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Abstract. In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two
dimensions in the presence of a point heat source is considered. The fundamental equations of the
problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been
derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a
two dimensional problem. These equations have been solved by the eigenvalue approach. The results have
been compared to those available in the existing literature. The graphs have been drawn for different
cases. 
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1. Introduction

In previous years, considerable interest has been shown in the study of plane thermoelastic,

magneto-thermoelastic, and magneto-thermo-viscoelastic wave propagation in an infinite random or

nonrandom and rotating or non-rotating medium by many authors Chow (1973), Hetnarski (1961),

Bahar and Hetnarshki (1978), Bhattacharyya (1986), Schoenberg and Censor (1973) following the

classical theory of thermoelasticity which is based on Fourier’s law of heat conduction. This law
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predicts an infinite speed of propagation of heat, which is physically absurd, and as a result, many

new theories have been proposed to eliminate this absurdity. Lord and Shulman (LS theory) (1967)

proposed a modified version of Fourier’s law and deduced a theory of thermoelasticity known as

the generalized theory of thermoelasticity. This theory with a thermal relaxation time has been used

with purpose and profit by many authors. Nayfeh and Nemat-Nasser (1971), Nayfeh and Nemat-

Nasser (1972), Roy Choudhuri (1985), Agarwal (1978) to study the effect of thermoelastic,

magneto-thermoelastic, and magneto-thermo-viscoelastic plane wave in an infinite rotating or non-

rotating medium.

Another theory of thermoelasticity has been proposed by Green and Lindsay (G-L theory) (1972)

which has certain special features in contrast with the previous theory proposed by LS. In this

theory of Green and Lindsay, Fourier’s law of heat conduction remains unchanged, whereas the

classical energy equation and the stress strain temperature relations are modified. Two constants α

and α* having the same dimensions of time appear in the governing equations in place of one

relaxation time τ in Lord-Shulman’s theory. 

The governing equations for displacement and temperature fields in the linear dynamical theory of

classical thermoelasticity consist of the coupled partial differential equation of motion and the

Fourier’s law of heat conduction equation. The equation for displacement field is governed by a

wave type hyperbolic equation, whereas that for the temperature field is a diffusion type parabolic

equation. This amounts to the remark that the classical thermoelasticity predicts a finite speed for

predominantly elastic disturbances but an infinite speed for predominantly thermal disturbances,

which are coupled together. This means that a part of every solution of the equations extends to

infinity. Experimental investigations by Ackerman, Bentman, Fairbank and Gayer (1966), Ackerman

and Guyer (1968), Ackerman and Overton, Jr. (1966), von Gutfeld and Nethercot (1966), Taylor,

Marris and Elbaum, (1969), Jackson and Walker (1971), and many others, conducted on different

solids, have shown that heat pulses do not propagate with infinite speeds. In order to overcome this

paradox, efforts were made to modify classical thermoelasticity, on different grounds, for obtaining

a wave type heat conduction equation by Kaliski (1965), Norhood and Warren (1969), Suhubi

(1975) and Lebon (1982). A comprehensive list on this generalization for the last two decades is

available in the works of Chandrasekharaiah (1986, 1998). On going through the literature it is

found that hardly any attention has been given to the propagation of plane waves in thermo-visco-

elastic medium in the presence of a point heat source. Mukhopadhyay and Bera (1992) have made

some works on magneto-visco-elastic media. Sinha and Bera (2003), Baksi, Bera and Debnath

(2004) have solved a few problems in generalized thermoelasticity in rotating medium by the

method of eigenvalue approach in one dimension and two dimensions respectively. Also, Baksi and

Bera (2005) have solved problems of magneto-thermoelasticity in two dimensions and three

dimensions by using eigenfunction expansion method. Recent works on Magneto-thermoelasticity

are also available from the papers of Ezzat and Karamany (2002), and Librescu, Hasanyan, Qin, and

Ambur (2003), Librescu, Hasanyan, and Ambur (2004).

