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Abstract. A procedure to analyse the space frame structure fixed at base as well as resting on sliding
bearing using total or absolute displacement in dynamic equation is developed. In the present method, the
effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is
considered as a known value in the acceleration vector at degree of freedom corresponding to base of the
structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force
equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix,
mass matrix and the damping matrix will not change when the structure enters from one phase to another.
The results obtained from the present method using absolute displacement approach are compared with
the results obtained from the analysis of structure using relative displacement approach. The applicability
of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with
restoring force device.

Keywords: absolute displacement; relative displacement; sliding bearing; harmonic ground acceleration;
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1. Introduction

Earthquakes are one of the most destructive forces that nature unleashes on earth. They not only

cause loss of life and property but also shake the morale of the people. In recent years, structural

engineers are giving more and more importance to the design of structures to absorb the energy

input from earth vibration. The integrity of a structure can be protected from the earthquake forces

either through the concept of “resistance” or “isolation”. In designing the structure by resistance, it

is assumed that the earthquake forces can be transmitted directly to the structure and each member

of the structure is required to design to resist the forces that may be induced by the earthquakes. In

the other approach of “isolation”, the transmission of earthquake induced forces to the structure is

prevented using certain isolation devices. Rubber bearings are the most commonly used base

isolation devices. However, in recent years, the sliding bearings in the form of rollers, graphite

powder and dry sand with some coefficient of friction are found increased applications. These types

of bearings are found to be very effective in reducing structural response. The most attractive

features of the sliding bearings are its effectiveness for a wide range of frequency in puts. In this

type of bearing, the force transmitted to the structure across the isolation interface can be limited by
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keeping the coefficient of friction as low as practical. However, this results in large sliding and

residual displacements, which may be difficult to incorporate in structural design. The practical

effectiveness of sliding bearings can be enhanced further by adding suitable restoring mechanism to

reduce the displacements to manageable levels. Restoring force devices also help the structure to

bring back to its original position. Restoring force devices are in the form of high-tension springs,

laminated rubber bearings or friction pendulum systems. In friction pendulum system, the restoring

force is by gravity. In this system, the sliding surface takes a concave spherical shape so that the

sliding and restoring mechanisms are integrated in one unit.

The structure resting on sliding surface will have two phases namely non-sliding phase and sliding

phase. Because of the sliding and non-sliding phases exist alternatively, the dynamic behaviour of

sliding structure is highly non linear. Hence various types of models are proposed for the analysis of

structures resting on sliding bearing. Westermo and Udwadia (1983) used the simplest model, a

rigid block sliding on a bed to study the response of a sliding structure subjected to harmonic

support motions. Mostaghel et al. (1983) have studied the effectiveness of sliding structure

subjected to harmonic support motion. A mathematical model with two degrees of freedom, one

degree of freedom for super structure and the other degree of freedom for sliding foundation was

used. They also used separate equations for each phase, i.e., one equation for non-sliding phase and

the other equation for sliding phase. Using the same type of model, Mostaghel and Tanbakuchi

(1983) studied the response of the sliding structure subjected to El Centro (1940) earthquake

support motion. Qamaruddin et al. (1986) have carried out numerical and experimental studies to

study the seismic response of brick and masonry buildings to evaluate the effectiveness of sliding

bearing as a isolation technique. In order to overcome the difficulties of using separate equations for

sliding and non-sliding phases, Yang et al. (1990) proposed a model using only one equation for

both sliding as well as non-sliding phases. In this approach, the sliding bearing was modeled using a

fictitious spring attached to the foundation floor. The spring was assumed to be bilinear with a very

large stiffness in the non-sliding phase and zero stiffness in the sliding phase. Zayas et al. (1990)

analysed the two degree freedom structure resting on sliding bearing with friction pendulum system

assuming different equations for sliding and non-sliding phases. Jangid and Londhe (1998), Jangid

(2000) and Bhasker and Jangid (2001) studied the response of a structure with multi degree of

freedom resting on sliding bearing assuming different equations for non-sliding and sliding phases.

