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An explicit time-integration method for damped
structural systems
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Abstract. A damped trapezoidal rule method for numerical time-integration is presented, and its appli-
cation in analyses of dynamic response of damped structures is discussed. It is shown that the damped
trapezoidal rule method has features that make it an attractive approach for applications in dynamic
analyses of structures. Accuracy and stability analyses are developed for the damped single-degree-of-
freedom systems. Error analyses are also performed for the Newmark beta method and compared with
the damped trapezoidal rule method as a basis for discussion of the relative merits of the proposed
method. The procedure is fully explicit and easy to implement. However, since the method is an explicit
method. it is conditionally stable. The methodology is applied to several example problems to illustrate
its strengths, limitations and inherent simplicity.
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methods; error analysis; trapezoidal rule method.

1. Introduction

Over the past decade, variable time-integration methods have been quite extensively employed
in transient analysis. Each of these methods have different levels of accuracy, stability and compu-
tational cost. Each of these numerical approaches employs difference relationships relating displa-
cement, velocity and acceleration in step-by-step computation to obtain the dynamic response
of a structure. In general, time-integration methods for structural dynamics may be generally
classified as implicit methods and explicit methods. Whereas the commonly advocated explicit
methods for computational structural dynamics require less computational effort per time step,
they are conditionally stable. On the other hand, implicit methods require much greater computa-
tional effort per time step and are unconditionally stable. The critical choice, of course, is the
selection of a particular time-integration method that combines accuracy and efficiency. The
choice of a method is guided, to an extent, on the specific application. This paper focuses on
an explicit time-integration method for computational structural dynamics based on a modified
version of the trapezoidal rule method in conjunction with a second-order Taylor series approxi-
mation. The damped trapezoidal rule method (DTM) has several features that make it an attractive
approach in dynamic analysis of damped structural systems.

The objectives of this paper are to introduce the damped trapezoidal rule method, provide
information about the accuracy and stability of the method compared to the well-known Newmark
methods (Newmark 1959) and illustrate its application in analyses of the dynamic response
of structures. In what follows a formal introduction to the damped modified trapezoidal rule,
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including error analyses, is presented. The characteristics, strengths and the limitations of the
DTM procedure are investigated through several examples.

2. Damped trapezoidal rule method (DTM)

The free vibration of a simple mass-spring system may be described by the following linear
homogeneous second order differential equation

¥+ 20,5+ @ x=0 (1)

d

where x is the displacement of the vibrating mass from the equilibrium position, w; is the damped
circular frequency, ¢ is the damping ratio and each dot represents differentiation with respect
to time .

A discrete solution of the governing equation of motion, Eq. (1), may be approximated by
defining the displacement x,, the velocity %, and the acceleration X, at some time denoted by
the subscript n. The time may be expressed as r=nAt where Ar is an arbitrary time step. In
terms of the defined discrete time variables, Eq. (1) may be written as

= — WXy — 2E WuX, )

The displacement of the system x, is approximated by using a trapezoidal rule for integrating
the velocity terms
1.

x,,+1:x,,+%x,,At+—2—x,,+1At 3

in which the velocity X, is represented by a second-order Taylor series

xn+l:<1—%yz>xn+(l_f)’)ant ’ (4)

where y= w;At.

The damped trapezoidal method (DTM) consists of solving Eqs. (2)44) at each time step
n. The computation is initiated by defining the initial conditions of the system given in terms
of the displacement x,, and the velocity x,, at t=0, or n=0. With the initial conditions prescribed,
Eq. (2) may be solved for the initial acceleration %,. The values of the velocity, the displacement
and the acceleration at time n+1 are determined by solving Egs. (3), (4) and (2) in sequence.
The resulting DTM procedure is quite simple and fully explicit.

2.1. Stability of the damped trapezoidal rule method

The expression for displacement, given in Eq. (3), may be decremented in time to give an
expression for x,.

x,,———x,,_1+—é—5c,,_1At+%5c,,At ®)

The resulting relationship, defined in Eq. (5), may be subtracted from Eq. (3) to form a second
order difference equation

xn+]_2xn-'_xn—1:——42i (xn——xn—l)+% (xn-H_xn) (6)
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The differences (x,—x,-,) and (x,+;—x,) may be determined by rewriting Eq. (4), for exam-
e o1 == = 7%+ (1= €D, At )
Substituting Eq. (7) into Eq. (6) gives

Xy =20 +3, = A (1= £, %)~ LA 5, 45,) ®

The sums (%,-,+x,) and (%,-,+%,) in Eq. (8) may be determined by rewriting Egs. (3) and
(2), respectively.