The linear visco-elasticity remains an important area of research as most of the solids and the

polymer like materials when subjected to dynamic loading exhibit viscous effect. The stress-strain

law for many materials such as polycrystalline metals and high polymers can be approximated by

the linear visco-elasticity theory. 

In the present paper we have applied technique of eigenvalue approach developed in Das, Lahiri

and Giri (1997) to solve a problem of thermo-viscoelasticity in two dimensions. The resulting

formulation is applied to three different cases in the presence of heat source. The solutions for the
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several important cases are given in closed form in the Laplace transform domain. The inversion of

the Laplace transform is carried out by using a numerical inversion technique given by Bellman,

Kalaba and Lockett (1966). Some of these results have been presented graphically and the effect of

relaxation in each case has been shown separately.

2. Formulation of the problem

The present paper deals with the study of the disturbances in an infinite elastic solid containing

instantaneous point heat source in a viscoelastic media. It is assumed that the elastic field under

consideration is homogeneous, isotropic, and electrically as well as thermally conducting one. 

The necessary governing equations in elastic fields are given below:

i) The principle of balance of linear momentum leads to the equations of motion 

 (1)

ii) The balance of the angular momentum principle implies that

(2)

where ρ =constant mass density

τij = component of stress tensor

ui = components of the displacement vector.

Along with this will be added the modified form of the equation of heat conduction

 (3)

The stress-displacement–temperature relation for the viscoelastic medium of Kelvin-Voigt type is 

where, ui’s are the components of the displacement vector , τij and eij are the components of stress

tensor and strain tensor respectively, Δ = eii, the dilatation, λe,  Lame’s elastic constants, λv , 

Lame’s viscoelastic constants for the viscoelastic solid, , αt being the coefficient

of linear thermal expansion, T is the temperature change above reference temperature T0, α is the

thermal relaxation time parameter and δij is the Kronecker delta.

The generalized heat conduction equation as proposed by Lord and Shulman (1967) in two

dimensions can be written from (3) as 

(4)

We assume that the heat source  is instantaneous and acts on the line y = 0, z = 0, so

that 
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where Q0 is the strength of heat source and δ (r) is the Dirac delta function of r.

The thermal stresses in isotropic infinite elastic solid subject to plane strain in two dimensions are

(5) 

From (1),

(6)

(7)

From Eqs. (6) and (7) can be written as 

(8)

and 

(9)

where 

Let us introduce the following non-dimensional quantities
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dropping star

(10)

where .

Then Eqs. (8), (9) and (4) will reduce to 

(11)

(12)

(13)

where .

3. Formulation of vector matrix differential equation

We assume that at t = 0, the body is at rest, in an undeformed and unstressed state and is

maintained at the reference temperature so that

 and 

Let us apply joint Laplace and Fourier double integral transforms with respect to t and y
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where p and ξ are the Laplace and Fourier transform variables respectively.

The Eqs. (14-16) reduce to the form 

(14)

(15)

(16)

where  and  tend to zero as  and , ,  tend to zero as .

If  Eqs. (14) and (15) reduce to those of Das et al. (1997) and Baksi et al. (2004)

in non-rotating medium.

The Eqs. (14)-(16) can be written in the vector matrix differential equation as follows
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4. Solution of vector matrix differential equation

The characteristic equation of the matrix A takes the form 

λ6 − λ4(m41 + m52 + m63 + m45m54 + m56m65) + λ2(m52m63 + m41m52 + m41m63
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The roots of the characteristic Eq. (21) which are also the eigenvalues of the matrix M are of the
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T corresponding to

eigenvalue λ can be calculated as

  (22)

From the Eq. (21), we can now easily calculate the eigenvector  corresponding to the

eigenvalue λ = λi. 

