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Abstract. Since structural systems may fail in any one of several failure modes, computation of system
reliability is always difficult. A method using numerical quadrature for computing structural system
reliability with either one or more than one failure mode is presented in this paper. Statistically correlated
safety margin equations are transformed into a group of uncorrelated variables and the joint density
function of these uncorrelated variables can be generated by using the Maximum Entropy Method.
Structural system reliability is then obtained by integrating the joint density function with the transformed
safety domain enclosed within a set of linear equations. The Gaussian numerical integration method
is introduced in order to improve computational accuracy. This method can be used to evaluate structural
system reliability for Gaussian or non-Gaussian variables with either linear or nonlinear safety boundaries.
It is also valid for implicit safety margins such as computer programs. Both the theory and the examples
show that this method is simple in concept and easy to implement.

Key words: structural system reliability; numerical integration; maximum entropy method; computa-
tional accuracy.

1. Introduction

The probabilistic approach to structural analysis has witnessed substantial progress during
the last two decades. Considerable work in computing failure probability has been published
for structural systems with either a single failure mode or with more than one.

For linear safety margin equations and Gaussian basic variables, Ditlevsen’s narrow bound
method (e.g,, Ditlevsen 1979), involving one- and two-order joint probabilities, is the most widely
used approach in evaluating structural system reliability. A quite narrow bound of failure probabi-
lity can be obtained, especially when the correlation coefficients between each of the two failure
modes are smaller than 0.6. Feng (1989) presented an improved method involving one-, two-
and three-order joint probabilities which yields quite accurate results. In Zhu (1993), a numerical
integration format is put forward to compute structural system reliability yielding accuracy as
high as the Monte Carlo method. The computer time consumed by this method is much less
than that of the Monte Carlo method. For nonlinear safety boundaries, perhaps the best known
and most powerful technique is the Monte Carlo simulation method. It can provide a reasonably
precise estimate of structural system failure probability. Though a number of techniques that
improve its effectiveness are available, the fact that it requires a very large sample and a great
amount of computer time is still serious. This is particularly true in case where the dimension
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Fig. 2 Feng's equivalent hyperplane method.

of basic variables or the number of failure modes is great. Another method for nonlinear bounda-
ries is to linearize safety margin equations. The most straightforward idea is to linearize at
the means of the basic variables. However, such linearization yields unsatisfactory results. Hasofer-
Lind (1974) presented a linearization method at the design points (Fig. 1) in order to improve
accuracy. Feng (1990) suggested a technique using an equivalent hyperplane to approximate
the nonlinear safety boundary (see Fig. 2).

This paper presents a numerical integration method. The maximum entropy method is used
to generate the probability density function of the safety margin equation. Reliability is then
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obtained by integrating this density function with the safety domain.

2. The reliability corresponding to a single failure mode
2.1. The basic concept

Let X, i=1, 2, --n be the n basic variables of an engineering design. Define a safety margin
equation of a failure mode as

M=GX,, X5 -.X,) M

such that safety is defined as M>0 and failure is M<0. Then the reliability will be given
as

R=PM>0)= Jff Foen,x2, %, XY dey +d, Q)
1

X2:7xn)>0

where f(x;,x,, **+, x,,) is the joint probability density function of the basic variables X; i=1,2,-n.
It is very difficult to determine the analytical solution of reliability R from Eq. (2). In some
cases, the safety margin equation M is in an implicit form, such as the computer results of
the deflection of a structure from Finite Element Methods. Sometimes, only several moments
of M are available from a computer program or from an experiment. So, Eq. (2) is seldom
used.

However, since the safety margin equation M is also a random variable, the probability P(M>0)
can then be expressed as

R=P(M>0)= f @)z 3)

where f,(z) is the density function of the random variable M. Eq. (3) can be solved by numerical
quadrature. The Gauss-Laguerre method should be used in this case. The reliability is then

N
R= ZfM(zK) wy exp(zi) “)
k=1

in which the point (z;) is the Gaussian point, W, is the weighted value corresponding to this
Gaussian point, and N is the number of Gaussian points.