% b= th 6 —X 1) )

Fnm1F 0= — @) (1 +X, ) — 2E @y Gep 1 +5) (10)

Substituting Eqgs. (9) and (10) into Eq. (8) results in a linear homogeneous difference equa-
tion

21— (§V HAS = Y — 4l v+ Ax, — (VP — 48 P+ 4L y—D)x, 1 =0 1)
which for convenience may rewritten as
2%, = (E Y+ @S =) Y =4y Ax, 1 — (VP —4E Y+ 48y~ 2)x, =0 (12)
2Xp+2—AXy1—Bx,=0 (13)
where
A=CYH@EE =) —Aly+4 B=(py—48+4Ey-2 14)
A characteristic equation is obtained by assuming a general solution of the form
X, =A" (15
and substituting the expression into Eq. (13) results in
2A*—~AA—B=0 (16)

The roots of the characteristic expression, Eq. (16), may be determined by the quadratic equa-
tion

/1,2:—‘17@ %\/Az-i-SB a7

The stability criterion is dictated by having the spectral radius, given in Eq. (17), to be less
than 1 (ie, 4,2<1). In Fig. 1, a plot of A, versus y for two typical critical damping ratios
of {=0% and 25% is presented. Spectral radii are within unity provided that A¢/T<2, 1912,
1.844, 1.792 and 1.737 for critical damping ratios of &=0.5%, 10%, 15% and 25%, respectively.
In addition to insure that the roots do not bifurcate, they must remain complex-conjugate. There-
fore, the quantity inside the square root should be less than zero. The roots do not bifurcate
if Ay/T<2, 1903, 1.81, 1.722 and 1.562 for critical damping ratios of ¢=0.5%, 10%, 15% and 25%,
respectively.

The roots of the characteristic equation, given in Eq. (17), in polar notation may be written
as



148 S. Pezeshk and CV. Camp

—
Spectral Radias
05 \ £=25%
. | . |
Complex Conjugate
Comp <
00 [
I
|
: Ut <l j: £=0%
). 12 -05 and Complex |
» g . Conjugate Roots |
|
|
|
_10 | [
|
1
|
15 :
- ny < 1 <9
-2 v
13 14 15 16 1.7 18 1.9 22
¥ils
T

Fig. 1 Spectral radius for A;» as a function of At/T in DTM method.

/11:[‘€ip Azzwviﬂ (18)
where i=y/—1 and u is defined as

y=tan_l<@ ) (19)

A
and

== 3 B=5(=¢r+4 =4 r+) @
By substituting the roots of the characteristic equation, defined in Eq. (18), into Eq. (15) the

general solution for the displacement becomes

X, =AA|+BA,=AI"e"*+BI"e " (21)
or, in a more convenient form, the real part of the displacement may be written as
x,=CI'"cos(nu)+DI'"sin(ny) (22

where the constants 4, B C and D are determined from the initial conditions of the system.
2.2. Displacement and velocity using DTM

To investigate the accuracy of DTM consider the response of the simple mass-spring system.
Expressions for the displacement and the velocity of the system using DTM may be derived
from the general solution developed in Eq. (22). The time variable n in the expression for the
displacement x,, given in Eq. (22), may be replaced by n=t,/At

x,,ZCF"cos(,u Xt >+DF"sin</J Z’t

) 23
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The velocity x, may be derived in terms of the displacement x, by rewriting Eq. (4) for the
velocity x,+; and substituting the result into Eq. (9) written in terms of the velocity x,

. _4x,,+1+(—2fy3+2}’2—4)x,,

B I@E- ) - AEy T A A =
Eq. (24) may be written in a more convenient form as
X,=ax,++bx, (25)
where
—_ 3 2__
4 b 26y +2v2—4 26)