For our further reference we shall use the following notations

  (23)

The left eigenvector = [y1, y2, y3, y4, y5, y6] corresponding to eigenvalue λ can be calculated as

For simplicity, we shall denote them as

(24)

Assuming the regularity condition at infinity as in Das et al., the solution of the Eq. (20) can be

written as (Appendix I)

X

X

λ m45m54 m43+( ) m43m52–

λ λ
2
m56 m43m54 m41m56–+( )

λ
4

λ
2

m41 m52 m45m54+ +( ) m41m52+–

λ
3

m45m56 m43+( ) λm43m52–

λ
4
m56 λ

2
m43m54 m41m56–( )+

λ
5

λ
3

m41 m52 m45m54+ +( ) λm41m52+–

=

X

X1 X[ ]λ λ
1

=
=   X2 X[ ]λ λ

1
–=

=   X3 X[ ]λ λ
2

=
=   X4 X[ ]λ λ

2
–=

=   X5 X[ ]λ λ
3

=
=   X6 X[ ]λ λ

3
–=

=, , , , ,

Y

Y

λ
2
m61 λ m52m61– m45m54m61– m41m54m65+( )+

λ52 λ
2
m65 m45m61 m65m41–+( )

λ
5

λ
3

m41 m52 m45m54 m56m65+ + +( )– λ m41m52 m45m61m65– m41m56m65+( )+
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m41 m52 m45m54+ +( )– m41m52+
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1
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(25)

where 

After evaluation of the integral,

, ,  (26)

where

Writing (a2, a4, a6) as (A1, A2, A3) the deformations ,  and temperature

 can be compactly written from Eq. (25) as

(27)

(28)

and

 (29)

From Eq. (8), the stresses in the Laplace-Fourier transform domain can be written as

(30)

(31)

(32)

(33)

where and  are obtained from Eqs. (27), (28) and (29).

We now write down from (29)-(33), the expressions of the temperature and the stresses from the

Laplace-Fourier transform domain to the Laplace transform domain as

(34)

since  are even functions of ξ. 

V ξ z p, ,( ) a2 z( )X2exp λ1z–( ) a4 z( )X4exp λ2z–( ) a6 z( )X6exp λ3z–( )+ +=

ai z( ) 1

YiXi

--------- λi

4
λi

2
m41 m52 m45m54+ +( )– m41m52+[ ]Q0

/ C1

3
1 τ

/
p+( )

2πky

3
kz( )

1/2
--------------------------δ

kz

C1

------z⎝ ⎠
⎛ ⎞e

λ
i
n–

nd
∞–

∞

∫–=

ai z( )
Q0

//
–

YiXi

--------- λi

4
λi

2
m41 m52 m45m54+ +( ) m41m52+–[ ]= s 0> i 2 4 6, ,=

Q0

//
Q0

/ C1

4
1 τ

/
p+( )

2πky

3
kz

3( )
1/2

--------------------------=

V
ˆ

ξ z p, ,( ) Ŵ ξ z p, ,( )
T
ˆ

ξ z p, ,( )

V
ˆ

ξ z p, ,( ) Ai λi

2
m45m56 m43+( ) m43m52––[ ]exp λiz–( )

i 1=

3

∑=

ˆ
W ξ z p, ,( ) Ai λi λi

2
m56 m43m54 m41m56–( )+{ }–[ ]exp λiz–( )

i 1=

3

∑=

T
ˆ

ξ z p, ,( ) Ai λi

4
– λi

2
m41 m52 m45m54+ +( ) m41m52+{ }[ ]exp λiz–( )

i 1=

3

∑=

τ̂ 11 T0 λe λvp+( ) β 2iξ v β 3
∂ ŵ

∂ z
--------+⎝ ⎠

⎛ ⎞ iβ1 1 αp+( )T̂–=
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∂ z
--------+⎝ ⎠
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∂ z
-------- β3 1 αp+( )T̂–+=

τ̂ 23 T0 μe′ μv′p+( )
β3

k
-----iξw kβ 2

∂ v̂

∂ z
-------+⎝ ⎠

⎛ ⎞=

v̂ ŵ, T̂
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--- T̂ τ̂ 11 τ̂ 22 τ̂ 33 ĥx, , , ,[ ] z p,( )cos ξy( ) ξd

0

∞

∫=

T̂ τ̂ 11 τ̂ 22 τ̂ 33 ĥx, , , ,
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and

 (35)

since  is an odd function of ξ.

