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Abstract. In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two
dimensions in the presence of a point heat source is considered. The fundamental equations of the
problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been
derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a
two dimensional problem. These equations have been solved by the eigenvalue approach. The results have
been compared to those available in the existing literature. The graphs have been drawn for different
cases.
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1. Introduction

In previous years, considerable interest has been shown in the study of plane thermoelastic,
magneto-thermoelastic, and magneto-thermo-viscoelastic wave propagation in an infinite random or
nonrandom and rotating or non-rotating medium by many authors Chow (1973), Hetnarski (1961),
Bahar and Hetnarshki (1978), Bhattacharyya (1986), Schoenberg and Censor (1973) following the
classical theory of thermoelasticity which is based on Fourier’s law of heat conduction. This law
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predicts an infinite speed of propagation of heat, which is physically absurd, and as a result, many
new theories have been proposed to eliminate this absurdity. Lord and Shulman (LS theory) (1967)
proposed a modified version of Fourier’s law and deduced a theory of thermoelasticity known as
the generalized theory of thermoelasticity. This theory with a thermal relaxation time has been used
with purpose and profit by many authors. Nayfeh and Nemat-Nasser (1971), Nayfeh and Nemat-
Nasser (1972), Roy Choudhuri (1985), Agarwal (1978) to study the effect of thermoelastic,
magneto-thermoelastic, and magneto-thermo-viscoelastic plane wave in an infinite rotating or non-
rotating medium.

Another theory of thermoelasticity has been proposed by Green and Lindsay (G-L theory) (1972)
which has certain special features in contrast with the previous theory proposed by LS. In this
theory of Green and Lindsay, Fourier’s law of heat conduction remains unchanged, whereas the
classical energy equation and the stress strain temperature relations are modified. Two constants «
and o having the same dimensions of time appear in the governing equations in place of one
relaxation time 7 in Lord-Shulman’s theory.

The governing equations for displacement and temperature fields in the linear dynamical theory of
classical thermoelasticity consist of the coupled partial differential equation of motion and the
Fourier’s law of heat conduction equation. The equation for displacement field is governed by a
wave type hyperbolic equation, whereas that for the temperature field is a diffusion type parabolic
equation. This amounts to the remark that the classical thermoelasticity predicts a finite speed for
predominantly elastic disturbances but an infinite speed for predominantly thermal disturbances,
which are coupled together. This means that a part of every solution of the equations extends to
infinity. Experimental investigations by Ackerman, Bentman, Fairbank and Gayer (1966), Ackerman
and Guyer (1968), Ackerman and Overton, Jr. (1966), von Gutfeld and Nethercot (1966), Taylor,
Marris and Elbaum, (1969), Jackson and Walker (1971), and many others, conducted on different
solids, have shown that heat pulses do not propagate with infinite speeds. In order to overcome this
paradox, efforts were made to modify classical thermoelasticity, on different grounds, for obtaining
a wave type heat conduction equation by Kaliski (1965), Norhood and Warren (1969), Suhubi
(1975) and Lebon (1982). A comprehensive list on this generalization for the last two decades is
available in the works of Chandrasekharaiah (1986, 1998). On going through the literature it is
found that hardly any attention has been given to the propagation of plane waves in thermo-visco-
elastic medium in the presence of a point heat source. Mukhopadhyay and Bera (1992) have made
some works on magneto-visco-elastic media. Sinha and Bera (2003), Baksi, Bera and Debnath
(2004) have solved a few problems in generalized thermoelasticity in rotating medium by the
method of eigenvalue approach in one dimension and two dimensions respectively. Also, Baksi and
Bera (2005) have solved problems of magneto-thermoelasticity in two dimensions and three
dimensions by using eigenfunction expansion method. Recent works on Magneto-thermoelasticity
are also available from the papers of Ezzat and Karamany (2002), and Librescu, Hasanyan, Qin, and
Ambur (2003), Librescu, Hasanyan, and Ambur (2004).

The linear visco-elasticity remains an important area of research as most of the solids and the
polymer like materials when subjected to dynamic loading exhibit viscous effect. The stress-strain
law for many materials such as polycrystalline metals and high polymers can be approximated by
the linear visco-elasticity theory.

In the present paper we have applied technique of eigenvalue approach developed in Das, Labhiri
and Giri (1997) to solve a problem of thermo-viscoelasticity in two dimensions. The resulting
formulation is applied to three different cases in the presence of heat source. The solutions for the
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several important cases are given in closed form in the Laplace transform domain. The inversion of
the Laplace transform is carried out by using a numerical inversion technique given by Bellman,
Kalaba and Lockett (1966). Some of these results have been presented graphically and the effect of
relaxation in each case has been shown separately.