I T@E—1) PP —afy+4] A T T@E 1)y —afy+4] At

Substituting the solution for the displacement, given in Eq. (23), into the approximation of the
velocity x,, Eq. (25) results in

x,=I'"{D(aI'cos u+b)—aCrsin u} sin(u Xt >

+I'"{C(alcos u+b)+al'Dsin u} cos(,u

Iy
5w
The constants C and D in Egs. (23) and (27) may be determined by applying the initial conditions
for both the displacement x,(t=0)=X, and the velocity x,(t=0)=V,. The constants C and D
are determined as

_ Xo(aItosut+b)—V,

C=X, D= alsing (28)
In terms of the initial displacement X, and the initial velocity ¥V, the displacement x, is
_ n o\ I '[(Xo(@leosp+b)—Vol . [ &,
x,.=XoI cos( u At) asing sin| u—- 29
and the velocity x, is
. (@b D)X+ (2bX,— Vy)acosu—(b/D)V, . t
x,=I [Vooos(p At) asing sin ,uZ”? 30)

3. Review of Newmark Beta method (NBM)

Before discussing the errors associated with the application of DTM, it is of interest to review
the features of the NBM and to define the relationship between these two approaches. The
implementation of the NBM for the solution of the damped vibrational problem considered
is as follows:

(1) With a set of known values of x, and x,, apply Eq. (2) to find %, then

(2) Estimate X,.,, the acceleration at the end of the interval.

(3) Compute x,+,

5c,,+1:5c,,+%(At)?,,+At5c“,,+1) 3D

(4) Compute the new displacement x,,+,
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xn+1:xn+Azx,,+% (1=2B)%,+ AP B, ., 32)

(5) Compute the new acceleration X,
Fnt1= = @)X a1~ 26 @gXopsy 33)

(6) If X,+1#X,+, return to step (2) and repeat the iteration with an improved estimate of
acceleration by using X,+1=%,+. If X,41=%,+,, the process has converged and the calcula-
tions are advanced to the next time interval.

The Newmark Beta method (NBM) has many well-known special cases. For example, NBM
with B=1/4 is referred to as the “average acceleration” method. This approximation is one of
the most widely used methods for structural dynamics applications. The NBM with =0 is
called the “central difference” method and NBM with = 1/6 is referred to as the “linear accelera-
tion method”.

We can avoid the iterations associated with the application of Newmark Beta method by
employing an incremental approach such as that implemented in Clough and Penzien (1975),
Subbaraj and Dokainish (1989), Dokainish and Subbaraj (1989) and Hughes (1987). However,
this incremental technique is based on the use of the concept of the tangent stiffness and may
introduce additional errors in the computation of the dynamic response of the nonlinear system.
An additional advantage of explicit method, such as DTM, is that they can be easily implemented
and used in dynamic analysis of different systems.

3.1. Stability analysis for the NBM

The stability conditions for the NBM is given as (Hughes 1987, 1983)
1

WAIS————— (34
(%_@m
or T
AtS———7 (35)
2 (%_ ﬂ)n/_

A detailed description of the derivation of the stability criterion for the NBM can be found
in Hughes (1993). Eq. (35) shows that the NBM is conditionally stable for f>1/4. It is stable
for =0, 1/12 and 1/6 (provided that Ay/T<1s, 0389 and 0.551 respectively). Note that the average
acceleration method (NBM with f=1/4) is unconditionally stable and is an implicit method.
The stability analysis given in Eq. (35) for NBM has been based on the assumption that the
iterations associated with the application of the method converge. The NBM is unconditionally
convergent for B=0. However, the NBM would converge for >0 if

A L (1 12
t<‘2‘n— B (36)

Thus, for the average acceleration method (8= 1/4), the NBM is unconditionally stable and condi-
tionally convergent, whereas for the explicit method (8=0), the NBM is conditionally stable
and unconditionally convergent.

By performing operations similar to those presented for DTM, Hughes (1983) developed differe-
nce equations for a damped-vibrational problem for the NBM methods as:
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Xpe1—241x,+Asx,-1=0 37
where
A\=1-[EN+0N%2]/D (38)
A,=1-2E0YD (39
D=1+ &0+ pN*? (40)
N=wAt 41

Assuming that both the conditions for convergence and the stability are satisfied, the solution
by the NBM for the damped-vibrational problem is:

x,=e~ 9" (X, coswyt, +csinwyt,) 42)
where

1
Y A —An)XytA,LV,

T Ve @

where 4., Ay, Ay and Ay are the elements of matrix 4 defined as:

— All A12 — 41
A—[A21 Azz]‘A' A, 44)
where the matrices 4, and A, are
_| 1+ AP Bw? 20 Béw
A‘"[Amﬁ/z 1+ At 45)
— 2(1__ 2 — _
Azz[l sz(l 28)w? Ar(1—At(l 2ﬁ)§w)] 46)
— Atw?*/2 1+Aw
In addition, the roots of the characteristic Eq. (37) in polar notation can be written as
/1] =Boe” A,z:B()e_iv (47)

where v is defined as
Y]
[ gy @

The expression for velocity in the Newmark Beta method can be determined in manner similar
to the DTM

)'C,,:EX,,H“"‘EX,, (49)
where

EZAMZH‘}'H) b= (=93¢ +(1=2B) > —2yE—2
®p—2)¢ 2 +2 (88—2) 2

(50)
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4. Comparison of methods

Available direct methods can be subdivided into explicit and implicit methods each with
distinct advantages and disadvantages. The proposed DTM and NBM with =0 (well-known
central difference) are explicit methods. While the NBM with f=1/4 is an implicit method.
Strictly speaking, in the case of multiple-degree-of-freedom the mass matrix M and the damping
matrix C need to be diagonal for the central difference method to be explicit. In DTM and
NBM (B=0) the solution at time ¢+ Az is obtained by considering the equilibrium conditions
at time t. Such schemes do not require factorization of the stiffness matrix in the step-by-step
solution. Hence the method requires no storage of matrices if a diagonal mass matrix is used.
In addition, computational cost per time step is much less than implicit methods. However,
explicit methods such as DTM are conditionally stable whereas many of the implicit methods
are unconditionally stable. The DTM procedure is conditionally stable and requires a time step
size to be inversely proportional to the period of the system.

Explicit methods allow the displacements at the current time step to be calculated in terms
of known displacements, velocities and accelerations of the previous time step. However, in an
implicit procedure the displacement at the current time step must be found in terms of current
acceleration which requires an iterative procedure to determine the response.

In the following sections, error analyses are performed for DTM and NBM by considering
the free-vibrational response of a linear and damped SDOF system. The accuracy and stability
of DTM is investigated and compared with NBM. In later sections, it is shown that DTM
can approximate the response of MDOF systems accurately and efficiently.

A comprehensive survey of direct time-integration procedures including both explicit and impli-
cit methods are presented in a set of papers by Subbaraj and Dokainish (1989) and Dokainish
and Subbaraj (1989). Interested readers are referred to these papers for more information.

5. Error analysis

In order to measure the effectiveness of the DTM solution procedure, expressions for the
error in the displacement, the natural period and the phase angle as a function of the time
step are developed. The exact solution for the free and undamped motion of a mass-spring
system, defined in Eq. (1), is

x()y=e ¢! YotXoco sin 22 ¢ + X, cos 2, (51)
Wy T, T,
where T is the damped natural period of the system. The velocity X may be derived by differentia-
ting Eq. (51) with respect to time

)'C(t)——‘e‘f“”[(V(ﬁXo fa))cos(—% t) — Xy sin(zT: t)} —Ewx(?) (52)

5.1. Error in the natural period

A measure of the error introduced by the DTM approximation is estimated by comparing
the natural period of vibration for the displacement, Eq. (29), or for the velocity, Eq. (30), with
exact solution. In this case, the error is calculated as the ratio of the approximate period to
the exact period
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Fig. 2 Error in the natural period for DTM and NBM at various values of Az/T.

T _ 2n At
Texact N ﬂ Td (53)
Similar equation can be written for Newmark Beta method as
_ILVBM_ :ﬂ _ét_ (54)

Texacl \4 Td

In Fig. 2, the ratio 7/T,,., is calculated using the DTM procedure and compared to the NBM
for various ratios of Az/T. In all cases, the error in the natural period is negligible for Ar/T<0.01.
In the range 0.01<Ar/7T<0.1, for the undamped case, DTM introduces less error than NBM
with f=1/4 and is about the same amount of error as the NBM with =0. For damped case
with =25%, the error associated with DTM decreases and the error generated by NBM increases.
The error associated with DTM is smaller than either NBM with =0 or f=1/4. Although
the implicit NBM with f=1/4 is unconditionally stable, the results shown in Fig. 2, indicate
that a small time step is needed to avoid period elongation and to improve accuracy.

