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Abstract. For non-classically damped structures subjected to evolutionary random seismic excitations,
the non-stationary random responses are computed by means of a high precision direct (HPD) integration
scheme combined with the pseudo excitation method. Only real modes are used, so that the reduced
equations of motion remain coupled for such non-classically damped structures. In the given examples,
the efficiency of this method is compared with that of the Newmark method.
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1. Introduction

Seismic loadings are typically non-stationary random ones. However, because of the complexity
and considerable computational demands of the analysis of structural random response, a simple
but somewhat conservative and rough response spectrum method is instead widely used in practi-
cal engineering, except for some very important projects, e.g. for nuclear power stations (Lee
and Penzien 1983) or surface-mounted pipelines (Lin, Y. K., e al. 1990), which require more
careful analysis. However, even for such important projects, stationary random excitations are
usually assumed, to avoid over-complicating the computation of their structural non-stationary
random response.

Since the 1980’s, the theory and methods associated with non-stationary random response
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have received great attention in the literature. It has been possible to analyse some comparatively
simple engineering models by using such methods (To 1986, Gasparini and Chaudhury 1980,
Langley 1986). However, efforts are still being made to find more efficient methods.

During the past few years, an efficient pseudo excitation method for the analysis of structural
stationary random responses has been suggested by Lin, Williams and Zhang (Lin 1985, 1992,
Lin, e al. 1992). This method has recently been extended to the analysis of non-stationary respon-
ses of classically damped structures subjected to evolutionary random seismic excitations (Lin,
et al). However, for general structures equipped with seismic isolation devices, which usually
impose heavy local damping on the structure, the characteristics of non-classical damping must
be taken into account. Obviously, it is of great engineering significance to search for an efficient
and reliable method for dealing with such problems. In this paper, only real modes are used
to reduce the order of the equations of motion of the non-classically damped structure, so that
the resulting damping matrix remains non-diagonal. This procedure is obviously efficient for
the present problem (Clough and Penzien 1975).

Recently a high precision direct (HPD) integration scheme was proposed (Zhong and Williams)
for structures subjected to deterministic dynamic loadings. This is an unconditionally stable
explicit integration method with high precision and efficiency. The present paper shows that
by extending the pseudo excitation method to non-classically damped structures, and combining
it with this high precision step-by-step scheme, various non-stationary responses due to evolu-
tionary random seismic excitations can be easily solved. Three numerical examples are given,
for which Newmark’s method is also used to compare with the efficiency and precision of the
HPD method. It is shown that, for the same level of precision, the time-step size for the HPD
scheme can be about four times that for the Newmark scheme, whilst the computational time
is approximately halved.

2. Basic principle of the pseudo excitation method

Consider a linear time-invariant system subjected to a non-stationary random excitation which
takes the following widely used evolutionary form (To 1986, Gasparini and Chaudhury 1980,
Priestley 1965)

SO)=g@O)x() )

in which ¢ is time, g(r) is a specified envelope function and x (f) is a zero-mean-valued stationary
random process with given PSD (power spectral density) S, (®). An arbitrary response y(t) caused
by the excitation f(f) can be expressed by means of Duhamel integration as (Lin 1967)

o= f = of(mdr @

in which A(r) is the pulse response function of the system. The auto-correlative function of y(r)
is (To 1986)

R, (t. D)=ELpt)y(t:)]
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i
:jo j() h([l_ T[)h(tz_ Z'z)g(l'l)g(fg)R_‘-‘\-(ﬂ, 'L'g)df] dl'g (3)
where E[---] means taking the mean value, and
R (v, ©)=E[x(m)x ()] )

Because x(f) is a stationary random process
R.\'X(rh IQ)ZR\‘.\‘(r):f S»\",\‘(a))eiwrda) (5)

in which t=15—1, and the Wiener-Khinchene relation has been used. Substituting Eq. (5) into
Eq. (3) gives

R, (1, tg)ZfiDI*(a), (e H)S . (w)dow ©)
where the superscript * denotes complex conjugate and
Hw, t)If:)h(t—r)g(r)e""”dr )
By letting r,=t,=t in Eq. (6), the variance of y(r) is obtained as
o,(D=R,(t, N= f :I *(w, Nl (w 1S, (w)dw 8)
The integral of Eq. (8) is simply the time-variant PSD of the response y(), ie.