Pranesh and Ravi (2000) studied the effectiveness of a variable frequency pendulum isolator. Two

degree freedom sliding structure with separate equations for sliding and non-sliding phases is used

for the analysis. Vafai et al. (2001) analysed the multi degree of freedom structure on sliding

supports by replacing a fictitious spring in the model of Yang et al. (1990) by a link with a rigid-

perfectly plastic material. Shakib and Fuladgar (2003) analysed a three dimensional single story

structure resting on sliding support considering all the three components of El Centro (1940)

earthquake. Calio et al. (2003) investigated the response of a multistory sliding structure with

friction pendulum system. Krishnamoorthy and Saumil (2005) analysed the space frame structure

resting on sliding bearing with six degree of freedom at each node using a fictitious spring to model

the sliding surface as proposed by Yang et al. (1990). 

In all the above models adopted for the analysis of structures resting on sliding bearings, the

dynamic equations are expressed in terms of relative displacement with respect to ground or in terms

of relative displacement with respect to the base mass. Ie. the displacement at each floor of the

structure is expressed as the difference between the displacement at that floor and the displacement at

the ground surface or at base of structure. The acceleration and velocity are also expressed in terms
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of relative acceleration and relative velocity. When the displacements are expressed in terms of

relative displacement with respect to base mass, then for non-sliding phase, since the structure is

moving along with ground and the relative displacement at base of the structure is equal to zero, the

dynamic equations are formulated using only the equations corresponding to the super structure

neglecting the equations of base mass. When the structure is in sliding phase, the equations

corresponding to both super structure as well as base mass are considered. Thus, two separate sets of

equations, one corresponding to sliding phase and the other corresponding to non-sliding phase are

used in this approach. When the displacements are expressed in terms of relative displacement with

respect to ground, the sliding bearing is modeled as fictitious spring with high (or infinite) stiffness in

non-sliding phase and zero stiffness in sliding phase. Hence, the dynamic equation will not change

when the structure passes from one phase to another where as the stiffness matrix and damping

matrix changes when the structure enters from one phase to another in this approach. In both the

above approaches, the effect of ground acceleration due to earthquake is considered as an equivalent

force equal to the product of the mass and ground acceleration. This force will be acting at each floor

of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, in

addition to this force, a force equal to the maximum frictional resistance acting opposite to the

direction of sliding is applied at base. The response quantities obtained from the analysis are the

relative displacements, relative velocity and relative acceleration. The absolute or total acceleration

may be obtained adding the relative acceleration to the ground acceleration where as it is not possible

to obtain the absolute velocity and absolute displacement. 

In the present method, a different approach to model the structure resting on sliding bearing is

used. In this approach, the displacement is expressed in terms of total (or absolute) displacement

instead of relative displacement. The effect of ground acceleration is not considered in terms of

equivalent forces as in the case of relative displacement approach. Instead the value of ground

acceleration is considered as a known value in acceleration vector at degree of freedom

corresponding to base of the structure when the structure is in non-sliding phase. Ie., when the

structure is in non-sliding phase, only the acceleration is acting at base and no forces are acting on

the structure. During sliding phase, since there is no contact between the base of the structure and

ground, the ground acceleration will not transmit to the structure and hence acceleration will not be

acting at the base of the structure but a force equal to the maximum frictional resistance will be

acting at the base of the structure. This force is acting opposite to the direction of sliding. Thus, in

the case of non-sliding phase, the acceleration equal to the ground acceleration will be acting at

base whereas in the case of sliding phase only the force equal to the maximum frictional resistance

is acting at base. The stiffness matrix, mass matrix and damping matrix will not change when the

structure passes from one phase to another. Hence, it is not necessary to compute the stiffness

matrix, damping matrix and mass matrix when the structure passes from one phase to another. The

response quantities obtained from the analysis are the absolute displacement, absolute acceleration

and absolute velocity. The displacement of the ground, ground acceleration and ground velocity can

also be obtained. The relative acceleration, relative velocity and relative displacement can also be

obtained knowing the ground acceleration, ground velocity and ground displacement.