2.2. The generation of the density function fifz)

There are several methods of generating the probability density function fi(z) from the first
several moments of the random variable M. A technique employing curve fitting is widely used
(e.g, Elderton 1976). Based on the knowledge of the moments of M, an empirical distribution
can be fitted to the distribution of M. Different methods of curve fitting are available in the
literature such as The Lambda family of frequency curves (e.g., Elderton 1976 and Shapiro 1981)
and The Pearson family of curves (e.g, Li and Lumb 1985).

In this paper, the maximum entropy method is used to generate the probability density function.

The maximum entropy method is based on the principle that the minimally prejudiced proba-
bility distribution is that which maximizes the entropy subject by constraints supplied by the
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given information.
For a continuous random variable X, entropy is defined as

S§=- f © [ Ll )

and, for a discrete random variable, it is

S=— Zf(x,») In[f(x)] (6)

where f(x) is the probability density function and f(x;) is the probability mass function. This
principle is a valuable approach to generating density or mass function, in which the information
incorporated in the constraints is whatever data the engineer has available.

From the maximum entropy method, the probability density function fy(z) can be solved
from the following equations:

S=— f . Su@)In [ f(z)]dz=Maximum )
f . fu@)dz=1 8)
fw Fh@)dz=my, k=1,2,L &)

where S is the entropy of the random variable M, L is the number of moments to be used
and m, is the kth moment about the origin, determined either numerically from the sample
or from the following equation:

mk:J f J [G(xl,x3,"',x,,)]kfx(xl,xz,"-,x,,)dxldxz"'dx,, (10)

The analytical solution of Eqgs. (7), (8) and (9) is given by (e.g, Sidall 1983)

fM(Z)Zexp<ao+ > akz‘) 1)

k=1

ao————an'm exp( 4 akz">dz:| (12)
— o0 k=1

where ay, ), @, - satisfy:

and

= — , k=1,2,-L (13)
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Eqg. (13) represents L simultaneous equations to be solved for the constants a;, k=12 L.
Having these, o, is obtained from Eq. (12).
The equations above can be turned into more convenient form as

[ oo S

1— - =R,  k=1,2-L (14)
k'f CXp( Z iz )

which can be numerically solved for @, i=1,2,+--L. In Eq. (14), R, represents the residuals

that are reduced to near zero by a numerical technique. Jacobson and Oksman (e.g., Sidall
1982) proposed a successful nonlinear programing technique to obtain the solutions of @, k=1, 2,
, L by minimizing the sum of the squares of residuals, that is

L
R= Y R}=Minimum (15)

k=1

Convergence is achieved when R<e¢ or all |R,|<g where ¢ is the specified acceptable error.

3. The reliability of a structural system

Generally, a structural system may fail in more than one possible mode; i.e., it will invariably
have a number of potential modes, and the occurence of any one of the possible failure modes
may result in failure of the whole structural system. For such a system, failure can be defined
by several safety margin equations, such as

M=G(X, X3, X)), i=1, 2,-".m (16)

where M is the safety margin corresponding to the ith failure mode and m is the total number
of failure modes. Then, the reliability of the structural system is given by

Rs=P(M,>0,M,>0, -, My>0) 17)

The individual failure modes are generally correlated or statistically dependent. The correlated
variables M'=M\, M,,--,M,,) can be transformed into the uncorrelated variables Y=(Y,Y,
Y,) by the following linear transformation:

Y=A'M (18)

2

where A is an orthogonal matrix with column vectors equal to the orthonomal eigenvectors
of the covariance matrix

Var(M,) Cov(M,, M>) Cov(M,, M,,)
Cu= Cov(M,, M) Var(M,) Cov(M,, M,,)
M= (19)
Cov(Mp, M)  CoviMp, M) - Var(My,)

]

Then, the joint density function of the uncorrelated variables Y; i=1,2,--,m can be calculated
as