5. Numerical solution

The Fourier-Laplace inversion of the expressions for temperature and stresses in the space-time

domain are very complex and we prefer to develop efficient computer software for the purpose of

inversion of these double integral transforms. As such, as in the previous case, for the inversion of

Laplace transform we follow the method of Bellman (1966) and choose seven values of the time t =

ti, i = 1, 2, 3, 4, 5, 6, 7, at which the stresses are to be determined, where, ti are the roots of the

shifted Legendre polynomial of degree seven, vide Bellman (1966). Simultaneous calculations for

the inversion of the Fourier-transform were done by evaluating the infinite integrals (34) and (35)

numerically by seven-point Gaussian quadrature (Appendix II) formula for several prescribed values

of y and z.

The copper material is chosen for numerical computation. The values of the dimensionless

constants are taken as

We now present our results in the form of graphs (Figs. 1-4) to compare with the cases CTE,

ETE, TRDTE for the stresses field when time variable t = 0.025775, 0.138382, 0.352509, 0.693147,

1.21376, 2.04612 and 3.67119 are labeled in the abscissa and for particular values of the space

variables y = 20 and z = 1. The material constants α, α0 and thermal relaxation parameter τ were

taken as for different cases (i) CTE (ii) ETE (iii) TRDTE as follows:

(i) CTE α = 0, α0 = 0, τ = 0

(ii) ETE α = 0, α0 = 10−5, τ = 10−5

τ 23 y z p, ,( ) 2

π
--- τ̂ 23[ ] z p,( )sin ξy( ) ξd

0

∞

∫=

τ̂ 23

c1

2
0.1  c2

2, .2, d 0.1  g, 0.2  a, 0.1  b, 0.3  ε2, 0.1  ε3, 0.1= = = = = = = =

Fig. 1 Distribution of the normal stress τ11 versus
time

Fig. 2 Distribution of the normal stress τ22 versus
time
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(iii) TRDTE α = 10−5, α0 = 10−7, τ = 0

The behavior of the stresses etc. for  can be estimated form the initial value theorem

6. Conclusion

 

i) The graphs drawn almost coincide with the graphs drawn in generalized thermoelasticity, if we

put λv = 0, μv = 0 given in Fig. 5.

ii) The nature of the propagation of stresses for τ11, τ22 and τ33 is identical but that of the stress

τ23 is different. τ11, τ22 and τ33 start from the negative value where as τ23 starts from the

positive value.

i) The values of the stresses have slight difference in the three cases CTE, TRDTE and ETE.

ii) The amplitudes of stresses are initially high and diminish as time increases.

iii) It is clear from the Fig. 5 that the in the viscoelastic medium the amplitude of the stress

reduces as expected.

 

t 0→

limφ t( ) limpφ t( )=

 t 0→        p ∞→

Fig. 3 Distribution of the normal stress τ33 versus
time

Fig. 4 Distribution of the shearing stress τ23 versus
time

Fig. 5 Comparison of normal stress in the presence and absence of viscoelastic parameters
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Appendix: I

Solution of the vector-matrix differential equation

Let us consider a vector-matrix differential equation 

(1)

with the condition
 

 (2)

where M is an n × n constant real matrix,  is a given constant real n-vector and  is a real n-vector
function. Let

  (3)

be a solution of the homogeneous equation 

 (4)

where λ is a scalar and  is an n-vector independent of x. Substituting (3) in (4) we get

(M  − λ )eλx = 

This may be interpreted that λ is an eigenvalue of the matrix M and  is the corresponding right eigenvector.
Let λ1, λ2, λ3,…..…., λn, be n distinct eigenvalues of the matrix M and  be the corresponding

right eigenvectors of the matrix M. Then the vectors  are linearly independent and so they form
a basis of the space Γn, where Γ denotes the field of complex numbers. We can find scalars b1, b2, , bn

such that

dV

dx
-------- MV f x( )+=

V x0( ) C=

C f

V X exp λx( )=

dV

dx
-------- MV=

X

X X θ MX λX–⇒ θ MX⇒ λX= =

X
X 1 X 2 … X n, , ,

X 1 X 2 … X n, , ,
…

C b1X 1 b2X 2 … bnX n+ + +=
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Let us choose
 