2. Analytical modeling

The space frame structure is divided into number of elements consisting of beams and columns
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connected at nodes. Each element is modeled using two noded frame element with six degrees of

freedom at each node i.e., three translations along X, Y and Z axes and three rotations about these

axes. For each element, the stiffness matrix [k], consistent mass matrix [m] in local direction and

transformation matrix [T] is obtained. The mass matrix and stiffness matrix from local direction are

transformed to global direction as proposed by Paz (1991). The overall mass matrix [M] and

stiffness matrix [K] for the whole structure is then obtained by assembling mass matrix [m] and

stiffness matrix [k] of each element. The overall dynamic equations of equilibrium for the entire

structure can be expressed in matrix notations as

 (1)

where [M], [C] and [K] are the overall mass, damping, and stiffness matrices for the structure

including base mass. The damping of the superstructure is assumed as Rayleigh type and the

damping matrix [C] is determined using the equation [C] = α [M] + β [K] where α and β are the

Rayleigh constants. These constants can be determined if the damping ratio for each mode are

known. For sliding bearing, sliding friction is assumed to be of the Coulomb type and the

coefficients of static and dynamic friction are taken to be the same.  and {u} are the total

or absolute acceleration, absolute velocity and absolute displacement vectors at nodes and {F(t)} is

the nodal load vector. {u} = {u1, v1, w1, θx1, θy1, θz1, u2, v2, w2, θx2, θy2, θz2, ….. un, vn, wn, θxn, θyn,

θzn} where n is the number of nodes. 

2.1 Analysis of structure fixed at base

The methods adopted for the analysis of structure fixed at base were in terms of relative

displacement, relative velocity and relative acceleration instead of absolute displacement, absolute

acceleration and absolute velocity as in the present method. Also, the effect of ground acceleration

due to earthquake was considered as an equivalent force which is equal to the product of mass and

ground acceleration. Hence, the force vector in Eq. (1) is equal to . Since the

relative displacement at base is equal to zero when the structure is fixed at base, the equations were

formulated only with respect to super structure neglecting the equations corresponding to the base

mass. The response quantities obtained from the analysis are the relative displacement, relative

acceleration and relative velocity. 

However, in the present method, the equations are formulated in terms of absolute displacement,

absolute velocity and absolute acceleration. Also, when the structure is fixed at base, the structure

moves with ground and hence the total acceleration, total velocity and total displacement at base of

the structure is equal to the ground acceleration, ground velocity and ground displacement. Hence,

acceleration equal to the ground acceleration is applied at base of the structure instead of

considering the effect of ground acceleration as an equivalent force. Thus, the acceleration, , at

base of the structure is known and is equal to the ground acceleration, , and the force vector

{F(t)} = 0.0. The vector  in Eq. (1) consists of known values of acceleration at degrees of

freedom corresponding to the base of the structure and unknown values of acceleration

corresponding to the degrees of freedom of the super structure. Accelerations at the degrees of

freedom other than the degrees of freedom at base, displacements and velocity at all the degrees of

freedom including the degrees of freedom corresponding to base can be determined from Eq. (1).

The response quantities obtained from the analysis are the absolute acceleration, absolute

displacement and absolute velocity instead of relative acceleration, relative velocity and relative

M[ ] u··{ } C[ ] u·{ } K[ ] u{ }+ + F t( ){ }=

u··{ } u·{ },

F t( ){ } M[ ] I{ }u··g–=

u··b
u··g

u··{ }
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displacement. Hence, the present method can be used in situations where absolute displacement and

absolute velocity are needed rather than relative displacement and relative velocity. 

