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Direct integration method for stochastic finite
element analysis of nonlinear dynamic response

S. W. Zhangt, B. Ellingwood?, R. Corotistt and Jun Zhangit

Abstract. Stochastic response of systems to random excitation can be estimated by direct integration
methods in the time domain such as the stochastic central difference method (SCDM). In this paper,
the SCDM is applied to compute the variance and covariance in response of linear and nonlinear
structures subjected to random excitation. The accuracy of the SCDM is assessed using two-DOF systems
with both deterministic and random material properties excited by white noise. For the former case,
closed-form solutions can be obtained. Numerical results also are presented for a simply supported
geometrically nonlinear beam. The stiffness of this beam is modeled as a random field, and the beam
is idealized by the stochastic finite element method. A perturbation technique is applied to formulate
the equations of motion of the system, and the dynamic structural response statistics are obtained in
a time domain analysis. The effect of variations in structural parameters and the numerical stability
of the SCDM also are examined.

Key words: computational mechanics; dynamics; probability; random vibration: statistics; structural
engineering.

1. Introduction

Uncertainty in the response of a structure depends on randomness in material properties,
geometric parameters and boundary conditions, and in the excitation. The significance of each
source of uncertainty depends on the structural behavior and the response quantity sought.

Material uncertainties may impact the response of a structure to deterministic or random
loads. The variation of eigenvalues and eigenvectors of linear vibrating beams due to uncertainties
in stiffness and damping was studied by Fox and Kapoor (1968) and Shinozuka and Astill
(1972). Vanmarcke (1977, 1983a, 1983b) developed a local averaging technique, which subsequently
was combined with the finite element method to evaluate the second-order statistics of the deflec-
tion of a beam with random rigidity. The development of the stochastic finite element method
was described in a review article by Vanmarcke, et al. (1986) and later by Ghanem and Spanos
(1991). Liu, er al. (1985, 1986a, 1986b) implemented the stochastic finite element method using
perturbation analysis, which can be used to solve linear as well mildly nonlinear problems.
Chang and Yang (1991) used a modal expansion technique combined with the equivalent lineari-
zation method to obtain the dynamic response of nonlinear beams and frames.

The response of linear structures to random excitation forces can be analyzed by classical
techniques (Crandall and Mark 1963. Lin 1976). However, the vibration of structures often is
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nonlinear in nature. Flexible structures, such as beams, plates and shells may vibrate with large
amplitudes, leading to a nonlinear strain-displacement relation. Exact solutions, even for a single
degree of freedom system with nonlinearities, have been obtained only for a few idealized cases;
approximate approaches include the perturbation method, the equivalent linearization method
and non-Gaussian closure. (e.g., Crandall and Zhu 1983, To 1984, 1987, Roberts 1984, Lin, et
al. 1986, Roberts and Spanos 1990). While solutions generally can be obtained by Monte Carlo
simulation, such solutions can be very costly. More efficient methods are required for the analysis
of nonlinear systems.

The stochastic central difference method (SCDM) is a method for direct integration in the
time domain to obtain the covariance of response of a nonlinear system subjected to random
excitation (Zhang and Zhao 1992, To 1986). The SCDM can be used to estimate the random
response of structures idealized by the finite element method and subjected to either stationary
or nonstationary excitations without recourse to more sophisticated mathematical concepts, analog
or digital simulation techniques. In this paper, it is used to investigate the dynamic response
in the time domain of multidegree of freedom systems with random stiffness subjected to random
excitation. The numerical stability of the solutions and the effects of variations in the structural
parameters and the time interval of integration on the response statistics are investigated.

2. Perturbation formulation of the equations of motion

The equation of motion of a linear (or equivalent linear) system is,
MX+CX+ KX=F() ()

where M, C, K are mass, damping and stiffness matrices respectively, F(f) is excitation, and
X. X. X are acceleration, velocity and displacement vectors of the system.

