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Exact solution for asymmetric transient thermal and 
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M. Jabbari† and A.R. Vaghari‡

Postgraduate School, Tehran South Branch, Azad University, Tehran, Iran

A. Bahtui

Department of System Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

M.R. Eslami‡†

Distinguished Center of Thermoelasticity, Department of Mechanical Engineering, 

Amirkabir University of Technology, Tehran, Iran

(Received August 10, 2006, Accepted February 25, 2008) 

Abstract. Transient solution of asymmetric mechanical and thermal stresses for hollow cylinders made
of functionally graded material is presented. Temperature distribution, as function of radial and
circumferential directions and time, is analytically obtained, using the method of separation of variables
and generalized Bessel function. A direct method is used to solve the Navier equations, using the Euler
equation and complex Fourier series.
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1. Introduction

Functionally graded materials are heterogeneous materials which consist of graded material

variation from one surface to the other. These materials are useful to withstand high thermal stresses

in applications where high heat fluxes and large temperature gradients exist. A ceramic rich region

of a functionally graded material is exposed to hot temperature, while a metal rich region, providing

the necessary flexibility, is exposed to the cold temperature.

In 2002, Yee and Moon (2002) presented plane thermal stress analysis of an orthotropic cylinder

subjected to an arbitrary transient asymmetric temperature distribution. The thermoelastic solution

was obtained by the stress function approach. The problem of transient thermal stresses in a solid
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elastic homogeneous and isotropic sphere was solved for uniform and nonuniform local surface

heating by Cheung et al. (1974). In 1987, Chu and Tzou (1987) presented the transient response of

a composite finite hollow cylinder heated by a moving line source on its inner boundary and cooled

convectively on the exterior boundary using eigen function expansion method and the Fourier

series. Yang et al. (1986) studied a transient response of one-dimensional axisymmetric quasistatic

coupled thermoelastic problems. A numerical technique to analyze the one-dimensional transient

temperature distributions in a hollow circular cylinder of functionally graded ceramic-metal based

materials is presented by Awaji and Sivakumar (2002). Jane and Lee (1999) presented transient

thermoelastic response of an infinitely long annular multilayered cylinder. They employed a

numerical method to solve the thermoelastic response of infinite length cylinders subjected to

known temperatures at traction-free inner and outer surfaces. Ashida and Noda (1995) studied the

transient thermoelasticity in a transversely isotropic infinite cylinder containing a flat circular rigid

inclusion. The numerical method of successive approximation, as well as the Fourier integral and

the Bessel series, are used to satisfy the boundary conditions of displacement and stresses. Kim and

Noda (2001) presented the Green’s function approach to obtain the solution for transient thermal

stresses of functionally graded material mediums. In this paper, transient temperature solution for a

general heat conduction equation with a source and nonhomogeneous boundary conditions is

obtained using the Green’s function, where the solution is expressed by eigenvalues and

corresponding eigen functions. Sugano et al. (1993) analyzed the transient thermal stresses in a

hollow circular cylinder of functionally graded material with temperature-dependent material

properties. The formulation is established by deriving the conditions necessary to assure the single

valuedness of rotation and displacements in a hollow circular cylinder with arbitrary

nonhomogeneous and temperature-dependent properties of material. Awaji and Sivakumar (2001)

presented a numerical technique for the analysis of one-dimensional transient temperature

distribution in a circular hollow cylinder that is made of functionally graded ceramic-metal based

materials. The transient temperature and related thermal stresses in the FGM cylinder were analyzed

numerically for a model of the mullite-molybdenum FGM system. Chen and Awaji (2003) studied

the one-dimensional transient and residual stress fields in a hollow cylinder of functionally graded

material for two models of ceramic-metal systems subjected to severe thermal shock. Bahtui and

Eslami (2005) presented the coupled thermoelastic response of a functionally graded circular

cylindrical shell. The Galerkin finite element approach was utilized to study the effect of

functionally graded properties on the coupled stress fields. In 2002, Kim and Noda (2002) studied

the Green's function approach to obtain the unsteady thermal stresses in an infinite hollow cylinder

of functionally graded material. A Green's function approach based on the laminated theory was

adopted for solving the two-dimensional unsteady temperature field.

