hinge mode H,—C—B
changes to a double-hinge mode C—B, or vice versa. Note that this transition state only applies
to the first situation as stated at the beginning of this section where mode C—B appears first.
Denoting Fs and nn as the load magnitude and the hinge position in AC at this transition
state and letting §,=0, it is not difficult to get

Mm:uln%[—%z +-L§‘ ——”f‘)i'?ﬁ(% *—’%’l>{9c], (66)
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where the angular accelerations are given by Egs. (63) and (64) with x; being replaced by nn.
Note that the left-hand side of Eq. (66) is identical to that of Eq. (44), confirming the transition
between the modes C—B and H;—C—B. When np, is obtained from Eq. (66) accordingly, from
Eq. (65) we have

Fy=F(nn). (67)

F; is the least value of force needed to have this triple-hinge mode. Therefore, with Fy<F<Fg,
a double-hinge mode C—B will appear; and when F2>F;, a triple-hinge mode H,—C—B will
show.

3. Discussions

In order to summarize the extensive results derived above, three categories of stepped beams
are identified according to the geometry of the beam which determines the possible yield mechani-
sms. For each category, all possible yield modes are listed in order of load magnitude.

The results obtained in this paper show that various modes may appear in certain cases
as the response of a stepped straight cantilever subjected to a step tip force. A family of solutions
including single, double- and triple-hinge mechanisms, has been constructed for all geometry.
All the mechanisms are both statically and kinetically admissible. It has been shown that the
maximum number of plastic hinges which may appear simultaneously in the beam is three
and no further hinges are needed, regardless of the magnitude of the dynamic load. The geometri-
cal restrictions divide the response modes into three categories from which it is clear that the

(1) Category 1. For those satisfying L <L,, seeing Eq. (27) for definition of L

Mode Mode of response Range of F  Related equations
I No hinge F<F, Eq. (2)
II Single hinge B F,<F<F, Eq. (6)
I Single hinge H» FI<FF, Eq. (7)
v Single hinge C F,<F<F, Eq. (25
v Double-hinge H,—C F>F,;

Fig. 8 illustrates the results of Category 1.

F
== Hinge Position
Hl C

Fs
Fe
'
Fo

T 5L

Fig. 8 Mode pattern of category 1. Hinge positions for increasing magnitude of F.
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(2) Category 2. For those with L,<L,<An, Ap being given in Eg. (61)

Mode Mode of response Range of F Related equations
I No hinge F<F, Eq. (2)
II Single hinge B Fy<FLF Eq. (6)
I Single hinge H, FI<F<F; Eq. (7)
v Single hinge C F<F<F, Eq. (17)
\Y Double-hinge C—B Fi<F<F; Eq. (67)
VI Triple-hinge H,—C—B F>F;

A similar illustration can also be constructed as shown in Fig. 9.

F
= Hinge Position
H, He

Fs Fs
Fa
Fe
Fy
Fo

A T c T. B e

Fig. 9 Mode pattern of category 2. Hinge positions for increasing magnitude of F.

(3) Category 3. For stepped beams with Anp<IL,<L,/K, we have

Mode  Mode of response Range of F Related equations
I No hinge F<F, Eq. 2)
11 Single hinge B F,<F<F, Eq. (6)
I Single hinge H: FI<FF, Eq. (7)
v Single hinge C F,<F<F, Eq. (17)
\Y Double-hinge C—B Fs<F<F; Eq. (33)
VI Double-hinge C—H, F:<F<F, Eq. (60)
VII Triple-hinge Hi—C—H, F.<F<F, Eq. (57)
VIII Triple-hinge H—C—B F>F

For those with 1,>L,/K, Mode VII becomes Triple-hinge Hi—C—H,;; F>F;
and Mode VIII does not exist. Fig. 10 shows an illustration of this category.

triple-hinge mechanism will not necessarily appear in every case.

None of the single hinge mode may become an ultimate yield mechanism, which is defined
as the mode when the dynamic load magnitude is indefinitely high. With beam dimensions
permitting, double-hinge mode H,—C and the two triple-hinge modes can all be an ultimate
mode. The remaining two double-hinge modes are only intermediate modes in Category 2 and
3. Note that the values of load range boundaries for each mode are only determined by beam
parameters. Using a shear force diagram, Fig. 11 reveals the interchanging relationships amongst
the various yield mechanisms.
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Fig. 10 Mode pattern of category 3. Hinge positions for increasing magnitude of F.
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Fig. 11 Shear force diagram. Interchanging relationships amongst different modes.

If the tip force is applied and maintained for only a finite duration, i.e. a rectangular pulse,
assuming that a triple-hinge mode H,—C—H; is initiated during the pulse, after the force is
removed, the shear force distribution will be disturbed and hinges H, and H, will have to travel
along the beam segments. This moving phenomenon of the plastic hinge may also be caused
by changing magnitude of the load and by alllowing large deflections of the beam to occur.
Details of this transient response of stepped beams are under studies.
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Notations
F dynamic load at the beam tip.
L length of beam segment;
M bending moment;

Mo, My, dynamic fully plastic bending moments of segment AC and CB, respectively;
0 shear force;

x hinge positions;

n, A transitions positions of hinges in triple-hinge modes;

u density per unit length of beam segment;

9 angular velocity due to bending across a hinge.
Subscripts

1 variables of segment AC;

2 variables of segment CB;

B variables at B;

C variables at C;

T variables at transition state of a yield mode.
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