Let us assume that b(u) is a random material property that varies with spatial coordinate
u. The random function b(u) can be approximated using deterministic shape functions w,(u)
(Liu, et al. 1986b);

b(u):;l[/,(u)b, (2)

where b; are the random nodal values of b(u) at u;, i=1,:-, q. The mean and variance of
b(u) defined in Eq. (2) are:

E(u): Z l//,(u)B, (3)

Var(b(u)= 2 vi(u) y;()Cov(bi. b) )

ij=

in which b;, and Cov(b;b)=mean of b, and covariance of b, and b;.
To derive the equations of motion using the perturbation method, the following notations
are used for a given function g(b) and a small perturbation (b,—b;) from the mean b;:

db;=(b;—b) Q)
db;db,=(b;/—b)(b—b)) (6)
g(X)=g(X, b(X) )
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Agzz _é—..zlgh’ﬁ/dbidbj (ll)
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Using the first and second order terms of a Taylor series to expand the vectors and matrices
of Eq. (1)

X~ X+ AX,+ AX, (12)
X~ X+ Ak +AX, (13)
X~ X+AX +AX, (14)
K~ K+ AK,+ AK, (15)
C~ C+AC,+AC: (16)
F~ F+AF,+AF, (17)

It is assumed that F=F(X 1) is independent of material property; then AF,=AF,=0. Note
that db,=0 because db,=(b;—b)).

Eq. (1) describing the motion of the system can be separated into the zero, first and second
order perturbation equations, respectively:

MX+CX+KX=F (18)
MAX,+CAX, +KAX,=— AC,X—- AKX (19)
MA}2+6A}2+I—(A/?3:‘A6|A}|—AR|A}1 (20)
Eq. (19) also can be written in the form:
X  -0X -0X _
M b, +C0.,b’_ +de,- =F @2n
where i=1,---, ¢, and

po_0Cy K3

F= db,-X &b,-X (22)

Assuming that the responses are zero-mean, i.e., <X’_ )= (X)=0, and ignoring the terms of
3rd order and higher in expansions of (XX7) and {XXT), the variances and covariances of
response of the system subjected to random excitations become:

HX= XX+ 3 R%)(_%) ]cov(b,.. b) 23)

i.j=1
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KxTy=XKE+ 3 [(%) <g—f_> ]Cov(b,-. b) 24)

i.j=1

in which {)=expectation in the time domain.

3. The SCDM method for nonlinear systems

The equations of motion of a nonlinear system are,
MX+g(X. X)=F(@) (25)

Using the equivalent linearization technique (Roberts 1984, Roberts and Spanos 1990), Eq. (25)
can be written in discrete forms:

MX+CX+KX=P, (26)

in which the subscript s denotes the s, time step of the integration and C, and K, are equivalent
linear damping and stiffness matrices. If it is assumed that the response is Gaussian, C,=
E,((3/6X)g(X X)] and K,=E,[(d/dX)g(X. X)), P, denotes the continuous force. Since Eq.
(26) is linear, its solution can be cast in exactly the same form as Egs. (18)-(22).

Integrating Eq. (26) in the time domain using the SCDM (To 1986, Zhang and Zhao 1992,
Zhang, et al. 1994), the covariance of the displacement response of the system can be expressed
as,

R.v+I:<X.\+IXZ+l>
=N,R,Ni+N:R, NI+N.D .N.D,N}

+N;D,N/+At*N,B,NT 27
where Ar=time interval used in the integration and
D, ={(X.X] (28)
D'={(X,_\XD) (29)
B,={P,P]) (30)
D,=N,R,_,+N;D! | (3D

Each element of R,., defines the covariance (or variance) in response at two different points
in the system as the (s+1), time step. The covariance of velocity response is:

R.\~+1:<Xx+1XT+|>
=(1/4AP)(N-R, . \NT+4N,R N’

—2N.D . \N/=2N,D" N+ At*N,B,, \N| (32)
In Egs. (27)+(32), constants N,—N, are defined as

N=(M+C,A/2)"! (33)

N,=N,2M— K, At>) (34)

N\=N\(C,At2— M) (35)
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Ns=NM (36)

Let us now assume that F(¢) is a continuous white noise W{(r). White noise is difficult to
handle in the SCDM because it has an infinite mean-square and the continuous white noise
must be replaced by an equivalent discrete random process for numerical integration purposes.
A binary noise process is used to replace the white noise (Zhang and Zhao 1992). The spectral
density function of this binary noise is:

_ o Arsin’(wA1/2)
)= ALY

When Ar—0, &> and o’ Ar=constant. Considering lima, - ¢(w)=0" At/2n=S,, the binary
noise process becomes a white noise and {P;)={W(t)>=0c" For a SDOF system, Eq. (30)
becomes.