2. Formulation of the problem

The present paper deals with the study of the disturbances in an infinite elastic solid containing
instantaneous point heat source in a viscoelastic media. It is assumed that the elastic field under
consideration is homogeneous, isotropic, and electrically as well as thermally conducting one.

The necessary governing equations in elastic fields are given below:

i) The principle of balance of linear momentum leads to the equations of motion

T = Pl (1
ii) The balance of the angular momentum principle implies that
.=, 2)

where p =constant mass density
7; = component of stress tensor
u; = components of the displacement vector.
Along with this will be added the modified form of the equation of heat conduction

r. or APy o
x;T ;= pC, (7+a0§t)+T0[§f+ Tﬁt} ff”"f_(”fgt)Q 3)

The stress-displacement—temperature relation for the viscoelastic medium of Kelvin-Voigt type is

(,1 ) g)m +2(,ue+,uv ) ~B(T+ ah)s,

where, u;’s are the components of the displacement vector 7 , 7; and e; are the components of stress
tensor and strain tensor respectively, A = ¢;, the dilatation, 4., 1, Lame’s elastic constants, A,, 1
Lame’s viscoelastic constants for the viscoelastic solid, = (34,+24.)a,, o, being the coefficient
of linear thermal expansion, T is the temperature change above reference temperature 7y, ¢ is the
thermal relaxation time parameter and Jj is the Kronecker delta.

The generalized heat conduction equation as proposed by Lord and Shulman (1967) in two
dimensions can be written from (3) as

K?Z—yT+K§—,OCV[;+% Ierf 2 &}ﬁy 21+ e2lomnn @

We assume that the heat source Q(y,z,¢) is instantaneous and acts on the line y = 0, z = 0, so
that
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OW,z,1) = Qy(y)&(z) (1)

where Q) is the strength of heat source and &(r) is the Dirac delta function of r

The thermal stresses in isotropic infinite elastic solid subject to plane strain in two dimensions are

T, = (/1 + A 2)(g;+%) /)’(1+a§t)T
w= (a2 Z)(5r G alurug) S -p(1rag)r
T33—(ﬂ +/1§t)(g; %)+2(,ué+ /é)a_W_ﬂ(1+a§t)T

(1, 1 O\Ov K Ow
Tzz—(ﬂe+#v5t)(5+0,,—y)

From (1),
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From Egs. (6) and (7) can be written as
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Let us introduce the following non-dimensional quantities

2 3 3
) = Q’Z* _ C_lz’ fe Cit = pClv’ o = pCla)’ T =T,T
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)
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With the introduction of the above non-dimensionless variables in the Eq. (5) becomes after
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dropping star
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Then Egs. (8), (9) and (4) will reduce to
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3. Formulation of vector matrix differential equation

We assume that at + = 0, the body is at rest, in an undeformed and unstressed state and is
maintained at the reference temperature so that

v(3,2,0) = 0 = v(y,2,0); w(»,2,0) = 0 = w(y,2,0) and 7(y,z,0) = 0 = T(y,2,0)

Let us apply joint Laplace and Fourier double integral transforms with respect to 7 and y
respectively in the form
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F(&2p) = 5 [exp(-p) [,z Dexp(icy)dvas
ﬂO —o0

where p and £ are the Laplace and Fourier transform variables respectively.
The Egs. (14-16) reduce to the form

[- E(Cl+ Cop) - Crkp’ 1BV +(a+bp)k ﬂﬂ—lf(d+gp)—+Cﬂl§(l+ap)T =0 (14
~Fa+bp)w + {C+ Cop Ik ;—A—lé‘(d+gp)k ﬁ——Clk (1+ ap)i}—f =Clkp'w  (15)

_ET +kd—T Jkp {1+ cop) T+ Jkep(1+ r/p)(—igﬁ +d—7”) —Q/Mﬁ( z) (16)
dz’ dz 27k k) NG
v ow ﬁT
ﬁ ﬁy ﬁ
If 4,=0,u, =0 Egs. (14) and (15) reduce to those of Das et al. (1997) and Baksi et al. (2004)
in non-rotating medium.
The Egs. (14)-(16) can be written in the vector matrix differential equation as follows

L = M+ (2) (17)

where v,w and 7 tend to zero as |&| > and v, w, tend to zero as [y| > .