This paper present an analytical method to obtain the transient thermal and mechanical stresses in

a functionally graded hollow cylinder subjected to the two-dimensional asymmetric loads.

Temperature distribution is assumed to be a function of radial and circumferential directions and

time. The Navier equations are solved analytically using a direct method of series expansion.

Material properties are assumed to be expressed by power functions in radial direction.

2. Transient temperature solution

Consider a functionally graded cylinder of inner radius ri and outer radius ro. The cylinder’s
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material is graded through the r-direction. Heat conduction equation for the functionally graded

cylinder is

(1)

where  is the temperature distribution, k(r) is the thermal conductivity, c(r) is specific heat

capacity, ρ(r) is mass density, and  is the energy source. A comma denotes partial

differentiation with respect to the space variable. The symbol dot (·) denotes derivative with respect

to time. The initial condition and the Robin-type boundary conditions are assumed as

(2)

(3)

(4)

where Cij, i, j = 1, 2 are the constants related to the thermal boundary condition parameters, and

 is the known initial condition. The thermal material properties are assumed to be described

with the power law functions as

(5)

where  and  are the material parameters. Using the definition for the material

properties, the heat conduction equation becomes

(6)

The solution of heat conduction equation may be obtained by the method of separation of

variables, generalized Bessel function (Rice and Do 1995), and the eigen-function method as

(7)

Substituting Eq. (7) into the heat conduction equation yields

(8)

inwhich  is the coefficient of complex Fourier series of heat source  as

(9)

(10)

where  is derived from the general solution of energy equation without heat source.

According to the mathematical Sturm-Liouville theorem, the function  is an orthogonal

function and  is the norm of this function as
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(11)

where  is the weight function of  as

(12)

and bmn is derived from the initial thermal boundary condition defined by Eq. (2) as

(13)

and Cp is the mathematical Cylindrical Function given by

(14)

(15)

(16)

Here, Jp is the Bessel function of the first kind of order p, the symbol (' ) denotes derivative with

respect to r, and the eigenvalues ξmn are the positive roots of (Cheung et al. 1974) 

; (17)

3. Stress distribution

The governing two-dimensional strain-displacement relations in cylindrical coordinates are

(18)
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inwhich u and v are the displacement components along the radial and circumferential directions,

respectively. The asymmetric stress-strain relations of a Hookean material are

(19)

where σij and εij  are the stress and strain tensors, respectively, and

(20)

(21)

Here,  is the coefficient of thermal expansion,  is the Young’s modules, ν is the

Poisson’s ratio assumed to be a constant, and , and m2 are the constant material

parameters. The two-dimensional equilibrium equations, disregarding the body forces and inertia

terms, are

(22)

Appropriate formulations for the separation of variables to solve the equations of equilibrium are

(23)

(24)

Using Eq. (18) to Eq. (24) yield the Navier equations in the form
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(26)

Eqs. (25) and (26) are a system of ordinary differential equations with non-constant coefficients,

having general and particular solutions in the form

(27)

The general solution is assumed to be  and . Substituting these

assumptions into Eqs. (25) and (26) yield Cnj = Mnjdnj. Finally the general solution is

, (28)

, (29)

and ,  are the eigenvalues of the eigen function
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(32)

(33)

where

(34)

(35)

The particular solution  and  are assumed to be
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The constants e5 to e12 are given in the Appendix. For n = 0, Eqs. (32) and (33) are uncoupled

into two ordinary differential equations, which yield 

(40)

where

(41)
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(42)

where , j = 1, 2, 3, 4, are four unknowns to be obtained from a suitable selection of the

following mechanical boundary conditions

The functions  to  are the mechanical boundary conditions known on the inner and

outer radii. Expanding these boundary conditions into the complex Fourier series lead to a system of

four linear equations to be solved for the constants dnj, j = 1, 2, 3, 4.