G7)

B, ={P>)=21SJAt (38)

For a MDOF system, the diagonal elements of the matrix B, in Eg. (30) should be
written:

B,-,:2ITS,-,»/AI (39)

where §; is the spectral density function of random process i. Because the mass, damping and
stiffness matrices are the same in Egs. (18) and (19), the same SCDM formulae can be used
to obtain the response covariances from both equations. Note from Eq. (22) that the covariance
of the excitation is:
com [ 0C N, v v 0C.\ [ OK o oK.\
Ty— Ty T § 3 T Civ,y
(Fin={ 95 ) ciean( 5 ) +( G- Joran( 2| (@0
The assumption that the excitation is stationary white noise is not necessary for the formulation
of the SCDM, and more general excitation processes can be considered (Zhang and Zhao 1992).

4. Numerical examples
4.1. Two-DOF linear system

The equation of motion of the two degree of freedom system illustrated in Fig. 1 is given
by Eq. (1), in which

| m 0.0
_ k1+k3 _kg

K—[wh h] @)
—_in C2

€= [ (&1 6'22:| (43)

and F()=(F, F.)". Proportional damping is assumed in all cases.
We consider three separate cases in the following to check the accuracy of the SCDM method.
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Fig. 1 Two-DOF linear system.

4.1.1. Deterministic material property

Assume that m,=m,=m=10 kg, and k,=k,= k=100 N/m; the natural frequencies are p,
and p, (rad/s), and p?=0382 k/m, and p3=2.618 k/m. The normal modal matrix is

_[0526 —0851
X N_[O.851 0.526] “44)

Expressing X in terms of normal modal coordinates Q, X=Xy, and assuming proportional
damping, Eq. (1) can be written:

where,
r o 0.526 F,+0.851 F,
XNF(’)_( —0851 F,+0526F ) (46)

If the excitations {(F,, F»)7 are white noise with <(F»=278,,0), and {F3»=21558(0), the
exact solution for mean-square response is (Roberts and Spanos 1990):

(QD=nS/2,\pim; (47)
(Q>=218/2¢.pim}3 (48)

where §,=02765,,10.724 5. and $,=0.7245,,+0.276S5. The exact solution of the displacement
response statistics of the system then can be obtained from X=X ,Q.

Using the SCDM solutions in Egs. (27) and (32), and assuming that S),=1 N2-sec and S»=0.5
NZ?-sec, we obtain the numerical results given in Table 1 and Table 2. The exact solutions are
given in parentheses. In these tables, ¢,=¢,=¢ and Ar=001 sec. The SCDM results are in
very close agreement with the exact solutions of the system.

4.1.2. Random material property
First, assume that k,= k,=k, and that & is the only random variable, ie., 5= k. The equations

of motion of the system are separated into the zero- and first-order perturbation equations, Eqgs.
(18), (21) and (22) in which (cf Eq. (22))
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Table 1 Displacement response (deterministic material)
¢ <X% > <x§ > {xixy
0.01 0.2813(0.2816) 0.6324(0.6334) 0.3511(0.3519)
0.02 0.1407(0.1408) 0.3162(0.3167) 0.0175(0.0175)
0.05 0.0563(0.0563) 0.1264(0.1267) 0.0702(0.0703)
0.10 0.0283(0.0281) 0.0630(0.0633) 0.0352(0.0351)
Table 2 Velocity response (deterministic material)
¢ P (v3) {vivy
0.01 21.2755(21.1120)  28.058(28.1490) 7.0204(7.0386)
0.02 10.5015(10.5560)  14.0178(14.0745) 3.5119(3.5193)
0.05 4.1912( 4.2224) 5.5884( 5.6298) 1.4094(1.4077)
0.10 2.0962( 2.1112) 27704 2.8149) 0.7126(0.7038)
po_ 9Cy Ky
F=="ak X X )
K _[2 -1
ak"[——l 1] (50)
ac _ 2 -1
Ik —0.0895{ 9 1] (51
Using the perturbation technique to analyze the system with random &,
<QD:<Q9+~E%%QLAk+%"i%%Q%AkY (52)

and from Egs. (47) and (48):
<Q?>=<éf>(1—0.015Ak+0.0001875Ak2) (53)

When Ak=—10, ie.. the random variable is changed by 10 percent, {Q:)>=1.16{Q?), meaning
that the variance of displacement response is changed by 169 percent. Similarly, from the statio-
nary velocity response {Q?>=<{Q:>p}, we find that the variance of velocity response is changed
by about 28 percent as the material property is changed by 10 percent.