  (i = 1, 2, …n)
Let

 (5)

Thus  is a solution of the differential Eq. (4) and 

 
Now, let 

(6)

be a solution of Eq. (1), where a1(x), a2(x), , an(x) are scalar functions of x such that ai(x0) = 0, i = 1(1)n.
Differentiating (6) with respect to x, we get

(7)

Substituting (6) and (7) in (1) we have 

Or,

(8)

Multiplying by  where (  are left eigenvectors of M corresponding to the eigenvalues
λ1, λ2, , λn) we get 

Or,

,

Or, 

 [aj(x0) = 0 for j = 1(1)n]

Now, we take

Differentiating we get

ci bie
λ

i
x
0

–

=

u x( ) ciXie
λix

i 1=

n
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/
x( )Xie
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λix
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/
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/
x( )Xie
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n
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Y je
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∑ Yj f x( )e
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aj′ x( )YjXj Yj f x( )e
λjx–

= YjXi 0 for i j≠=[ ]

aj

/
x( )

1

YjXj

---------Yj f x( )e
λjx–

=

aj x( ) YjXj( )
1–

Yj f s( )e
λjs–

sd
x
0

x

∫=

V x( ) u x( ) w x( )+=



686 Arup Baksi, Bidyut Kumar Roy and Rasajit Kumar Bera

and

Hence,  is the unique solution of the differential Eq. (1) satisfying the condition (2).

Appendix: II

Numerical inversion of the laplace transform

Let the Laplace transform F(p) of u(t) is given by 

(1)

We assume that u(t) is sufficiently smooth to permit the approximate method we apply. 
Putting 

 (2)

in (1), we get 

 (3)

where u(−logx) = g(x)
Applying the Gaussian quadrature formula in (II.3) yields 

(4)

where xi are the roots of the shifted Legendre polynomial PN(x) = 0 and Wi are the corresponding coefficients.
Thus xi and Wi are known.

Eq. (II.4) can be written as

(5)

We now put  in Eq. (5), then the resulting equations become

(6)

V ′ x( ) u ′ x( ) w ′ x( )+=

 Au x( ) Aw x( ) f x( )+ +=

 A u x( ) w x( )+[ ] f x( )+=

 AV x( ) f x( )+=

V x0( ) u x0( ) w x0( )+ C= =

V x( ) u x( ) w x( )+=

F p( ) e
pt–

u t( ) td
0

∞

∫= p 0≥

x e
t–

=

F p( ) xp
1–
g x( ) xd

0

1
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Wixi

p 1–
g xi( )
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N

∑ F p( )=

W1x1
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g x2( ) … WN xN
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p 1 2 … N, , ,=

W1g x1( ) W2g x2( ) … WNg xN( )+ + + F 1( )=

W1x1g x1( ) W2x2g x2( ) … WNxNg xN( )+ + + F 2( )=

……………………

W1x1
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g x1( ) W2x2
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g x2( ) … WNxN
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g xN( ) F N( )=+ + +
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Thus 

 

Hence, g(x1), g(x2) , g(xN) are known.
Now 

For N = 7
Roots xi of the shifted Legendre Polynomial u(−logxi) = g(xi)

 x1 = −0.94910791 3.671194951
 x2 = −0.74153119 2.046127431
 x3 = −0.40584515 1.213 762484
 x4 = 0 0.69314718
 x5 = 0.40584515 0.352508528
 x6 = 0.74153119 0.138382
 x7 = 0.94910791 0.025775394.

g x1( )
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…
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W1  W2  WN

W1x1  W2x2  WNxN
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W1x1

N 1–
  W2x2
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  WNxN
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…
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=

…

U logx1–( ) g x1( ) U logx2–( ) g x2( ) … U logxN–( ) g xN( )=, ,=,=




