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Abstract. This study presents a methodology for the system reliability analysis of cracked structures
with random material properties, which are modeled as random fields, and crack geometry under random
static Joads. The finite element method provides the computational framework to obtain the stress intensity
solutions, and the first-order reliability method provides the basis for modeling and analysis of uncertain-
ties. The ultimate structural system reliability is effectively evaluated by the stable configuration approach.
Numerical examples are given for the case of random fracture toughness and load.
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1. Introduction

A problem of considerable and increasing importance within the fields of mechanical, aeronau-
tical, nuclear, marine and military engineering is the predominantly brittle fracture of structures.
The failure process initiates with the presence of small cracks which can cause catastrophic
fracture. The fracture behavior of a linear elastic structure can be inferred by comparing the
applied stress intensity factor with the fracture toughness of the material. In real situations, there
are usually some degrees of uncertainty associated with the flaw sizes and material properties
including fracture toughness. Extraordinary loads can result in stresses significantly above the
intended design level. Because of these complexities, fracture should be viewed probabilistically
rather than deterministically. In general. the solution of the response field in other than very
simple structures can not be obtained in closed form. but must be computed approximately.
In structural reliability analysis, the finite element method is well suited for dealing with random
spatial variabilities in the material properties due to the segmentation of the structure into eleme-
nts, each of which can be represented by its own properties. Previous works (Besterfield. er al.
1990, Der Kiureghian and Ke 1988, Mahadevan and Haldar 1991) in structural reliability analysis
are limited to the evaluation of the probability of initial damage of the component or structure
using given failure criteria on deflection or strength. In this study. the system reliability of structures
with multiple cracks will be determined through the finite element method employing the
first-order reliability method. The uncertainties in load, crack geometry and material properties
including fracture toughness are taken into consideration. These variables are modeled as random
fields on the entire domain of a structure. In order to model singularities at the crack tips,
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Fig. | Degenerate isoparametric clements at a crack tip.

appropriate crack tip elements are employed. In the presence of multiple cracks in a structure,
there are multiple failure modes. which are correlated. The system failure probability. that is,
the collapse probability. is effectively computed by the stable configuration approach. The branch
event corresponding to each crack is defined by appropriate fracture criteria. The system failure
event is derived as the intersection of the unions of branch events by the stable configuration
approach.

2. Finite element modeling of crack tip singularity

The use of finite elements in fracture predictions requires two distinct considerations: (i) crack
tip singularity modeling, and (i1) interpretation of the finite element results. In this study the
degenerate isoparametric quadrilateral elements (Barsoum 1976) are utilized since these elements
are simple to implement without any change in a standard finite element program and can
give accurate results for mixed-mode fracture. The stress intensity factors are easily computed
from the displacements along the element edge of the degenerate element using the displacement
matching method. For plane crack problems, the finite element mesh idealization dictates the
free surfaces of the crack to be the most convenient choices for the evaluation of the stress intensity
factors. By combining the stress intensity factor expressions along the 6==* 180° rays emanating
from the crack tip as shown in Fig. 1. the resulting expression is obtained as follows.
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where u is the shear modulus, and « is (3—v)/(1+v) for plane stress, 3—4v for plane strain.
U, and V, represent the nodal displacements of the node / in the X and Y directions, respectively.

3. Performance function

3.1. Mode I fracture
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Mode 7 loading has the most practical importance. For mode I fracture, the fracture criterion
which is commonly used states that crack propagation will occur when the stress intensity factor
K, reaches a critical value K. termed the fracture toughness which is a mechanical property
of the material. Thus, the performance function for the mode / fracture can be expressed
as

g=Ki—K, 2

Accordingly, the failure state is defined as g<0. When only mode I fracture is present, the
direction of crack propagation measured from the current crack orientation 6 is equal to 0;
that is, the crack extends along a straight path.

