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Three-dimensional analysis of stress and strain
transmission through line joints of
spatial linkage of plates
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Abstract. The examined model consists of two substructures linked by a right angle rigid line joint.
One element is a wall loaded externally along its upper edge by an uneven vertical load. The other
element, defined as a plate, is not loaded. Stresses and displacements in the vicinity of the joint are
analysed, considering the lateral distribution which leads to three-dimensional effects. The proposed
solution combines classical approach with numerical means, using appropriate stress distribution polyno-
mial functions along the joint. Space structure constructions supply cases of interest.
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1. Introduction

The effect of the joint on the response of a whole structure is due to its coupling property,
because of its responsibility for transmission of stresses from the element loaded by external
forces into the other parts of the structure. A careful study of the coupling caused by the joint
shows on many occasions that two-dimensional analysis of the stress transmission may not
suffice (Perry, B., et al. 1992). The need for a careful examination of the state of stress and
displacement in the vicinity of the junction is due to several reasons, such as stress concentration
and local elastic field at the joint, as well as decrease of loaded units displacements due to
the influence of neighbouring elements. Specifically, a three-dimensional definition of stress and
displacement fields in the vicinity of a rigid line joint of a coupled “plate/wall system” is discussed
here, including an issue, which is not often addressed-namely the effect of restraint of plates
on the stresses in the wall. Such joints, where response is clearly three-dimensional are typical
to space structures, and some elementary configurations of them are shown in Fig. 1. The investi-
gation presented here focuses on the complicated contribution of the joint to the transmission
of strain energy from the loaded element to its neighbours. where the geometry and mechanical
properties of the relevant elements play an important role. Classical elastic solutions practically
do not exist for such cases, and the possible and common way to perform such an analysis
1s by numerical techniques, as was done for example in Perry, B., er al. 1992. These methods
have now reached a level and reliability which enable a fast stress analysis of systems with
complicated boundary conditions and loading distributions, having output schemes characterized
by high resolution graphics. However, a different approach, where numerical analysis also takes
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Fig. 1 Elementary structural junctions.

advantage of classical elasticity may be quite useful in finding better interpolation or distribution
functions along the joints, as shown in the present work. Consequently, results obtained by
the classical 2-D analysis for a specific case are used here in combination with the finite element
technique for a 3-D analysis of the effect of joints between plane panels.

2. 3-D analysis of plate/wall joint under parabolic load distribution

The common assumption of uniformly distributed loads over walls in space structures may
lead to the application of 2-D models. However, the existence of bending moments, shear forces,
uneven distribution of vertical forces and others effects may cause lateral vanations in stress
and displacement distributions within the structural eclements. The problem becomes more com-
plicated in cases where the loaded unit is connected to other components of the structure, leading
to an additional redistribution along the line of the joint. Last particular aspect of the problem.
which means the stresses in slabs due to restraints of vertical and horizontal stresses in the
walls and the lowering of wall displacements due to presence of slabs has not been addressed
in literature. This consequence requires a 3-D analysis even for systems combining 2-D plane
elements fixed at right angles. The present study uses a model of a “wall/plate” cross joint,
where the wall is loaded along its upper edge by a normal stress of a parabolic distribution
-in order to demonstrate the significance of the 3-D model. and to interpret the physical meaning
of the resulting stress and displacement fields. In this context, the solution illustrated here applies
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Fig. 2 A wall-plate system under a load of parabolic distribution.

a novel approach of combining numerical techniques with the theory of classical elasticity (see
Appendix), which has the merit of solving the three dimensional problem expressing the compati-
bility between the elements by an algebraic expression.

2.1. General principles

A scheme of the system to be analyzed is shown in Fig. 2. where definition of stress in
both plate and wall is sought under a variety of loading alternatives.

It should be noted that in cases of system symmetry only one quarter needs to be examined
(Fig. 2). and all further descriptions are given for this quarter. The coupling caused by the rigid
joint creates a redistribution of stress between the plate and the wall., which can be defined
by compatibility and equilibrium along the joint.

The problem may be solved in the following four stages:

(1) Definition of a shape function for the longitudinal displacements Uj(x) along the line

A--A. while the plate is not yet linked to the wall. Fig. 2(a).

(2) The mutual force T{x) along the joint yields there displacements Ux(x). identical to those
of the parabolic loading. Fig. 2(b).

(3) At this stage. the shape of the plate's displacement function Uyx) caused by T{x) along
A-A. is sought. In order to ensure continuity along the joint it is necessary that this
shape function will be identical to tho:e of Uj(x) and Usx(x). Fig. 2(c).