Jr Oy Y= 0) fr ) fr, On) (20)
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where fy, represents the density of the variables Y;, which can be determined by Egs. (11), (12)
and (13). The moments used in those equations for this case should be solved from Eq. (18).
Therefore, the joint density function of the variables M; i=1,2,-:-, m becomes

Ju@n 2o, zm)=fr (133 2 Yl @D

in which J is the the Jacobian matrix defined as

d . B
& & X
J=| P P . P 22
&1 &2 ‘a}m ( )
1 azz dzm
and the transformation between Z'=(z,,z,**,z,,) and y'=@,y; ==, V) is
y=A"-z (23)
From Eq. (23), one has
|JI=1, 24
and
Su@uznz) = Ys 2 V) (25)

Therefore, the structural system reliability is given by

Rs:f J' °"ij(Z],Zz,'“,Zm)dzldzz'"dzm (26)
oJo Jo

It is not easy to obtain the analytical expression of integration (26), so the numerical method
is introduced to compute reliability.

Gaussian numerical integration methods are widely used nowadays due to their high accuracy.
For the open domain (z,>0, z,>0, -+, z,,>0), the Gaussian-Laguerre (G-L) method is the most
suitable and practical one. In this case, results using the G-L method possess very high accuracy.
The G-L integration formula is

RZJf---ff(zl,zz,'--,zm)dzldzz---dzm
04 0 0

L L L m
=2 2 2 AxAry Ak fExiZry s Zky) CXP{ZZK,-} 27
k1=1 k2=

1 km=1 i=1

in which, the point (z;,,zky, ", z4,,) 1S the G-L Gaussian point, Ak, Ak, ", Ak, are the weights
corresponding to the G-L Gaussian point, and L is the number of Gaussian points corresponding
to each z; axis, respectively.

Eq. (27) is not suitable for computer use. We can use an algorithm which adopts a coded
word p varying from 1 to N, the total number of Gaussian points, to identify each Gaussian
point. In this case, Eq. (27) becomes
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N m
R= Z Wof @p1s2pps " Zpym) exp{ Zzpi} (28)
r=1

i=1

where
N=mL (29)

is the total number of Gaussian points, (2, i=1,2,=,n; p=1,2,--+N) is the pth Gaussian point,
and

W,=Ax, Ax,"** A, (30)

is the combined weight corresponding to the pth Gaussian point.

The coded word p can be decoded into k; the discretization indices of z. Sidall (1983) uses
a coding system which is suitable for this case. In this system, the coding address p is convenient
for computer storage, with corresponding decoding algorithm, which can identify the k; associated
with any p.

The address p is simply coded as a base 10 number ranging from 1 to N. We then conceive
of the address as being coded in an m-base number C, which is

Co=qngn-1""" (1)
where ¢; represents the index value of the discretized Z;, which is
qi=ki—1 (32)

The conversion (31) is introduced since the digits in C, must range from 1 to N. The m-based
number C, is never actually recorded. The algorithm for decoding p in order to get the ks
1s:

1. i=1, s=0

2. do until i=n

3. j=n—i+1

4. if j=n go to 6
5. s=s+q L

6. gi=(p—s—1)y//~!
7. ki=q;+1

8 i=i+1

9. end of do loop.

N is limited by the integer word size of the computer used. This varies from 32767 for an
8-bit computer to 2* for a 64-bit computer. However, it is always possible to use two or more
words to represent p.

4. Numerical examples

4.1. Example 1
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FACTOR ON MEMBER FORCES:

Fig. 3 Example 3.

This example(taken from Sidall 1983) illustrates the application of the method presented in
this paper when only one sample from the safety margin M is available. The following data
are the observed values of live loads on a warehouse floor.