3.2. Mixed-mode fracture

Practical structures are not only subjected to tension but may also experience shear and torsio-
nal loadings. Cracks may therefore be exposed to tension and shear, which lead to mixed mode
cracking. There are currently several fracture criteria available, which include the maximum
tangential stress criterion, the maximum energy release rate criterion, the strain energy density
criterion, and the elliptic rule criterion. The elliptic rule criterion (Yishu 1990) is the general
criterion superseding all the mixed-mode fracture criteria. This criterion describes the loct of
critical points by the fracture envelope as

KV (e

( K, > +A< K, ) =1 3)
where the material constant 4=(K,/K;. ). The elliptic rule criterion is employed in the present
study because it can be easily formulated. The performance function for the mixed mode I-If

fracture is then expressed as
8=K;.—(Ki+AKy) 4
Accordingly, g<0 defines the failure state which represents that the crack extension occurs in
one direction. It is noted that the fracture angles predicted by various criteria are basically in close

agreement with the measured one (Yishu 1990). Thus, the maximum tangential criterion (Erdo-
gan and Sih 1963) is employed to calculate the fracture angle for the next configuration as follows.

oyt LK 1 KV
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and

4. Representation of random field

Material properties, structural geometry and external loads have random spatial variabilities
and are modeled by random fields rather than random variables. For finite element reliability
analysis, it is necessary that such random fields be represented in terms of random variables.
The midpoint method is used in this study. The field value for an element is assumed to be
constant as the value at the centroid and represented by a random variable. The correlation
coefficient between any two random variables is directly defined in terms of the autocorrelation
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function of the random field. One important consideration in this representation is the size
of the random field element. This size is controlled by the correlation measure. In the first-
~order reliability method, the basic random variables V are transformed into a set of statistically
independent, standard normal variables:

Y=Y @)

Let Z; and Z;, be a pair of standard normal variates obtained by marginal transformation
of ¥; and V. The correlation coefficient p'; between Z;, and Z; can be expressed in terms of
the correlation coefficient p; of V; and V; (Ang and Tang 1984, Der Kiureghian and Liu 1986),
and the transformation to the standard normal space is then given by

@ '[Fy(w)]
y=T'z=T%: (8)
& '[Fy(v)]

in which T"=(L")"', where L’ is the lower triangular matrix obtained from the Cholesky decompo-
sition of the correlation matrix R’ of Z. The preceding transformation of Eq. (8) is unique for
an arbitrary number of variables with arbitrary marginal distributions and correlation coefficients
and is computationally simpler than the Rosenblatt transformation.

5. Finite element reliability implementation

System reliability problems can be solved by replacing each individual limit-state surface by
a first-order approximate surface at the corresponding minimum-distance point. Efficient solu-
tion methods for the optimization problem require the gradient vector of the limit-state function
with respect to the basic variables. The gradient vector can be determined using the element
partial stiffness matrices and load vectors. each of which is established analytically or numerically.
By the finite element formulation, the nodal equilibrium equation for the whole structure is
obtained as

KU=R 9

where K is the stiffness matrix, U the nodal displacement vector, and R the nodal load vector
for the whole structure. The structural response § which are the stress intensity factors at the
crack tip can be expressed in terms of U as

S=QU (10)

where Q is the displacement-response transformation matrix which is obtained from Eq. (1).
The basic random variables which are discretized from the corresponding random fields can be
represented by a vector V. For convenience, the basic random variables can be divided into
three groups: (i) material and geometry variables ¥y such as Young's moduli, Poisson’s ratios,
coordinates of crack tips, (ii) load variables ¥, such as distributed or concentrated loads and
(iii) resistance variables Vg such as fracture toughness. The limit-state function can be expressed
as an explicit function of resistance variables V and response quantities S, ie.

gW=g(Vs §) (1)

in which the structural response S is a function of the basic random variables. Using the chain
rule of differentiation, the gradient vector of the limit-state function with respect to the basic
random variable vector V is
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Vvg= Vigglvg vt Vsgls v (12)

where the computation of Vi,g. Vsg and Ji, , are easily carried out in closed form. Since the
response S is a function of material and geometry variables V), and load variables ¥, only,
Js v can be expressed with submatrices:

Jsv= [Js. v Is 0]

:[CQ 0 0]+QK‘I['-CK JR. 173 0] (13)
I, ", ¢ [ K , K : . . L.
where CQ—[ 7 U 7 U] and CK~[ 7 U e U], in which m is the size of

the vector V. The matrices K, O, Cx, Cyp and Jy, v are first set up for each element and then
assembled in global sense.