5.2. Error in the displacement (V,=0)

An estimate for the error introduced in the displacement expression by the DTM approximation
is calculated for two cases. In the first case, the displacement developed using DTM is compared
to the exact solution for an initial velocity ¥,=0. In the second case, an error estimate for
the displacement is developed for X;,=0.

For the case where V=0, the DTM displacement given in Eq. (29) reduces to

xo=Xalncos gy |- LA leo D) g, ) 59
or -
x :Xo_r".\/az-t—2abl‘"‘cos,u+b21"2cos</.li +9) (56)
" asiny At
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Fig. 3 Error in the displacement when the initial velocity V,=0 for DTM and NBM at various of
Ar/T.
where the phase angle 6 is given as
1) _altosu+tb
f=tan '{ ; 67
alsiny
The exact solution for displacement when V,=0 is
_ 27 ‘w?
Ko =Xoe fw'cos(T 46y /L +1 (58)
D wd
where the exact phase angle is
_ [0)
u=tan {2} 59
i

The error introduced in the value of the displacement by DTM is measured by two criteria.
First, the error in the displacement is calculated as the ratio of the amplitude obtained from
DTM to the exact value

X _ re \/ a’+2abcosy/T+b*/T*
Xexa @ t@'sing E2w¥w,+1

The displacement expression for NBM can easily be determined from Egs. (42) and (43) by

substituting zero for Vi,

In Fig. 3, the ratio defined in Eq. (60) is computed using the DTM procedure for various
ratios of Ay/T. For comparison purposes, in all the error analyses considered, the factor » is
set equal to 1. In all cases, the error in the amplitude is negligible for A¢T<001. In the range
001<A/T<0.1 the error associated with DTM is much smaller than NBM with =0 for both
damping ratios of £&=0% and 25%. In fact, there is no error generated for DTM for the undamped
case (£=0%). The NBM with S=1/4 gives the exact displacement amplitude when V,=0.

A second measure of the error in the displacement introduced by DTM is the phase angle,

(60)
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Fig. 4 Phase angle associated with the velocity (V,=0) for DTM and NBM at various values of At/T.

represented by the ratio of the approximate phase angle, Eq. (57) to the exact phase angle,
Eq. (59). In Fig. 4, the value of the phase angle is computed using both DTM for various
ratios of At/T and for critical damping of 0% and 25%. Over the range 001<A:/7<0.1 the
error in the phase angle using DTM is negligible. Both DTM and NBM with =0 generate
approximately the same error.

In evaluating the error in displacement for V,=0, the trapezoidal (8= 1/4) form of the Newmark
method maintains a displacement amplitude ratio of one; however, different choices of the New-
mark parameters can give different results.

5.3. Error in the displacement (X;=0)

For the case where X,=0, the DTM displacement given in Eq. (29) reduces to

— 1 n—=1q1 Al
™ asiny Vol Sm(’uAt) (61)
The exact solution for displacement when X,=0 is
-ﬁ 3 _2_77 —Swr
KXevacr = w, Sln( Td t>€ (62)
The ratio of the amplitude obtained from DTM to the exact value is
X, _ a)drn*l 3
Xear € “'(asiny) )

The displacement expression for NBM can be determined from Egs. (42) and (43) by substituting
zero for X,.

In Fig. 5, the ratio defined in Eq. (63) is compared for the DTM and the NBM procedures
for various ratios of A¢/T. The error in the amplitude is negligible for A7/T<0.0l. In the range
0.01<A¢/7<0.1 the DTM is more accurate than NBM with =0 for =0%; however, as the
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Fig. 5 Error in the displacement when the initial displacement X,=0 for DTM and NBM at various
values of At/T.

critical damping increases to {=25%, NBM with =0 generates slightly less error than DTM.
In addition, the NBM with 8=1/4 gives the exact displacement amplitude for both critical dam-
ping ratios of {=0%.and &=25%.

5.4. Error in the velocity (V,==0)

An estimate for the error introduced in the velocity expression by the DTM approximation
is calculated for two cases. In the first case, the velocity developed using DTM is compared
to the exact solution for an initial velocity V,=0. In the second case, an error estimate for
the displacement when X,=0 is calculated.