2.2 Analysis of structure resting on sliding bearing

When the structure is resting on sliding type of bearing with a coefficient of friction equal to, μ,

then the mobilized frictional force, Fx, at base will be resisted by the frictional resistance, Fs, which

acts against the direction of mobilized frictional force. When the mobilized frictional force, Fx, at

base is less than the frictional resistance, Fs, (i.e., |Fx | < Fs) the structure will not have relative

movement at base and this phase of structure is known as non – sliding phase. However, when the

mobilized frictional force, Fx, is equal to or more than the frictional resistance, Fs (i.e., |Fx | ≥ Fs)

the structure starts sliding at base and this phase of the structure is known as sliding phase. When

the structure is in sliding phase and whenever reverses its direction of motion (when the relative

velocity at base is equal to zero) then the structure may again stop its movement at base and may

enter the non-sliding phase or may slide in opposite direction. 

Two different models were proposed by number of researchers to model the structure resting on

sliding bearing. Ie. in non-sliding phase, since the relative displacement of the base of the structure is

equal to zero, the equations were formulated in terms of only the relative displacement of the super

structure as explained above for the analysis of structure fixed at base. When the structure is in

sliding phase, the equations were formulated considering the relative displacement of the base mass

and super structure. In another approach as adopted by Yang et al. (1990), Vafai et al. (2001) and

Krishnamoorthy and Saumil (2005) the sliding bearing is modeled as a spring with very high value

of stiffness or infinite stiffness during non-sliding phase and zero value of stiffness in sliding phase.

The following procedure is adopted in the present analysis to model the non-sliding and sliding

phases in the case of structure resting on sliding bearing. 

2.2.1 Non-sliding phase

In the non sliding phase, the frictional resistance, Fs, between the base of the structure and sliding

surface is greater than the mobilized frictional force, Fx, of the system and the structure moves with

the ground. Hence, the structure during this phase can be modeled as the structure fixed at base and

hence the method adopted for the analysis of structure fixed at base as already explained is used for

this phase. Ie. the acceleration, , of the base is equal to the ground acceleration, , and the force

vector {F(t)} = 0.0. Accelerations at the degrees of freedom other than the degrees of freedom at

base, displacements and velocity at all the degrees of freedom including the degrees of freedom

corresponding to base is determined from Eq. (1) as already explained. 

2.2.2 Sliding phase

When the mobilized frictional force, Fx, over comes the frictional resistance, Fs, between the base

of the structure and sliding surface, the system enters the sliding phase and starts sliding. The

mobilized frictional force, Fx, under the base of the structure is equal to, Fs, and remains constant

during this phase. Thus a force equal to the frictional resistance is acting at the base during this

phase. Since there is no contact between the base of the structure and ground, the ground

acceleration is not transmitted to the structure and hence the acceleration at base of the structure is

not equal to the ground acceleration. The acceleration vector { } in this phase is not known at all

degrees of freedom including the degrees of freedom corresponding to the base of the structure. As

u··b u··g

u··
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in the case of non-sliding phase, the super structure is not subjected to any force. However, a force

equal to the frictional resistance is acting at the base of the structure. This force acts opposite to the

direction of sliding at base. Hence the force vector in Eq. (1) is equal to 

{F(t)} = −{Fxmax}sgn

where, {Fxmax} is the vector with zeros at all locations except those corresponding to the horizontal

degrees of freedom at base of structure. At these degrees of freedom, the vector {Fxmax} will have

values equal to Fs. sgn  is the sign of the relative velocity at base and its value is equal to +1

or −1 depending on the direction of sliding.

Thus during sliding phase, only the force at base of the structure is acting and acceleration,

displacement and velocity at each degree of freedom including those corresponding to the base of

the structure are obtained from Eq. (1). It is to be noted that the Eq. (1) is used to obtain the

displacement, acceleration and velocity for the sliding as well as non-sliding phase without

changing the mass matrix, stiffness matrix and damping matrix.

