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1. Introduction

Rectangular finite elements are commonly used for the analysis of the transverse behaviour of

elastic flat plates only in those cases where the contour is made up by orthogonal segments. In this

aspect the work by Bogner, Fox and Schmit (1966) is very well known. They developed a

conforming rectangular element that is extremely efficient for the analysis of both, static and

dynamic situations in the case of thin plates. These authors included the second mixed derivative of

the transverse displacement as a fourth degree of freedom in each node of the rectangular element.

The reason for the rather small popularity of the Bogner element is based on the fact that it is not

possible to generalize its formulation to quadrangular irregular shapes due to the loss of continuity

(Irons and Ahmal 1980).

Recently a p-version of the finite element method has been used (Sidi 2006) to determine the

bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub

using a rectangular element. The second mixed derivative of the transversal displacement is

included in the mentioned reference as the fourth nodal degree of freedom. 

Another new quadrilateral four nodes sixteen degree of freedom thin plate element was presented

by Huang et al. (2002) based of the similarity theory between plane elasticity and plate bending. 

In this note the author presents a quadrangular element useful for the static and dynamic analysis

of simple, non-rectangular domains such as trapezoidal and rhomboidal plates. The proposed

quadrangular finite element possesses four degrees of freedom per node and it is formulated using

shape functions that are similar to the ones employed by Bogner. 

On the other hand the quadrilateral finite elements developed by Fraejis de Veubeke (1968) are

also highly efficient but require a rather complex formulation. It is important to point out that the

Veubeke’s element has been included in the well-known professional software ALGOR Professional

Mech (2001) for linear analysis of thin plates.

The main goal of the present work consists in the development of an algorithm of simple
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computational implementation but which yields good numerical results with a rather small mesh

density of finite elements. This study presents results of natural frequencies which compare

satisfactorily with professional ALGOR solutions.

2. Formulation of the algorithm

The four degrees of freedom at each node of the quadrangular element are the transverse

displacement (w), its first two partial derivatives (∂w/∂ x, ∂w/∂ y) and the second mixed derivative

(∂ 2w/∂ x∂ y). The sixteen degrees of freedom are grouped in the vector of the nodal displacements

(1)

Fig. 1 shows the quadrangular element in the physical plane x-y indicating the local pair of axes

that coincide with the median axes in which adequate non-dimensional coordinates ξ and η have

been introduced. The figure indicates also the local numbering of the nodes and the notation

adopted for the sizes of the sides. 

The coordinate transformation is defined by means of the following bilinear functions

(2a)

(2b)

With shape functions of the form N(ξ, η) grouped in the row-matrix [N], the transverse

displacement is expressed in terms of the adimensional variables

(3)

Based upon the complete polynomial of third degree the sixteen shape functions for the Bogner

rectangular element of sides 2a and 2b may be deduced (Rossi 1997). The empiric formulation

proposed by the author consists in replacing a and b in the shape functions of the rectangle by
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Fig. 1 Quadrangular element in the physical x-y plane
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lineal functions for the quadrilateral element

(4a)

(4b)

It is proved that the element is a conditioned conforming quadrilateral element (CCQE) because it

fulfils present the conditions of continuity of the displacement and its first derivatives on adjacent

sides of contiguous elements when the quadrilateral region is modeled with a mesh generated with

two bundles of straight lines, with centres in the points of intersection of the opposed sides of the

region. It is important to point out that a change of direction in a node shared by to two or more

elements causes the loss of continuity. 

Using the well-known classical dynamic stiffness finite element method (Bathe 1982) the author has

used the quadrature method of Gauss-Legendre (Burden and Faires 2002) and the inverse iteration

method (Chandrupatla and Belegundu 1991) when implementing the computational algorithm.

3. Numerical results

The numerical tests performed to the proposed element were carried out by means of the

determination of the natural frequencies of rhomboidal and trapezoidal plates with available

solutions calculated by the author with the professional Algor software using the Veubeke’s element.

In all cases it was taken υ = 0.3 and values of the frequency coefficient Ω = ωa2(ρh/D)1/2 were

calculated, where a is one of the plate’s size and D is the flexural rigidity of the plate.

The first example is the case of rhomboidal plates with a skew of 45o, simply supported in their

contours. The regular meshes of finite elements were generated by means of parallel straights to the

sides of the rhomboidal plates with n and m divisions along the sides a and b, respectively. In this

study one case was solved, with relationship b/a = 3. Table 1 depicts the results obtained with the

proposed element (CCQE) and the professional software ALGOR.

The next case is a trapezoidal isosceles plate with bases a and b, and height d. It was solved with

d/a = 0.5 and b/a = 0.4. The design of the mesh consisted in dividing the bases of the trapezoid in n

segments of equal size and the non parallel sides in m segments also of the same longitude. Table 2

depicts the corresponding results for simply supported boundary conditions obtained by the author

with the proposed element, and with ALGOR by means of a model with similar mesh design (n =

140, m = 105) formed by 14700 elements. 
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Table 1 Values of Ω1 and Ω2 for simply supported rhomboidal plates (skew angle 45o)

b/a Element
Mesh
n × m

Number of 
nodes

DOF Ω1 Ω2

3
CCQE

 12 × 36  481  1820 21.05 24.93

 16 × 48  833  3196 21.05 24.91

 20 × 60  1281  4956 21.04 24.89

ALGOR 80 × 240  19521  57915 21.04 24.89
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4. Conclusions

The intention of this study is to present the formulation of a conditioned conforming quadrangular

finite element for the dynamic analysis of thin plates demonstrating its utility in the particular cases

of quadrangular regions adequately meshed where the conditions of continuity are satisfied. In these

cases the obtained numerical results are excellent with a rather small mesh density of finite

elements. The author does not recommend its use with irregular meshes where the conditions of

conformity are not satisfied in a complete fashion.
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Table 2 Values of Ωi (i = 1...6) for a simply supported isosceles trapezoidal plate

 Mesh
 n × m

Number
of nodes

DOF Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

 12 × 9  130  448 63.340 127.89 179.32 228.07 253.57 350.49

 20 × 15  336 1228 63.252 127.83 179.19 227.99 253.34 350.27

 28 × 21  638 2392 63.215 127.81 179.14 227.96 253.25 350.23

 ALGOR 
140 × 105

 14946  44062 63.213 127.81 179.14 227.98 253.27 350.27