For the case where V,=0, the DTM velocity given in Eq. (30) reduces to

. — XOF " 2 2 . tn
X, = _*_asin/l [a*I™2ab cosu+b*/T"]sin A, (64
The exact value of the velocity is
v _— __ai —¢wt g3 _21
KXexaer = — X0 o e sm( T t> (65)
The ratio of the velocity calculated from DTM to the exact value is
X, _ IMwy[a*T+2abcos(u) +b*/T]
X.:ex(u? B aa)zsin(ﬂ)e'f(‘” (66)

Similarly, the ratio of the velocity for NBM to the exact value for the case with V,=0 is

X0 I ayla®T2abcos(v) +b/T7] 67
x({\’uc[ sz Sin( v)(,vfwl

In Fig. 6, the ratio defined in Eqgs. (66) and (67) are computed for various ratios of Ay/T.
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Fig. 6 Error in the velocity when the initial velocity Vy=0 for DTM and NBM at various values of
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The results indicate that the DTM procedure is more accurate than NBM with =0 for both
critical damping ratio of {=0% and £=25%. However, the DTM approximation is not as accurate
as NBM with B=1/4. The second measure error in amplitude of velocity for the case V,=0
is the phase angle. None of the procedures generate any error in the phase angle.

5.5. Error in the velocity (X,=0)

For the case where X;,=0, the DTM velocity given in Eq. (30) reduces to

. 1 Volacosu+b/I’) . 1,
x,=I [Vocos(,u At>+ asingi sin{ 4— (68)
or
Xn= ;:01111:1 \/212+2ab1‘"cos,u+b21"2cos<y Zt +0> (69)
where the phase angle 0 is given as
O=tan- 1{ _ a_F_CO_S‘lL'_f‘ﬁ} (70)
alsinu
Similarly, the velocity expression for NBM to the exact value is for the case with X,=0 is
S 7Y 24, B! 22 L.
x,,———am—\/a +2abI' 'cosv+b’ I *cos VAI+9 7D
where the phase angle 6 is given as
2.} __altosv+b }
6=tan { alsiny (72)

The exact phase angle is
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Fig. 7 Error in the phase angle for velocity when the initial displacement X,=0 for DTM and NBM
at various values of At/T.

) e }
= e 22
Bra—tan { y 73)
The exact value for the velocity when X,=0 is
, _ 2m Vo . [ 2nm
Eot ey __re “
Xexacll) =€ [Vocos< T, ) Py sm( T, )] 74

The ratio of the amplitude of velocity calculated from the DTM to the exact value is identical
to that given in Eq. (60) which is plotted in Fig. 3.

The ratio of the approximate phase angles, Eq. (72), to the exact phase angle, Eq. (73), is
shown in Fig. 7. Both DTM and NBM with =0 generate about the same error for critical
damping ratio of é&=0%. The NBM with f=0 performs slightly better as the critical damping
increases to £=25%. In addition, the NBM with B=1/4 predicts the phase angle perfectly.

6. Application of DTM to dynamics analysis

To demonstrate the effectiveness, characteristics and merits of DTM in the analysis of structural
dynamics, several application problems are presented. The first example involves a SDOF system
and the second example applies DTM to a MDOF system.

6.1. Dynamic response to harmonic loading

The dynamic response of a simple damped mass-spring system subjected to a forced harmonic
load is defined as

%+ 28 0k + 02x= 02 (X,)ysing2t (75)
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Fig. 8 DTM solution for the response of a free and undamped simple mass-spring system subjected
to a harmonic loading with A:/T=001.

where x is the displacement, ¢ is the critical damping ratio, @ is the natural frequency, (X,)
is the displacement associated with the maximum static load and 0 is the frequency of the
applied harmonic loading.

The response defined in Eq. (75) is approximated using DTM by the following discrete equa-
tions

§= —2& wi— @*x + ©* (X,)osins2 (76)
1 1
Xp+1— X,,+ X,,At+ x,,+|At (78)

Consider a system initially at rest, where the natural frequency w=2n, the frequency of the
harmonic loading £2=27 and the damping ratio £=0.1. The response of the system is approxima-
ted using DTM using Ar/T=001. In Fig. 8 the ratio of the displacement x to (X,), is plotted
as a function of time. The results obtained from DTM are in excellent agreement with the
exact solution (Humar 1990).