Sw(@ )=I"(w, Dlw DS (o) )]

It is seen from Eq. (7) that I(w, 1) is the response caused by the excitation g(f)e’’ with both
the initial displacement and initial velocity of the response assumed to be zero. Therefore, provided
a pseudo excitation

J=V/S (g e (10)
is exerted on the system, then the response caused must be
o, n=v/S (@) (w. 1 (11)
Obviously
Y¥w. ny(e. N=1%w. (o 1S, (v) (12)
From Egs. (9) and (12),
S (@, H=yXw. Dy(w, D=y DI (13)

Thus, the time-vartant PSD S,,.(w. 1) of an arbitrary non-stationary random response can be

£(t) = .. (@) g(t)e'™ — | Hime mvaniant | _, vy = 5 70)I(o,1)

linear system

Fig. 1 Non-stationary pseudo-excitation and response
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calculated in terms of a deterministic dynamic analysis, see Fig. 1. In general, pseudo dynamic
responses y(w, 1) can be calculated in the time-domain by using time domain integration, as
follows.

3. Non-stationary random seismic responses of non-classically damped structures

The motion equation of an n DOF structure subjected to the action of an earthquake is
CMI{ 3+ LCHpt KDy} = ~[M]{E} %, (14)

in which [M] and [K] are the mass and stiffness matrices, [C] is a non-classically damped
matrix, {E} is the inertia index vector, and %,(f) is the ground acceleration, which takes the
form of the RHS of Eqg. (1). Using the pseudo excitation method, Eq. (10) gives the pseudo

ground acceleration as
%, 0=V S (w)g@)e™ (15)

Substituting Eq. (15) into the RHS of Eq. (14) produces the following deterministic equations
of motion

(MI{pY+LCT P+ KD {y} = —IMUHE} VS o ()g(D)e™ (16)

Its initial conditions are

{ (O} ={ (O} ={0} (17)

If the order n of Eq. (16) is low, it can be solved directly by a direct integration method.
Otherwise it needs to be reduced by means of prior application of the mode-superposition scheme.
For non-classically damped problems, it is possible to use the complex modes to decouple the
equation system (16) into uncoupled complex SDOF equations. However, in this paper, only
real modes are instead used for the reduction of the problem. Accordingly, the following eigenpro-
blem should first be solved

LK][®]=[M][P][02"] (18)
(@) M]IL@)=LT] (19)

in which [7] is the unit matrix and [®] and [£2%] are the matrices of the first ¢ modes and
eigenvalues, respectively. By using the first ¢(g<<n) eigenmodes {¢};. {y} can be expressed
as

0. 0= 3 w@ (o)=L ful 0)
and then Eq. (16) can be reduced into the ¢ dimensional equation of motion
(1 i} +LCT° i) + [ {u 71V S (g™ Q1)
in which
[Cl°=[@) ][] (22)
{rt =[] [M]{ E} (23)

where [C]° will not be a diagonal matrix if [C] is not classically damped. However, because
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the order of this reduced equation is rather low, it would be convenient and efficient to solve
it by a proper step-by-step scheme. With the structure initially at rest, ie.

{¥O}=1{0}. {#O)}={0} (24)
or, using Eqgs. (19) and (20),
{u(O)} =L DT LMI{»(O)} ={0}., {a(O)} =[PV TMI{pO)} = {0} (25)

the transient solution of Eq. (21). ie. {y(w 1)}, can be computed at discrete times. Here Eq.
(13) gives the PSD of the i-th element of {y(w 1)} as

S, )=y *w Dyi(w 1) (26)

and the corresponding time-dependent variance is

o}, ()=2 f S @, Ndw @7
0
The PSD’s and variances of other quantities which can be found through linear transformations
of { y(w, 1)}, e.g an arbitrary internal force n(w, 1) or strain &(w, 1), can be obtained from equations
similar to Eqs. (26) and (27).