6. Probability of system failure
6.1. The first-order approximation

The limit-state function for a crack tip i in a given configuration j can be denoted as
G;(Y)=g;(NY)=0 (14)

in which ¥ denotes the independent standard normal variables. The limit-state surface in the
independent standard normal space may be replaced by its tangent hyperplane at the point
nearest to the origin. This point is denoted by y*. By expanding the limit-state function G;(Y')
in a Taylor series at the point y*, the first-order approximation of the function G;(Y) is as
follows:

G (Y )= VG, () (Y —y¥) (15)

where VG;(y*) is the gradient of G;(Y ) computed at y*. The minimum distance point can be
obtained by the following iteration scheme (Rackwitz and Fiessler 1978):

_|.r G()
Yie+1 [akyk+ |VG(yk)| ]ak (16)
where a,= — V'G(y, )/ VG (y)l. and the gradient vector is obtained as

VG=Vygdyy= VVgJ;’}V (7)

6.2. Formulation of the stable configuration approach

In the stable configuration approach, the failure of the system can be defined as

[ — n ki
5= = (08) @
i= =1\ j=
where C; refers to cut-set i not being realized and B; is the failure of component j in cut-set i
For each By, a performance function G;(Y) is defined such that G,(¥)<0 and G;(¥)>0 imply
the failure and survival of component j, respectively. For structures exhibiting brittle behavior,
the event C; can be simplified as the event corresponding to the further damage of the configura-
tion i (Quek and Ang 1990). For practical purposes, only a limited number of configurations
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Table 1 Statistics for the example plates

Variable Unit Mean C.OV. Distribution
Crack length a in. a 0.0 -
Applied load w Ib/in. w 0.15 normal
Modulus E ksi 3xX10* 00 -
Poisson ratio v — 03 0.0 —
Toughness K. ksiy/in. 430 0.15 normal (field)

can be considered. In addition to using only the stochastically dominant stable configurations,
the number of essential configurations may be further reduced, because the configurations with
low damage levels are more stable than those with high damage. This is particularly true for
brittle structures. In mode I fracture, a crack propagates along the straight line, ie., the crack
extension angle measured from the initial crack line is 0°. The dominant stable configurations
are naturally taken as the configurations which have the straight line cracks with appropriate
crack extension. However, in the mixed-mode fracture the crack propagates along a curved path.
The dominant stable configuration for the mixed-mode fracture can be taken as the configuration
that has the crack extended from the current configuration in the direction determined by the
fracture criteria using the basic random quantities corresponding to the minimum distance point
of the limit-state surface in the independent normal space.

7. Examples

Three simple examples are presented to illustrate the reliability analysis of cracked structures.
The fracture toughness and load are modeled as a random field and random variable, respectively.
These examples can be solved using a conventional finite element program. The statistics of
the variables are summarized in Table 1.

7.1. A plate with a single edge crack under tension

The example structure is a 1 in. thick, 5X20 in? rectangular plate with a 0.5 in. single edge
crack as shown in Fig. 2. The autocorrelation coefficient function for the fracture toughness
K, is specified as

b, Ay)=exp| — AL | (19)
where Ax’+ Ajy? is the square of the distance between any two points on the plate and L is
taken as the plate width and ¢ is a dimensionless measure of the correlation length. The correlation
length, which is a measure of the fluctuation rate of a random field, may be defined as cL
in Eq. (19). This example involves only mode I fracture where the crack extends straightly along
the crack line. For the reliability analysis by the stable configuration approach, several finite
element- meshes for different crack length including the initial crack length are used. For the
sake of simplicity, one half the plate is modeled in finite element analysis. In each mesh, two
degenerate isoparametric elements are employed for the singularity at the crack tip and the
remainder of the plate i modeled by regular 8-node isoparametric elements. Let Aa denote
the difference between crack lengths in adjacent configurations. Thus, Aa also denotes the segment
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Fig. 2 A stochastic plate with a single edge crack Fig. 3 The effect of the segment size upon the
under tensile load. probability of collapse.