Tables 3 and 4 present the numerical results obtained using the SCDM; perturbation solutions
are presented in parentheses for comparison, since exact solutions are unavailable. Damping
is assumed to be 0.10. The first row of these Tables 3 and 4 presents results for a deterministic
system (cf Tables 1 and 2). The second row indicates the impact of randomness in k. The
results obtained by the perturbation analysis and by the SCDM are in very close agreement.
Figs. 2(a)-2(d) compare the results for different time steps At.

Next, assume that k,= b, and k.= b, are uncorrelated random variables. The equations of
motion of the system are separated into equations (cf Egs. (I8) and (21)):

MX+ CX+KX=F() (54)
X  -OX zIX _:
M ok, +C(9k| +K3k1 =F, (55)
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Table 3 Displacement response (random material)
No. R.V. Var(b) {xD) (x {xnix
0 0. 0.0283(0.0281) 0.0630(0.0633) 0.0352(0.0351)
1 (0.1 X 100)’ 0.0339(0.0323) 0.0732(0.0725) 0.0399(0.0405)
2 (0.1 X 100)> 0.0339(0.0323) 0.0717(0.0725) 0.0384(0.0405)
Table 4 Velocity response (random material)
No. R.V. Var(b) (xD (%3 (xixy
0 0. 2.0963(2.1112) 2.7704(2.8149) 0.7126(0.7039)
1 (0.1 X 100)* 2.7287(2.6993) 3.3204(3.5798) 0.6305(0.7364)
2 (0.1 X 100) 2.8788(2.6993) 3.3181(3.5798) 0.4822(0.7364)
0.10 + + + + + 0.14 + + + + +
var(b)=(0.12100)? ver({b)=(0.1%100)?
61"62=0.1 $1¢;=0.1
0.08T Exact solution {no random varisble) | 0.121 Exact solution (no rendom varisble} |
-==-- SCOM results  [no rancom varisble) 1 ==-- SCOM results (no random varisble) 4
—-— SCOM results  {var(b)=(0.1x100)%) —-— SCOM results  (var(b)=(0.1x%100)%)
L oot A . 0101
v R T_.___ M ooet T /:-
0.021 .08 rr—————mmermsezzzzzzni T
0.00 + + + + + + 0.04 + + + + + + + +
0.00 0.02 0.04 0.08 0.08 0.10 0.00 0.02 0.04 0.08 0.08 0.10
At At
(a) (x}) vs At (b) (x3) vs At
O e o mioor T T (o mi00r
T §1*63=0.1 T §1"63=0.1
8t Exact solution (no rendom varisble) | st Exsct solution (no random vaiable)
1 ---- SCDM resuits (no rendom variable) 4 + -==-- SCOM results (no rendom vuriabalel +
ol —.— SCOM results (var(b)=(0.12100)3) el —-— SCOM results (var(b)=(0.1n100}¢)
e i
N i — L
0 0.0z oor ol oo T ono 2.0 00z | o0+ o008  0.08 0.10
At At
(©) (») vs At (d) (vi) vs At
Fig. 2 Variance in response of two-DOF system.
X  =JdX  -dX _
+ =r,
Mokt Cok, Ko, = 1>
where, - _
B oC i K X
‘ ok, ok,

(56)

(57)
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Fo=— g,g 9C % j,f oK % (58)
g‘%:[é 8] (59)
%zo.og% ¢ [ (1) 8] (60)
5/12:[1—1 ] (61)
32 :0.08954[‘_1 ‘}] ©

The SCDM is used to integrate Egs. (54), (55) and (56) assuming that k,=k,= 100, and var(k)=var
(k2)=(0.1 X 100)*; the response statistics are given in the third row of Tables 3 and 4. The addition
of the second (uncorrelated) random material property has little impact on displacement response
statistics, but more of an effect on velocity, particularly on the covariance term. The agreement
between the SCDM and perturbation solutions for the displacement terms (Table 3) generally
is better than for the velocity terms (Table 4).