4. High precision direct integration scheme

The high precision direct (HPD) integration scheme presented by Zhong and Williams applies
to both damped and gyroscopic systems. This section summarizes its key relevant points, with
the gyroscopic case omitted because it is not relevant to the present paper. Hence, the equations
of motion (16) (or (21)) are first written in the form

[MI{x}+ICH A +IK I x )= {0} (28)
then letting
{pt=[MI{x}+[CI{x}2 (29)
or
{xt=CM]" " p} -[M]'[CT{x}/2 (30)
Eq. (28) becomes
{pt=—K]1-[CILMI ' [CI/A){x} —[CIIM] "{ p}2+{/} (31)
Egs. (30) and (31) can be further rearranged into the linear dual form
{ph=LHI{v}+{r} (32)
in which
[H]Z[‘; IG)] {v}:{l‘j}. {r}———{?} (33)

{gt={x}. {4} =—-[M]7'[C2, [B]l=—(K]-[CI[M]'[CI/4)
[G1=—[CI[M]~'/2, [D]=[M]""
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The homogeneous solution to Eq. (32) should satisfy the equation
{va} =LH1{wi} (34)
and is simply
i@} =exp(LHIX 1) {c} (395)

where {¢} will be determined according to the initial conditions. and it has been assumed that
within the k-th time-step, t &(t;. t,+1), t=t—#. Furthermore, let

[Tro]l=exp(LH]X 1) (36)

For the present method, it is very important to compute [T{7)] very accurately (Zhong and
Williams). Accordingly. let

At=1t/m (37)

where m=2". The use of N=20 was suggested, so that Ar=10"°z. Eq. (36) can then be expressed
as

[Mo]={exp(LHIX A" (38)
or
[T]=[I +HXAt+HX AN +HX AR +HX A4 P=[1+T,, " (39)

Because O(Ar°)=0(107" ) is of the order of the round-off errors of ordinary computers, taking
up to the fourth order term of the Taylor series, as done in Eq. (39), would generally be extremely
accurate. Thus it would usually give practically the exact matrix [T{7)], i.., its accuracy approxi-
mately matches computer accuracy.

Note that
[1+T:l”]2:[1+2X7:ll)+7:l()><7:lﬂ]§[1+7—;]]]
[1+T;II]2:[1+2XI1I+7:1]XT;H]-:—[I+T:12] (40)
I+ Ty =T +2XTono + Ty X Ton- =l + T ]
Clearly

I+TN)=[I+T, v F=U+T, y oY==+ T, =[T(9)] (41)

Egs. (40) and (41) suggest the computing strategy. The main point is that the unit matrix
(/] must not take part in the intermediate computations, so as to avoid loss of significant
digits of [T,0]. [T, )--[T,~-1]. Cleary. Eqs. (40) enable this to be achieved very simply, by
obtaining [T,,] from [7,]. [(T,»] from [T, ], etc. when coding a computer program, by using
the simple recursive statement obtained by cancelling the [/]s on each side of the identity
symbols of Egs. (40).

If the given loading varies linearly within the time-step (fy, f;+)), 1.

{rt={r} +{n} X@—n) 42)
then the particular solution of Eq. (32), denoted by {v,}. should satisfy
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{0, } =LH1{v,} +{r} +{r} X@—1) (43)
It is easy to verify that
@t =CHI '+ IXe)(=LH] ' {nh)—[HI '({re} — {n} X&) (44)
meets this requirement. Thus, using Egs. (35) and (36), the general solution to Eq. (32) is
PO = v} + v, O} =TI {c} +{v, O} (45)

For every time-step [#, #-], the initial state vector {v(%)} is known. By letting r=¢, in Eq.
(45), {c} can be determined as

{e} =1t} —{v, (e} (46)

because [T10)] is a unit matrix. Finally, by substituting Egs. (44) and (46) into Eq. (45), the
state vector at time f,1, can be obtained as

v N =[TOIXUve)+LHI (ot +LH] i D]
—[H]1 '"{rd +LH] "{r} +{n} XD 47)

in which T=t+ 1 1ty.

This scheme is unconditionally stable. In fact, it can be readily proved for an SDOF system
that the eigenvalues of matrix [H ], see Eqs. (33), must have non-positive real parts, and so
because of Eq. (36) the spectral radius of [7(z)] cannot be greater than unity (Bathe and Wilson
1976).