size of the fracture toughness field. For a short correlation length for the random field of fracture
toughness, the rate of fluctuation is high and, thus, a small value of Ag is required in evaluation
of the system reliability. To investigate the effect of Aa for a given correlation length cL, the
probability of system failure, i.e., the probability of collapse is computed by simulation for different
values of Aa as shown in Fig. 3, where three different cases are considered. From the results
in Fig. 3 it is apparent that the convergence in the probability of collapse is effectively achieved
when Aa is one third of the correlation length. Thus, the appropriate value of Aa is given

as
da=-% (20)

When ¢L=0475 in. and w=15 Ib/in., the probability of collapse is obtained as 7.45X 10~ * with
seven dominant configurations, whereas the probability of fracture initiation is 1.01X 1073,

7.2. A plate with two single edge cracks

The example structure is a 1 in. thick, 5X20 in.* rectangular plate with two single edge cracks
as shown in Fig. 4 Each crack length is 1.0 in. and the mean of the distributed load is 8.5
Ib/in. This example also involves only mode / fracture. However, this example, in the presence
of two cracks, has many failure modes which are correlated. The system failure probability
can be effectively evaluated by the stable configuration approach. Using Eq. (20), A« is taken
as 02 in. when ¢L=0.6 in. By simulation, the probability of collapse is obtained as 4.7X107*
with 19 configurations, whereas the probability of fracture initiation is 8.5X107% To investigate
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Fig. 4 Finite element mesh for the initial confi- ngths.
guration of the plate with two single edge
cracks.

the effect of the correlation length of the fracture toughness on the probability of collapse, three
different values of the correlation length, 0.6, 09 and 1.5 in., are considered. As a measure of
redundancy in the structure, the percentage of redundancy is defined as

|y P(collapse) o
R [1 P(initial damage) }XlOO/O (21)

Fig. 5 shows the redundancies for the different correlation lengths. When c¢L =15 in, the re-

dundancy is zero, which means that collapse is imminent once any initial damage occurs.

7.3. A plate with a slant edge crack

The example structure is a 1 in. thick, 2.5X5 in.? rectangular plate with a 45-degree slant
edge crack as shown in Fig. 6. The crack length is 1.0 in. and the mean of the distributed
load is 11.0 Ib/in. This example involves modes / and [ with the crack extending along a
curved path. Available data suggest that K; =075 K,. Thus, 4 in Eq. (3) is assumed to be
1.78. Fig. 7 shows the crack propagation path from which the possible configurations are determi-
ned. For ¢L.=0225 in., the probability of collapse is obtained as 544X 10 with seven configura-
tions, whereas the probability of fracture initiation is 7.08 X107,



Finite element fracture reliability of stochastic structures 9

)
18

)450 L) | A—
[ I A
[Tp]
N
' 25
Fig. 6 Finitg element mesh for _the initial confi- Fig. 7 Crack propagation path for the plate with
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crack.

8. Conclusions

The ultimate structural reliability of cracked structures is evaluated on the basis of the stable
configuration approach and FEM. For random fracture toughness, the appropriate segment size
is found as one third of the correlation length. The results show that for the small correlation
length of the fracture toughness, the probability of ultimate system failure is smaller than the
corresponding probability of fracture initiation, which is due to the reserved safety margin of
the structure. The collapse probability appears to depend on the correlation length of the tough-
ness.
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