6.2. Application of DTM for direct integration of MDOF systems
The equation of motion for a linear, discrete MDOF system excited by dynamic loads P(t)
can be expressed as
Mix+Cx+Kx=P() )

where M, C and K are the mass, damping and stiffness matrices of the system, respectively
and x is the displacement vector.
An analysis procedure for a MDOF system using DTM is accomplished by direct integration,
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m = 1.0 k - sec?/ft

7/ 7777, == xi

Kk = 600 k/in c=1.0kin
m= 1.5k - sec?/ft
77— %2
k = 1,200 klin ¢=1.5 kin
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77 7 == X3
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7777 77}77

Fig. 9 Idealized properties of the three degree-of-freedom structure.

similar to a SDOF system, as the following
¥,=—M 'Kx,—M 'Cx,= ¥,x,— ¥ox,

.'x,,H:(I-— %—Y’l At)ic,,+(1—% Y’zAt)x',,At

x,,+1:x,,+%k,,At+é—k,,+1At
where I=the identity matrix and ¥,=M 'K and ¥.=M "'C.

6.3. Dynamic response of a MDOF system

(80)

81)

(82

Consider a three-story frame structure, shown in Fig. 9. Various aspects of the DTM direct
integration of a linear MDOF system are illustrated in this example. As a convenience, the

physical and vibration properties of the structure are summarized as

10 0 O
M=| 0 15 0 |kip-s’/in

0 0 2
1 -1 0
K=600| —1 3 —2 |kip/in
0—-2 5
10 0 0
C=| 0 15 0 |kips/in
0 0 2

14.5
{w} =Y 31.1 (rad/s
46.1

(83)

(84)

(85)

(86)
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Fig. 10 Displacement history for the three degree-of-freedom structure using DTM: (a) first degree of
freedom x;; (b) second degree of freedom x;; and (c) third degree of freedom x;.

o
—
~
o

The free vibrations which results from the following arbitrary initial conditions are evaluated,
assuming the structure is undamped

0.5 0
Xo=) 04 (in Vo) 9 (in/s (87)
03 0

where X; and ¥, is the initial displacement and velocity vectors, respectively.

Using Eqgs. (80)82) the free-vibration motion of each story is obtained. In Fig. 10, the first
5 seconds of the motion for each story is shown and compared to the exact solution. A value
of At/T;=001 (Ar=0004)is selected based on the SDOF error analysis. In general, the time
increment is calculated based on the shortest period of the MDOF system. The DTM approxima-
tion follows the exact solution very closely for all the three degrees of freedom for a time increment
based on the largest period of the system.

The response of a linear MDOF system may be found by using a mode-superposition procedure,
in which DTM is used to solve the uncoupled equations of motion for each mode in terms
of the generalized coordinates.

7. Summary and conclusions

A simple and effective procedure based on a damped trapezoidal rule method is introduced.
A systematic and fundamental procedure for stability and accuracy analysis for a damped SDOF
free-vibrational system using the DTM procedure is presented. Based on an analysis of the
error in period, amplitude and phase angle of a free and damped simple mass-spring system
it is shown that the DTM produces accurate estimates of the response. Typically, DTM introduces
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less error than the well-known Newmark Beta method with =0. The DTM procedure can
be easily implemented and can be an effective and accurate method for dynamic analyses of
different structural systems.

The DTM procedure is conditionally stable and requires a time step size inversely proportional
to the period of the system. The main advantage of DTM over NBM is its ease of implementation
and low computational cost. In addition, from error analyses of the vibration of a free and
undamped mass-spring system, the following conclusions may be drawn: (i) the error in period
is smaller for DTM compared to NBM for both =0 and S=1/4, (ii) the error in displacement
amplitude for the case with an initial velocity V,=0 using DTM is zero for a critical damping
ratio of {=0% and is much less than NBM with =0 for both critical damping of {=0% and
25%, (iii) the error in phase angle is slightly higher for DTM compared to NBM with =0,
(iv) the error in displacement for an initial displacement X,=0 for NBM with g=1/4 is zero,
however, there exists some errors in the NBM procedure with =0 which is slightly higher
than the error generated by DTM. Each error term can be minimized by choosing a smaller
AyT with the penalty of additional computational time.
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