4.1.3. Nonstationary and uncorrelated loads
Consider the random loads as two modulated white noise processes:
Fi)=n@OW () (63)
FAy=— mOW0) (64
where (W 1))=<{W}t))=2n5,6(0) and the envelope function is (Corotis and Marshall 1977):

n(t)=2.32(exp(—0.091)—exp(— 1.491)) (65)

The mean-square displacements and velocities for two cases, one in which the material properties
are deterministic and one in which they are described by two random variables, are given in
Figs. 3(a)-3(f). The randomness in stiffness appears to have more of an effect on velocity than
on displacement; this result is similar to the findings presented in Tables 3 and 4.

4.2. Simply supported beam

The strain energy, kinetic energy and virtual work due to transverse force f(x, ) for a beam
can be written in terms of axial and flexural deformations « and w, respectively, as

:_f [EAe+EI(gW) Tdx (66)

T= %‘ f“ (2 + w)dx (67)
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Fig. 3 Nonstationary response of two-DOF system to uncorrelated loading.
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and E A I p, L, u and w are modulus of elasticity, cross-sectional area, moment of inertia,
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Table 5 Variance and covariance of displacement response of linear beam

Case No. Ele.  No. RV. Var(b) (6% % {6v)
1 2 0 0.0 0.00102 0.0386 0.00598
2 4 0 0.0 0.00099 0.0380 0.00581
3 12 0 0.0 0.00098 0.0379 0.00581
4 2 1 (0.1 XEY 0.00133 00417 0.00614
5 4 1 (0.1 X Ep 0.00126 0.0415 0.00589
6 12 1 (0.1 XEy 0.00123 0.0413 0.00593
7 4 4 (0.1 XE)? 0.00137 0.0395 0.00584
8 4 4 (0.1 X EY 0.00128 0.0367 0.00530

mass density, length and axial and transverse deflections, respectively.

Applying Lagrange’s equation and adopting a two-node, six-degree-of-freedom beam element
(three nodal degrees of freedom at each end), the equation of motion for the beam idealized
by a system of elements is:

MX+ CX+(Ko+ K)X=F(X 1) (70)

where M is the mass matrix, K, and K, are the linear and geometric nonlinear stiffness matrices,
respectively, C is the damping matrix, and it is assumed that damping is linearly proportional,
ie, C=aM+ bK, Vectors X, X, X denote acceleration, velocity and displacement at the nodes,
while F(X, 1) is the load vector. Assembling the element matrices and using the statistical lineari-
zation technique, we can obtain the equation of motion of the system. The displacement response
of the system is assumed to be zero mean.

Response calculations for beams modeled with 2, 4 and 12 elements were performed for several
different cases:

4.2.1. Deterministic material properties

The material and geometric properties of the simply supported beam were assumed as: modulus
of elasticity E=3.6X10’ N/m? moment of inertia /=005 m®, total mass of the beam A=1000
kg, and length L=20.0 m. A concentrated force is applied at midspan; this force is modeled
as a white noise process with spectral density S,=100,000 kg’—sec. Damping was assumed to
be 0.01. The value of time step At in applying the SCDM method was 0.002 sec.

The variances of deflection at midspan and rotation at the support, and their covariance,
are given in rows 1-3 of Table 5, developed assuming linear elastic behavior (K,=0 in Eq.
(70)). The estimates of mean-square displacement are insensitive to the choice of finite element
model. Mean-square velocities also were computed; however, these velocity estimates appeared
to be unstable, indicating that additional refinement to the SCDM method may be required
if accurate estimates of velocity statistics are required.

4.2.2. Random material properties

Rows 4-6 of Table 5 describe the mean-square midspan displacements and end rotations
when the beam stiffness is described by one random variable. Four finite elements appear to
be sufficient to model the beam in this example. In row 7, the moduli of elasticity of each
of four finite elements used to model the beam were assumed to be statistically independent
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Table 6 Variance and covariance of displacement response of nonlinear elastic »eam

Case No. Ele.  No. RV. Var(b) (8% v v
1 2 0 00 0.00096 0.0380 0.00574
2 12 0 00 0.00096 0.0338 0.00541
3 2 i (0.1XEY 0.00127 ¢ w9 0.00588
4 12 1 (0.1 XE)y 0.00121 0.0367 0.00547

0.05 e e S E—— +-
0.0+  _eemmmmomommme
"”
0.03+ .
u’; p/ «=-- linear: var(b) = (0.1R)2
v ~—p— linear: var(b) = 0.0
0.024+ ~*— nonlinear: var(b) = (0.1E)2 T
<= nonlinear: var(b) = 0.0
0.01 ¢+
0.00

0O 10000 20000 30000 40000 50000
n
Fig. 4 Variance of center deflection of beam modeled by 12 clements.