A =2/

Y 0,Ci(1+7p)) (k
where v=[5,3,7,%,%w,T] and 7(z) = {0, 0,0,0,0, [—01—1/2] 5(—22)} where prime denotes
(2 7k k.) 1
the differentiation with respect to z.
The matrix M is given by

- - my 0 my 0 mys 0
L?[ A{[ ] ,where My =| 0 o 0 [M=|m, 0 m, and O and I are the null and unit
: : me 0 mg 0 mg O

matrices of order three, respectively and

my = CECHOD-Cl"NE - CECI(rap) - iddrE) (g
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msz_f(“bl’)*(’kp m, = S CR+EDYB | Ci(1+f) (19
(Cl+ T}k’ (Cl+Cp}k’ {Cl+Cop)
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61 /\/} H 63 k H 65 k

If 4,=0, 1, =0 the values of m; exactly same as the values of ¢; in Baksi and Bera (2005) in
the absence of magnetic field.
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4. Solution of vector matrix differential equation
The characteristic equation of the matrix 4 takes the form

6 4 2
A= B(myy + msy + mgz + mysmsy + msgmes) + A (msames + myimsy + mymez — myzme
+ mysmsaMez — My3MgsMes + Mg MseMes — m45m56m61) - (m4lm52m63 - m43m52m61) =0 (21)

The roots of the characteristic Eq. (21) which are also the eigenvalues of the matrix M are of the
form A =+, A =+1,, A = +;. The right eigenvector X = [x,, X», X3, X4, Xs, X] corresponding to
eigenvalue A can be calculated as

FA(mysmsy + my3) —myzms,
2
AUA msg + my3msy —my msg)

4 2
A = (myy + msy + mysmsy) + myms,

<l
I

3 (22)
A (mysmsg + my3) — Amyzms,

4 2
A msg+ A (myzmsy—my ms)

5.3
LA™ = A7 (mygy, + msy + mysmsy) + Amy ms, ]

From the Eq. (21), we can now easily calculate the eigenvector X corresponding to the
eigenvalue 4 = 4,.
For our further reference we shall use the following notations

X, =[Xlion, X%=[XTiemny, X5=[XDion, Xy=[Xi-c, Xs=[XDaos, Xe=[X1a-csy (23)

The left eigenvector Y = [yy, ¥2, Vs, Vs, Vs, V6] corresponding to eigenvalue A can be calculated as
. -
A'meg; + A(—msyme —MysmsyMg, + My MsyMis)
2
Asy (A mgs + mysme —mesmy, )

2= (my, + + + )+ A( + )
—A My + Mgy + MysMsy + MseMgs My Msy —MysMe Mes + My MscMes

~I
I

2
A (mgy + msymes) —msyme,

3
A mgs + A(mysmg, —my mes)

_14 _12(”741 + My + mysmsy) + myms,
For simplicity, we shall denote them as
Yi=[Y1liza, YVa=[Yl-cny Ys=[Y1ion, Ya=[Y1a-cn, Ys=[Y1ion, Ye=[Y1i-_s, (24)

Assuming the regularity condition at infinity as in Das et al., the solution of the Eq. (20) can be
written as (Appendix I)
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V(&2,p) = ay(2)Xoexp(=4,2) + ay(2)X4exp(—2,2) + as(2) Xsexp(—s2) (25)
where
1 %4 2 [ Cl(1+7p) (k. \ n
a{(z) = ——— [[A; = Ai(my + ms; + mysms,) +m41m52]Q0—5(—22 e " dn
rxd Qakk)? Ci )

After evaluation of the integral,

//
a2) = T2UL = By +maytmims) tmamal, 530, 0= 2,46 26)
where /
ol =0 Ci(1+7p)
0= 0 3.3.12
(2 7k, k)
LWriting (aa, as, ae) as (41, Ay, A;) the deformations IL/(gf,z, P, VLV(f,z, p) and temperature
T(¢,z,p) can be compactly written from Eq. (25) as