The velocity and displacement of the ground can also be obtained using the time history of the

ground acceleration. The relative displacement, relative velocity and relative acceleration at base of

the structure can then be obtained using the displacement, velocity and acceleration of ground and

absolute displacement, absolute velocity and absolute acceleration of base. The relative velocity is

required to check whether the structure enters the non-sliding phase or not when it is in sliding phase. 

2.3 Solution of the dynamic equation

The dynamic equations in the sliding phase as well as in non-sliding phase are solved in the

incremental form using Newmark’s method. In this method, knowing the displacement, velocity and

acceleration at time t, the displacement, velocity and acceleration at time t + Δt can be obtained.

Owing to its unconditional stability, the constant average acceleration scheme (with β = 1/4 and γ =

1/2) is adopted. A time step Δt equal to 4 × 10−5 seconds is used in the analysis. 

3. Numerical examples

In this section, three examples are presented. In example 1, the results obtained from the present

analysis are compared with the results presented by Vafai et al. (2001). In example 2, the response

of the four story space frame structure resting on sliding bearing is obtained using the present

analysis. In example 3, the applicability of the present analysis is demonstrated to obtain the

response of a space frame structure resting on sliding bearing with restoring force device. 

3.1 Comparison of the present analysis with the results presented by Vafai et al. (2001)

Fig. 1(a) shows a four story plane frame structure resting on sliding bearing considered by Vafai

et al. (2001). The response of the structure was obtained by Vafai et al. (2001) considering only one

displacement (horizontal) at each floor. The sliding bearing was modeled as a fictitious rigid link

with infinite stiffness during non-sliding phase and zero stiffness during sliding phase. To compare

the results obtained from present analysis with the results presented by Vafai et al. (2001), the same

frame is analysed considering one displacement at each floor. Fig. 2(a) shows the absolute

u· rb( )

u· rb( )
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acceleration and base shear obtained from the present analysis and reported by Vafai et al. (2001)

when the structure is subjected to a harmonic ground acceleration of intensity aosin(ωt) with ao =

0.5 g and ω = 10.472 rad/sec when the structure is fixed at base. It can be observed from Fig. 2(a)

that the absolute acceleration and base shear obtained from the present analysis agree very well with

the absolute acceleration and base shear presented by Vafai et al. (2001). The response obtained

from the present analysis and reported by Vafai et al. (2001) when the structure is resting on sliding

bearing are shown in Fig. 2(b). The coefficient of friction of base material μ is equal to 0.1. As

observed from the figure the absolute acceleration and base shear obtained from the present analysis

agree well with the absolute acceleration and base shear reported by Vafai et al. (2001). However,

the sliding displacement (relative displacement of the structure at base with ground) obtained from

the present analysis is slightly more than the sliding displacement reported by Vafai et al. (2001).

This may be due to the fact that the sliding displacement is quite sensitive to the initial condition of

sliding and non-sliding phases of the system.

Fig. 1(a) Four story plane frame structure 

Fig. 1(b) Four story space frame structure
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Fig. 2(a) Response of a four storey plane frame structure fixed at base

Fig. 2(b) Response of a four storey plane frame structure isolated at base
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3.2 Analysis of four story space frame structure resting on sliding bearing

Fig. 1(b) shows a four story space frame structure resting on sliding bearing considered for the

analysis. The geometric and material properties of the structure are shown in Fig. 1(b). The natural

period of the structure is equal to 0.5 sec. The damping ratio of the structure considered for the

analysis is equal to 5%. For this damping ratio, the values of Rayleigh constants α and β are found

Fig. 3 Response of a four storey space frame structure subjected to harmonic ground acceleration
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to be equal to 0.64 and 0.0039 respectively. The response of the structure is obtained when it is

subjected to the harmonic ground acceleration of intensity 0.2gsin(ωt) with ω = 11 rad/sec and to El

Centro (1940) earth quake ground acceleration.