(4) The following compatibility condition:
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Fig. 3 The final displacements at the joint between the wall and the plate.

U\(x)— U xX) XX=UAx) XX=U(x) (1)

leads to stress distribution along the joint 4—A. X is the unknown proportionality constant.
The combination of the various displacements and stress distributions along the joint line are
depicted in Fig. 2 and 3.

2.2. Solution
2.2.1. Definition of U,(x) for a parabolic load distribution:

Ui(x) is obtained by integration of the strain &

Uhx)= f gdx 2
0
The solution of the problem illustrated in Fig. 2. yields:
0,=22 =40, [y ~a") b )
&
and along y=0:
.= —4a, a’lx*—bH7T 4)

For comparison with results available in the literature, v=0 was assumed for Poisson ratio,
although other values may also be used. Hence:

&= % = —:4% a2[x2_b2]3 (5)

and integration yields:

U=—~—F az[ﬁ—ébzx‘an“x] (6)
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Fig. 4 Normalized Ui(x) as a function of a parabolic load distribution.
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Fig. 5 Normalized Ui(x) and Uxx) of point forces.
This is a polynomial of the fifth order, with the maximum displacement at x=b:

U.P,,:z.133%'a2bS N

The shape function of Uxx) is given in Fig 4.

2.2.2. T(x) and the resulting solution for the displacement U,(x)

Care should be taken in choosing T{x) in order to ensure compatibility along the joint. For
example, assuming T{x) as point forces at the ends of the joint will not lead to compatibility.
as may be observed from Fig. 5. Hence, a better choice of the coupling force T{x) between
the wall and the plate should be sought, satisfying the conditions:
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Fig. 6 A variety of chosen functions for the tangential stress T{(x).

(1) Continuity at 0<x<b.

(2) Anti-symmetric distribution of T{x).

(3) Boundary conditions:
T (at x=0)=0 for symmetry,
T (at x=5)=0 ftollowing Cauchy theorem.

(4) Since only the shape function of T{x) is of interest, its resultant will be taken as unity.
Hence T(x) is defined as the stress distribution due to a unit force along half the joint
length: 0<x<b, or:

h
f T(x)dx=1 (8)
0
Also for convenience. b=10.
Several possibilities for the distribution of T(x) were considered:
(1) Linear distribution: T(x)=4x; 0<x<0.5
T(x)=4(1—x); 0.55x<L10
(2) Parabolic distribution: Ty(x)=6x(1—x)
(3) Sinusoidal distribution: Ty(x)=(n/2) sin(mx)
(4) Third order distribution (I): Tyx)=4x(1-—x?)
(5) Third order distribution (II): Ty(x)=—878x'+7x*+ 1.78x
These possibilities are shown in Fig 6.
The displacements Uxx) and U\(x) for a parabolic load distribution are compared in Fig,

7 and the error estimate is given in Fig. 8 It is clearly observed that the best shape is a result
of the choice of Tyx). with an error up to 10%. Consequently. the function chosen for T{x)
is T«(x).
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Fig. 7 Normalized displacements due to a variety of T{x) and external parabolic load distributions.
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Fig. 8 Normalized absolute value of error estimate due to the choice of Tx).

2.2.3. Shape of the displacement function Us(x) at the plate due to T(x)

Now. the plate displacements are examined for Ty(x). The analysis is done by applying the
Finite Element method, with the grid as shown in Fig. 9. The results are presented in Fig,
10 for the three lines along the joint. The solid line in that figure represents the average of
the three. The resulting values lead to similar shapes for Uj(x), Uy(x) and Ui(x), with the following
maximum values at x=p:
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Fig. 10 Normalized displacements of the plate along the joint due to Tyx).

Ul(.‘th):().0766. Uz(_\ch): 15418, Ul(,\'?h): 14449

Normalizing all displacements in accordance with the value of U(x) at x=, yields the functions
and the difference between them as shown in Fig. 11. Now, the proportionality coefficient x

is calculated using Eq. (1), which yields: 0.0766— 15418 = 14.449x; x =0.00256, and the final displa-
cement at x=» is calculated as follows:

U=Uyp-p— UZ(.\'—'I))XX
U=0.0766—0.00256X15418=0.0371,

which is shown in Fig. 12. Knowing 7{x) permits us to make a separate analysis of the stress
distribution for each of the two elements of the system.