2~ 3
V(&zp) = zAi[_/ﬁ(mMmss+m43)_m43m52]eXp(_/liZ) 27)
i=1
2 3
W(é z,p) = ZAi[_ﬁvi{/ﬁmsﬁ +(myzms,—my mse) } Jexp(—4,2) (28)
i=1
and
2~ 3 2
T(Sz,p) = ZA,'[{/AL?— Ai (Mg + My + mysmsy) + myyms, }lexp(—4:z) (29)
i=1
From Eq. (8), the stresses in the Laplace-Fourier transform domain can be written as
. YTV
B = 1 or L) i + o) -ip, (1 + )T | (0)
= _ rl R eSS R 5@ n ’ 1N S — N\
P = T Gt Zp) i B ) + Bt + )iy = 1+ ap) T | G1)
. N _
P = T (ot 2p)Bei 67+ B2 ) 4 Batui + ipy 2~ (1 + )T | (2)
%23 = To[(,ue’ +,uv’p)(éi w+kﬁz@) } (33)
k oz

where v, w and T are obtained from Egs. (27), (28) and (29).
We now write down from (29)-(33), the expressions of the temperature and the stresses from the
Laplace-Fourier transform domain to the Laplace transform domain as

(7,711, T 7] 0, 2,0) = ﬁ ([T, 71, T2, 753, hi)(z,p)cos(&y)dE (34)
0

|>

since T, T11, T2, 733, hx are even functions of &
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and

Tonzp) = 2 [l psin e (35)

since 723 is an odd function of &

5. Numerical solution

The Fourier-Laplace inversion of the expressions for temperature and stresses in the space-time
domain are very complex and we prefer to develop efficient computer software for the purpose of
inversion of these double integral transforms. As such, as in the previous case, for the inversion of
Laplace transform we follow the method of Bellman (1966) and choose seven values of the time ¢ =
t, i =1,2,3,4,5,6,7, at which the stresses are to be determined, where, ¢; are the roots of the
shifted Legendre polynomial of degree seven, vide Bellman (1966). Simultaneous calculations for
the inversion of the Fourier-transform were done by evaluating the infinite integrals (34) and (35)
numerically by seven-point Gaussian quadrature (Appendix II) formula for several prescribed values
of y and z.

The copper material is chosen for numerical computation. The values of the dimensionless
constants are taken as

c1=0.1,6,=.2,d=01,g=02,a=01,b=03, &=0.1, &=0.1

We now present our results in the form of graphs (Figs. 1-4) to compare with the cases CTE,
ETE, TRDTE for the stresses field when time variable r = 0.025775, 0.138382, 0.352509, 0.693147,
1.21376, 2.04612 and 3.67119 are labeled in the abscissa and for particular values of the space
variables y = 20 and z = 1. The material constants @, ¢, and thermal relaxation parameter 7 were
taken as for different cases (i) CTE (ii) ETE (iii) TRDTE as follows:

(i) CTE a=0, =0, T=
(i)) ETE a=0, a =107, =107
— ——CTE ———CTE
TRDTE TRDTE
1 e ETE 08 . e ETE

0.6

A S
IV AVAREEENNE

-0.6

0.8
Time Time

o
13

Normal stress
o
—_—
N
7
N
Normal stress

o
3

'
-

Fig. 1 Distribution of the normal stress 7j; versus Fig. 2 Distribution of the normal stress 7, versus
time time
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------------ ETE
ETE 08
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7
~
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0 \\/ 2 020 \/1 Ws 4
- _04 A
-0.6
-0.8
Time Time
Distribution of the normal stress 33 versus Fig. 4 Distribution of the shearing stress n»; versus
time time
----- Without Visco
——With Visco
0.8 |
06 | #

04 7 e
0.2 A\

0 : ‘
-02 v \/ 2 \ 4
04
06| A R

-0.8
-1

Normal stress

Time

Fig. 5 Comparison of normal stress in the presence and absence of viscoelastic parameters

TRDTE a=107, =107, =0

The behavior of the stresses etc. for #— 0 can be estimated form the initial value theorem

limg(¢) = limp ¢(¢)
t->0 p—ow

6. Conclusion

iii)

The graphs drawn almost coincide with the graphs drawn in generalized thermoelasticity, if we
put 4, =0, g, = 0 given in Fig. 5.

The nature of the propagation of stresses for 731, 7> and 73 is identical but that of the stress
o is different. 77, 7, and 53 start from the negative value where as 7»; starts from the
positive value.

The values of the stresses have slight difference in the three cases CTE, TRDTE and ETE.
The amplitudes of stresses are initially high and diminish as time increases.