5. Examples
5.1. Example 1

Consider an SDOF system initially at rest subjected to an evolutionary random excitation
f@). Its equation of motion is

Mj+Cy+Ky=/() (48)
and the initial conditions are
»(0)=0 and 0)=0 49)
Suppose that
M=102, C=10 and K=14000.0 (50)
where units are omitted for convenience, and that the excitation takes the form
fO)=g)x () &1y
in which
0=’ e o

Finally, suppose that x(r) is a zero-mean-valued stationary random process with PSD given
as the Kanai-Tajimi filtered white noise spectrum
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Table 1 Variances qﬁ () of the displacement response y

T

Scheme ] 0.0025 0.005 001 0.02 0.03 0.04 0.06 0.08
1.2 6.443 6.442 6437 6418 6424 6479 6.575 6.775

HPD 24 13.19 13.19 13.18 13.13 13.14 1323 13.38 13.72
36 19.65 19.65 19.63 19.57 19.58 19.72 19.96 2046

12 6.443 6432 6.389 6.219 5986 5.728 5.065 4.497

Newmark 24 13.20 13.19 13.12 12.87 12.54 12.15 10.87 9.330
36 19.65 19.62 19.49 19.00 18.36 17.72 16.27 14.32

30

I
) |
)
] |

£
15
()
10
5
0
.001 01 A
T

Fig. 2 Error curves for o?(t) with 1=3..

| _Q,_a)_z
S (@)= A — )

S (53)
(1- 0Vl + 4 0/w,)

in which {,=0.544, ©,=19.07 and S,=142.75.

The response of displacement y was computed by means of the HPD method, and also by
the Newmark method with @=0.5 and §=025 (Bathe and Wilson 1976). The variances oﬁ o
at times =12, 24, and 3.6 with different time-step sizes t are listed in Table 1. The curves
of the variation of relative error ¢ at t=36, with step size for both methods are plotted in
Fig. 2. It is seen from both the table and the figure that when the step size is very small,
eg t=00025, both methods give practically identical results. In order to control the error &
within a certain level, the HPD method can clearly adopt a much higher step size t than can
the Newmark method. For instance, for £=4% the HPD method only needs a step size of
t=0.08, for which the computer time on an IBM/sc386 notebook computer is 26 seconds, whereas
t=002 has to be adopted for the Newmark method and the computer time is then 71 seconds.
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g(t)T

1.00

0.00

Fig. 3 Modulation function for Eq. (54)

Table 2 Variances o; (7) of the displacement response y with the g(r) of Fig. 3

223

T

Scheme p 0.0025 0.005 0.01 0.02 0.03 0.04 0.06 0.08
12 3.031 3.030 3.028 3016 3.016 3.038 3.078 3.141

HPD 24 8.819 8.817 8.809 8778 8.784 8.840 8942 9.148
36 9.281 9.279 9.271 9.238 9.246 9.301 9411 9619
1.2 3.032 3.028 3.012 2946 2.851 2766 2485 2240

Newmark 24 8816 8.803 8.754 8.563 8.306 8.028 7.252 6.486
36 9.277 9.264 9211 9.003 8719 8.400 7.544 6.758

g(t) was then replaced by the following (Amin and Ang 1968), which is very popular in the
earthquake engineering field and is shown in Fig. 3.

£ty
g0=1
exp [—ct—1.)]

when <z,
when 7, <t<t.
when >1,

(54)

For 1,=0.8 sec, .=2.0 sec and ¢;=0.1572 the variance of displacement y was again analysed
by the methods used above, and the results are listed in Table 2. They lead to similar conclusions

to those drawn from Table 1.