0.0 7.8 36.2 60.6 64.0 64.2 792 884 380 7217
722 726 744 21.8 17.1 485 168 1059 572 75.7
2257 425 598 41.7 399 555 672 1228 452 629
55.1 559 87.7 59.2 63.1 588 67.7 904 433 552
36.6 260 90.5 230 435 521 1021 71.7 4.1 373
1294 664 1387 1279 90.9 469 1975 1511 1573 1970
134.6 734 809 533 80.1 629 1508 1022 64 454
1210 106.2 944 1396 1525 702 1118 1741 854 83.0
178.8 302 4.1 1570 1053 87.0 501 1980 86.7 64.6
78.6 370 70.7 830 1797 1802 606 2124 722 86.0
9.5 24.1 873 80.6 74.8 724 1311 1161 536 9.1
402 234 84 426 434 274 63.8 184 16.2 58.7
922 49.8 509 1164 1229 1323 1052 1603 28.7 46.8
PS5 1069 559 1368 1104 1235 924 1609 454 96.3
88.5 484 623 713 1332 921 1117 679 53.1 397
93.2 550 808 1435 1223 1842 1500 516 6.8 533
96.1 54.8 630 2283 1393 591 1121 509 1586 1391
2137 65.7 903 1984 975 1551 1634 1553 2295 750
137.6 625 1565 1541 1343 816 1944 1551 893 734
798 68.7 856 1416 1007 1060 1311 1574 80.2 65.0
785 1182 1264 338 1246 789 1460 1003 978 753
248 556 1356 56.3 669 722 1054 989 1017 582

The maximum entropy distribution using five moments is then (Sidall 1983)

[ (@)=exp(—6.7212+0.056423x — 0.00019852x>— 0.51147 X 10~ *x°
+0.4066 X107 x*—0.85672 < 10~ '%")

Then, loading reliability less than 200 is R=0.97086.
4.2. Example 2

Suppose that the safety margin equation of two standardized independent Gaussian variables,
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Fig. 4 Reliability index of example 3
— narrow bounds from Ditlevsen (1979)
-+- reliability index of exact result
-+« reliability index from the present method
Table 1 Computational results of example 2
P Py P, & &
0.001819 0.002389 0.001873 31.34% 2.97%
X, and X,, is
M=1 _'4‘X|X2 (for X1>0 and X2>O)

The computational results of this example are listed in Table 1, in which P, P, and P, represent
the failure probability calculated, respectively, using the Importance Sampling Method (ISM),
the Hasofer-Lind method, and the maximum entropy method, & and & denote

_P=P]

S P i=1,2

By comparison, the maximum entropy method has better accuracy than that of the Haso-
fer-Lind method and the computer time used by the present method is less than that of the
ISM.

4.3 Example 3

Consider the truss in Fig. 3 subjected to a non-random load (Ditlevsen 1979). Member strengths,
in compression or in tension, are equi-correlated normally distributed random variables with
correlation coefficients p>0. Failure of any of the seven members constitutes failure of the system.
Then the safety margins are of the form

M,=2\/34,T,—S
M,=2\/34,T,—S§
M3 = \/§A3 T: 3—S
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M,=/34,T,—S
M;=1/34,Cs—S
M=1/34,C,—S
M;=+/34,C,—S

Here T),--+, T, are tension yield strengths, Cs, -+, C; are compression yield strengths and 4,,4,,+,4,
are cross-sectional areas. The safety margins are equi-correlated with correlation coefficient p.
In this example 4,,4,--*,4; are selected such that all modes have the identical reliability index
B.

The computational results from Ditlevsen (1979), exact solution and the present method are
shown in Fig. 4. From Fig. 4, we can find that the present method is quite precise.

5. Conclusions

l. A method using the maximum entropy method and numerical integration is presented
in order to evaluate the reliability of engineering designs. This method is applicable to
Gaussian or non-Gaussian variables with linear or nonlinear safety margin equations. It
can also apply to implicit safety margin equations.

2. This method possesses reasonable accuracy.

3. In the case of implicit safety margin equations, the sample size is of great importance.
For a small sample, using maximum entropy method with moments has dubious validity,
since the higher moments become meaningless. A similar approach can be used in which
ranks are substituted for the moments used in the maximum entropy method (e.g, Sidall
1983). However, the results will not always be satisfactory.
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