It is clear from the Fig. 5 that the in the viscoelastic medium the amplitude of the stress
reduces as expected.
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Appendix: |
Solution of the vector-matrix differential equation

Let us consider a vector-matrix differential equation

9
& = M7 +7 %) ()

with the condition
%
Vix) = C )

. - 2 . 2 .
where M is an n X n constant real matrix, C is a given constant real n-vector and f/ is a real n-vector
function. Let

V = Xexp(ix) 3)

be a solution of the homogeneous equation

dv >
LA V 174 “4)
dx

where A is a scalar and f’ is an n-vector independent of x. Substituting (3) in (4) we get
> S > > >
MX - AX)e* = =>MX -1X = 6=>MX = X

This may be interpreted that A is an eigenvalue of the matrix M and ? is %16 corresponding right eigenvector.

Let Ay, 4, A35e.v......, A, be m distinct eigenvalues of the matrix M and ,)?2, ..., X, be the corresponding
right eigenvectors of the matrix M. Then the vectors X 1, X, ,/? » are linearly independent and so they form
a basis of the space I'”, where I' denotes the field of complex numbers. We can find scalars by, by, ..., b,
such that

3 = b,}1+b2)?2+ +b,j’,1
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Let us choose

Let
ix) = ¥ eXie™ (5)
i=1
Thus Z(x) is a solution of the differential Eq. (4) and

i) = Y eXe™ = Y bk = C
i=1 i=1

Now, let

B = YamXie” ©)
i=1
be a solution of Eq. (1), where a;(x), ax(x), ..., a,(x) are scalar functions of x such that a(xo) =0, i = 1(1)n.
Differentiating (6) with respect to x, we get

W) = YamXe” + Y ax) ke )

Substituting (6) and (7) in (1) we have

SaXe” + Y a)ikie™ = 3 ax)MEe™ +/(x)

Or,

SamXe” = 3 a@ME - 2Xe" +7 () = Fx) ®

Ax

> > > >
Multiplying by Y,e " where (Y1, Y2, ..., Y, are left eigenvectors of M corresponding to the eigenvalues

Ay Aoy oev s Ay) WE get
n , > (A= A)x 22 -2
S a1 Xe" ") = Vi (x)e

i=1

Or,
> S>3 ik >
a/()VX, = Vfe ™, [1X =0 for i#)]
1 32 | —ix
a(x) = 511/ (x)e
Y;X;
Or,
S I R 2
a(x) = [(Y;X;) Yif(s)e "ds
[ai(xp) = 0 for j = 1(1)n]
Now, we take

V(x) = @ (x) + #(x)

Differentiating we get
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V'(x) = #'(x) + W'(x)

AT (x) + A (x) + 7 (x)

A[(x) + ()] + F(x)

> >
AV (x) +7(x)

and

P(xg) = #(xg) + B (x,) = C

9
Hence, V(x) = i (x)+ W (x) is the unique solution of the differential Eq. (1) satisfying the condition (2).

Appendix: I
Numerical inversion of the laplace transform
Let the Laplace transform F(p) of u(f) is given by
F(p) = [e"u(nd p>0
0

We assume that u(?) is sufficiently smooth to permit the approximate method we apply.
Putting

—1

=
Il
Q

in (1), we get

F(p) = fopg(x)

where u(—logx) = g(x)
Applying the Gaussian quadrature formula in (11.3) yields

3 Wil lg(x) = F(p)

i=1

(D

4)

where x; are the roots of the shifted Legendre polynomial Py(x) = 0 and W; are the corresponding coefficients.

Thus x; and W; are known.
Eq. (I1.4) can be written as

Wlxlpilg(xl) + szzpilg(xz) Tt WNJG\I"FIg(xN) =F(p)
We now put p = 1,2,...,N in Eq. (5), then the resulting equations become

Wig(x)) + Wrg(xy) + ... + Wyg(xy) = F(1)
Wix,18(x)) + Woxg(xo) + ..+ Wxyg(xy) = F(2)

Wlx?ulg(xl) + sz;!lg(xz) t.oF waxflg(x‘v) = F(N)

©)

(6)
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Thus p
g(x)) W W, Wy F(1)
g)| = | Win Wax, Wyxy F(2)

g(xy) W't owd Tt wad ! LF(N)
Hence, g(x), g(x») ..., g(xy) are known.

Now
U(-logx)) = g(x)), U(-logx,) = g(x»), ..., U(-logxy) = g(xy)
ForN=7
Roots x; of the shifted Legendre Polynomial u(—logx;) = g(x;)
x;=-0.94910791 3.671194951
x;=—0.74153119 2.046127431
x3=—0.40584515 1.213 762484
x4=0 0.69314718
x5 = 0.40584515 0.352508528
xs = 0.74153119 0.138382

x7 =0.94910791 0.025775394.
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