Fig. 3 shows the response of the structure obtained from the present analysis when harmonic

ground acceleration is acting at base. The response of the structure obtained from the present

analysis when the structure is subjected to El Centro (1940) earthquake is shown in Fig. 4. The

response obtained from the analysis based on relative displacement approach is also shown in Fig. 3

Fig. 4 Response of a four storey space frame structure subjected to earthquake ground acceleration
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and Fig. 4. The method proposed by Yang et al. (1990) considering the sliding bearing as a

fictitious spring is adopted to model the bearing in this method. It can be observed from the figure

that the response obtained from the present analysis using absolute displacement agree well with the

response obtained from the analysis using relative displacement for both cases of harmonic ground

acceleration and earthquake ground acceleration.

Fig. 5 Response of a four storey space frame structure with restoring force device subjected to earthquake
ground acceleration
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3.3 Analysis of four story space frame structure resting on sliding bearing with restoring
force device

The applicability of the present method is also demonstrated when the structure is resting on

sliding bearing with restoring force device. The restoring force device in the sliding bearing is used

to reduce the sliding displacement and to restore the structure (to bring the structure to its original

position at the end of earthquake). The restoring force devices may be in the form of laminated

rubber bearings, high tension springs or friction pendulum system which restores the structure due

to gravity. The method adopted for the analysis of structure resting on sliding bearing with restoring

force device is same as the analysis of structure resting on sliding bearing without restoring force

device when the structure is in non-sliding phase where as during sliding phase the force vector

{F(t)} is modified to consider the force in the restoring force device and it is equal to

{F(t)} = −{Fmax}sgn( ) − {Fr}

{Fr} is the vector with zeros at all locations except those corresponding to the horizontal degrees of

freedom at base of structure. At these degrees of freedom the value of Fr is equal to the force in

restoring force device. This force is equal to the product of the stiffness of restoring force device

and relative displacement at base of the structure. 

The structure shown in Fig. 1(b) with a restoring force device of stiffness 745 kN/m (isolation

period, Tb = 1.5 rad/sec) is analysed when it is subjected to a ground acceleration due to El Centro

(1940) earthquake. The response of the structure obtained from the present analysis using absolute

displacement and obtained from the analysis using relative displacement is shown in Fig. 5. The

response obtained from the present analysis using absolute displacement agrees closely with the

response obtained from the analysis using relative displacement. It can also be observed from the

Fig. 4 and Fig. 5 that the sliding displacement of the structure at the end of earthquake is almost

equal to zero when the structure is resting on sliding bearing with restoring force device where as it

is equal to about 60 mm when the structure is resting on sliding bearing with out restoring force

device. i.e., the structure resting on sliding bearing with restoring force device comes to its original

position where as the structure resting on sliding bearing without restoring force device shifts to

new position after the earthquake. 

4. Conclusions

The structure fixed at base as well as isolated at base is analysed. The dynamic equations are

formulated in terms of absolute displacement instead of relative displacement. The response of the

structure obtained from the present analysis using absolute displacement is compared with the

response of the structure obtained from the analysis using relative displacement. Based on the

analysis it can be concluded that the results obtained from the present analysis using the approach

based on absolute displacement agree well with the results obtained from the analysis using the

approach based on relative displacement. Hence, the proposed method of analysis can be used to

analyse the structure subjected to ground acceleration due to earthquake. Also, the method can be

used to obtain the absolute displacement, absolute acceleration and absolute velocity instead of

relative displacement, relative acceleration and relative velocity. The mass matrix, stiffness matrix

u· rb
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and damping matrix will not change when the structure passes from one phase to another. Hence,

the method is simple as compared with other methods since it is not necessary to compute the mass

matrix, stiffness matrix and damping matrix at each time interval. 
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