5.2. Example 2

The three DOF system of Fig. 4 is subjected to an evolutionary random ground motion,
such that the equations of motion are Eq. (14) with
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Fig. 4 A three DOF system subjected to evolutionary random seismic excitation.
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Table 3 Variances of top displacement y:

T

Scheme . 00025 0005 001 0.02 0.03 0.04 0.06 0.08
12 2344 2343 2339 2323 2311 2307 2280 2263
HPD 24 2.745 2744 2.740 2721 2708 2.702 2670 2.650
36 2797 279 2791 2773 2759 2753 2719 2698
12 2344 2340 2325 2268 2193 2111 1893 1.600
Newmark 24 2746 2742 2728 2673 2600 2519 2298 2043
36 2795 2795 2782 2731 2664 2589 2381  2.160
[102 0 0 170 —85 0
(MI=| 0 102 0 (cl=| -8 170 —85 |,
| 0 0 102 0 -85 85
28000 — 14000 0 1
[K]=| —14000 28000 — 14000 [E} =11 (55)
| 0 —14000 14000 1

and f(r) is again given by Eqgs. (51)-(53). The time dependent variances of y; at times r=12,
24 and 3.6, for different time-steps z, are listed in Table 3, using the same methods as for
Example 1. When the time step size was very small, e,g. t=0.0025, both methods again gave
practically identical results. and so the variance curves for each of the three masses coincided
with each other, giving the three curves of Fig. 5. The errors of the variance of y; at time r=3.6
are shown in Fig. 6 for different time step sizes. Clearly, the error of the HPD method with
=008, for which the computer time was 90 seconds., is approximately equal to that of the
Newmark method with either t=02 or =03, for which the computer times were 222 or 151
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Fig. 5 The time dependent variances of y;. y» and y:.
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Fig. 6 1=3.6 error curves for oy,

seconds, respectively. Thus the HPD method again needs about half the computer time required
by the Newmark method. These times were obtained from an IBM/486 personal computer, with
the main frequency of 33 MHz used.

5.3 Example 3

The eight DOF system of Fig. 7 has the mass, damping and stiffness distributions shown,
with M=10* kg. K =16X10° N/m and C=4X10* (kg N/m)"*. The evolutionary random seismic
acceleration is

X, (0=g(1) x() (56)
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Fig. 7 An eight DOF system subjected to evolutionary random seismic excitation.

Table 4 Variances of top displacement yx (cm?)
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t

Maximum Compu.

Scheme . 8.0 16.0 240 320 40.0 errors(%)  time(s)
0.0025 2.306 6.525 4881 1.014 0.1547 0.0 68539

0.0050 2.306 6.525 4881 1.014 0.1546 0.1 34229

HPD 0.01 2.305 6.522 4.879 1.014 0.1546 0.1 17206
0.04 2.288 6.475 4.844 1.007 0.1535 0.8 4304

0.08 2233 6.326 4734 0984 0.1500 32 2153

0.0010 2.306 6.525 4881 1.014 0.1547 0.0 106927

0.0025 2.306 6.525 4.882 1.015 0.1549 0.1 42714

0.0050 2.305 6.523 4.883 1.017 0.1555 0.5 21748

Newmark 0.01 2.300 6.515 4.886 1.023 0.1578 20 10728
0.02 2282 6.485 4.894 1.046 0.1661 74 5360

0.04 2210 6.344 3.849 1.069 0.1757 13.6 2672

0.08 1.956 4.759 3.804 0.6000 0.0528 659 1337

in which the modulation function g(¢) of Fig. 3. ie. of Eq. (54), applies with ¢,=8.0 sec, r1.=20.0
sec and ¢;=0.16. x(r) is a stationary random process with Kanai-Tajimi PSD distribution, see

Eq. (53), for which

$,=06. w,=5m sec ™' and S,=1574 cm?/sec’

The time dependent variances of the top displacement are shown in Table 4 and Figs. 8
and 9. Table 4 also shows the maximum percentage error for any of the five values of 7 shown,
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and the computer time needed to get to r=40. It is seen that if this problem is solved by the
HPD scheme with a step size of r=0.08, only 2153 seconds of computer time are used and
the maximum error of the results is 3.2%. However. if the Newmark method with a step size
of t=0.02 is adopted, 5360 seconds, ie. 2.5 times as much computer time, is required and a
larger error, of up to 7.4%, results.

6. Conclusions

Non-stationary random responses of structures subjected to an evolutionary random seismic
excitation can be reduced to the solution of deterministic dynamic equations, which can then
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be solved very accurately and efficiently in terms of the high precision direct integration scheme.
This scheme has been shown by examples to be about twice as fast for such problems than
is the Newmark method, which requires about four times as large a time step for given required
accuracy.
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