3. Conclusions

The present work illustrates an original analysis of spatial plate/wall system. Such analyses
are rare since 2-D approximations are much easier. However, 3-D analysis is unavoidable when
loading and boundary conditions dictate a non uniform lateral stress distribution. Such an analysis
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Fig. 11 Normalized displacements along the joint between the plate and the wall and the difference
between them.
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Fig. 12 Normalized final displacement U(x} and U\(x).

was done for a specific case in order to find the lateral effect of the joint between the wall
and the plate. taking special care about compatibility and equilibrium along the joint. Force
and displacement matching resulted in a very exact solution.

Consequences of the analysis are:

(1) For the parabolic stress distribution over the wall the approximation of 7{x) is a polynomial
of the third order, the shape of which is identical to the shape of the shear stresses along
the joint for a ngidly fixed wall.

(2) The displacement function U(x) is approximated by a polynomial of order five.

(3) The resulting displacement values in the plate due to 7{x) and in the wall. using E=1
and v=0, are practically the same, which means that the plate and the wall have about
the same rigidity, as is to be expected.
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(4) Substituting the solution in Eq. (1) shows that the differences between U\(x) and U(x)
are large-up to 50% (Fig. 12). Hence, the influence of the plate as a substructure should
not be ignored, and the wall considered as elastically supported.
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Appendix
The use of classical elasticity in analysis of two-dimensional elements
1. The parabolic distribution
As an introduction to the solution of the 3-D problem, a 2-D panel loaded at its edge is examined.
The example, which is illustrated in Fig. 13 (Timoshenko, S. P. and Goodier, J. N. 1987), consists of

a pancl loaded along its upper edge by an exact stress of a parabolic distribution. The boundary conditions
of the problem are specified as follows:

yzia{"":"s["ﬁ x=7 {270 ©)

Lo = 0 Ta ™

For, ¢=¢o+ ai+ e+ aagr--+- . with:

these boundary conditions are satisfied by:

_ 3¢ _
g, — dy} _()
— 3¢ — -ﬁ
o= Go =1 (10)
Assuming for Airy's function the solution:
O=ot it (D
leads to:
1 2 ! 5 ga2ra a2
o= 2~Sx*{l- gbz]wL[x--Fb-] r—aT a
Energy considerations lead to (Timoshenko, S. P. and Goodier, J. N. 1987):
S
_ ab?
“Ceda, 26 A 12
76 49 T
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Fig. 14 Stress distribution for the case depicted in Fig. 2: Parabolic load distribution.
(a) Distribution of stress ¢, under parabolic loads. (b) Distribution of stress o under parabolic
loads. (c¢) Distribution of stress t,. under parabolic loads.



22 G. Rosenhouse, A. Rutenberg and Y. R Goldfarb

Normalized load

X/b
=] ¥inx + parabolic o abs.diff.
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Fig. 16 Stress distribution for the case depicted in Fig. 2: Sinusoidal load distribution.
(a) Distribution of stress o, under sinusoidal loads. (b) Distribution of stress o, under sinusoidal
loads. (¢) Distribution of stress ., under sinusoidal loads.
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for v=0.
The lateral distribution of the stress functions is shown in Fig. 14a), 14(b)., 14(c).

2. Sinusoidal distribution

If the loading distribution in Fig. 13 were sinusoidal there would be a slight difference (<10%), compared
with the former loading function, as shown in Fig. 15. The solution assumed in Timoshenko, S. P.
and Goodier, J. N. (1987) is:

g=sin " f(»)

Sf()=C\ cosh(ay)+C: sinh(ay)+Csy cosh(ay)+Cqy sinh(ay) (13)
with, a:—;r—

Here again Airy's functions are to be satisfied together with the boundary conditions:

y=%a o,=—S sin(ax) =T {a‘.:O

which results in the following solutions:

_ 2S (aa cosh aa—sins aa) cosh ay—ay sinh ay sink aa

- sin ax
sink 2aa+2aa

25 (aa cosh_aa+tsinh aa) cosh ay—ay sink ay sink aa
sinh aa+2aa

sin ax

2S (aa cosh aa sinh ay—ay cosh ay sink aa
sinh 2aa+2aa

To™=— cos ax

The results are given in Figs. 16(a), 16(b), 16(c). Consequently. the difference in results due to the
parabolic and sinusoidal distributions is not larger than 10%. However, Fig. 5(c) shows that the boundary
condition for shear stress, y,. along the vertical edges is not satisfied, and it depends on cos(ax), with
a maximum value along these edges. Also. for the normal stresses, the parabolic distribution yields
a better correspondence. Obviously, the trigonometric expansion may consider more terms than one,
but then analysis becomes rather complicated.