Gaussian random variables. More generally, the modulus of elasticity is described by a random
field, with covariance function,

Cov (b, b)=o0,0;(exp(—4| u,—u;|/L) (7D

in which |u;,~u;| =separation distance between the midpoints of two beam finite elements. Row
8 presents the results for correlated stiffness described by Eq. (71), again using four elements
to model the beam. Generally, if the number of correlated random variables is m, the number
of equations that must be solved by the SCDM is m(m+1)/2+1. Table 5 shows that the effect
of finite element modeling appears to have at least as significant an effect on the response
statistics as correlation in the random field describing the stiffness. The effect of uncertainties
in the material properties may be significant for dynamic response of the simply supported
beam. The variance of rotation at the support was found to increase by 25 percent as the variance
of modulus of elasticity is increased by 10 percent.

4.2.3. The effect of the nonlinearity of the system

Geometric nonlinearity in the beam is reflected in the term K, in Eq. (70). Comparing results
for nonlinear response presented in Table 6 to those in Table 5, the nonlinearity decreases
the mean-square response of the system. Fig. 4 compares variances of midspan deflection for
four different cases of linear or nonlinear behavior and deterministic or random stiffness, using
a finite element model of the beam involving 12 elements and perfectly correlated stiffnesses.
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5. Stability of the numerical method

The central difference method is a conditionally stable numerical method. Consider Eq. (1)
for arbitrary initial conditions; when no load is specified; the central difference method solution
is:

X na=A"X, (72)
From the spectral decomposition of 4, we have
A"=PJ" P! 73)

where P is the matrix of eigenvectors of 4 and J is the Jordan form of 4 with eigenvalues
A; of A on its diagonal. Let p(A4) be the spectral radius of A4, defined as

p(A)=max|Al; i=1, 2, - (74)

The stability criterion is p(4)<l1.

To satisfy p(4)<1 for the central difference method, the critical time interval in the integration
is A1, <T,/m (Bathe and Wilson 1976), in which 7,=2n/w,, and w, is the highest frequency
of the system. In the analysis of the beam,

_in  / El
w=\/ 5 (79)
where i=1, 2, 0. For the beam modeled with 2, 4 and 12 finite elements,
ALL0.1068 sec.; Ar<0.0267 sec.; Ar,<000296 sec. (76)

in which the subscript denotes the number of the elements used to model the beam. If the
number of elements is large, the time step Ar must be very small to obtain a stable result.
This places a restriction on the use of the SCDM coupled with finite element analysis.

The SCDM is an explicit numerical method of direct integration in the time domain. The
choice of parameter is simple compared with other implicit numerical methods, since only one
parameter At need be considered to maintain numerical stability and accuracy in the computation.
Stable and nearly exact results can be obtained over a wide range of Ar in the linear case
(cf Fig. 2). In the nonlinear case, the accuracy of the SCDM is equivalent to that of the equivalent
linearization method (Zhang and Zhao 1992). To save computation time, a larger value of At
should be chosen close to the critical value At,.

6. Conclusions

The SCDM can be applied to compute the covariances of response of MDOF nonlinear
systems in which the uncertainty in stiffness is modeled as a random field and the response
is determined by the stochastic finite element method. The excitations are modeled as either
stationary or nonstationary random process. The accuracy and efficiency of the SCDM are chec-
ked using two-DOF linear systems, and the numerical results are compared to exact or perturba-
tion analysis solutions. A simply supported beam example is also given. The stability of the
SCDM method is examined.

Comparisons of SCDM solutions to those obtained by perturbation analysis indicated excellent
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agreement of mean-square displacements in all cases considered. However, the agreement between
the estimates of velocity statistics obtained from the SCDM and perturbation analyses were
not as close, and discrepancies tended to increase as the number of random variables in the
problem increased. This behavior suggests that a different stability criterion may be required
in cases where accurate estimates of velocity are needed. An investigation of this issue is in

progress.
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