4. Results and discussion

The proposed analytical solution is programmed into MATLAB (1994~2008) and an example of a

cylinder with internal heat generation and initial temperature is solved. Consider a hollow

functionally graded cylinder of inner radius ri = 0.02 m and outer radius ro = 0.024 m. The
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kin = 18.1 W/mK, cin = 808.3 J/kgK, ρin = 4410 kg/m3, Eout = 117 Gpa, αout = 7.11E-6/oC, kout =

2.036 W/mK, cout = 615.6 J/kgK, and ρout = 5600 kg/m3, respectively (Reddy and Chin 1998).

These numerical values correspond to m1 = 3.1236, m2 = −2.0329, m3 = −11.9839, m4 = 1.3103 and

m5 = −1.4937. The inside boundary is traction-free with zero temperature, and the outside boundary

is fixed with zero temperature. The cylinder is assumed to be at the initial temperature of T(r, θ, 0)

= 50Γ(100r)cos(θ)oC, where Γ is the mathematical Gamma function. Therefore, the assumed

boundary conditions result in u(ro, θ) = 0, v(ro, θ) = 0, σrr(ri, θ) = 0, and σrθ(ri, θ) = 0. The cylinder

is heated by the rate of energy generation per unit time and unit volume of R =

6 × 106 × sin(5t)cos(θ) .

Fig. 1 illustrates the cylinder temperature at various angles θ over the course of 10 seconds. The

temperature on the vertical axis is plotted against the time in seconds on the horizontal axis. All

graph lines show that temperature decrease sharply in magnitude. The results are the sum of

transient and steady state solutions that depend upon the initial condition for temperature and heat

source, respectively. All graphs show that the transient solution damp after five seconds and the

steady state solution remains. Fig. 2 shows the temperature along the radial direction. Temperature

profiles are drawn for different times and angles θ. Because the magnitude of thermal conductivity

of metal is higher than that of ceramic, cylinder is cooler in surfaces closer to the inside surface.

Fig. 3 shows the hoop stress distribution versus time. Stress distribution is compressive at θ = 0 and

tensile at θ = 3π /4. In case when R = 0, stresses vanish steadily. The curves associated with the

non-zero heat source follow the sine-form pattern of the assumed heat source. Similar to the

temperature distribution, the hoop stress distributions reach the steady state condition after five

seconds. Fig. 4 highlights the radial stress distributions of the cylinder. The radial stress on the

vertical axis is plotted against the radius on the horizontal axis. According to the given mechanical

boundary conditions, stresses are zero at the inside surface. As may be seen, stresses decrease as

1

r

---
W

m
3

------

Fig. 1 Transient temperature distribution
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time increase. Fig. 5 shows the hoop stress along the radial direction. The shear stress distribution is

plotted in Fig. 6. Shear stresses are zero at the inside surface. Comparing Figs. (4) and (5) indicates

that the radial stress is larger than the hoop stress in magnitude. The reason is that the inside surface

Fig. 2 Temperature distribution in the radial direction

Fig. 3 Hoop stress
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is traction free and the outside surface is fixed, with the given heat source which is inversely

proportional to radius. The result, due to the assumed restraint on the outside surface, is larger radial

thermal stress. With the assumed boundary conditions, the radial displacement is more restrained

Fig. 4 Radial stress

Fig. 5 Hoop stress in the radial direction
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than the hoop displacement, which produces larger radial stress compared to the hoop stress. 

Now, consider the first example with identical power law indices of material properties,

. The inside material properties are identical with the first example.

Fig. 7 illustrates the effect of the power law index on the distribution of the radial thermal stress.

m1 m2 m3 m4 m5 m= = = = =

Fig. 6 Shear stress distribution

Fig. 7 Radial stress along the thickness with various power law indices at t = 2
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This figure is the plot of radial stress versus radial direction of the thick cylinder for different power

law indices at t = 2 sec. The value of m = 0 corresponds to pure metal. According to Eq. (19)

thermal stresses depend on modules of elasticity and thermal expansion coefficient. Since these

parameters increase with the increase of power law parameter m, the radial thermal stress increases

by the increase of m.

5. Conclusions

This paper presents a direct method of solution to obtain the transient mechanical and thermal

stresses in a functionally graded hollow cylinder with heat source. The advantage of this method,

compared to the conventional potential function method, is its mathematical strength to handle more

general types of the mechanical and thermal boundary conditions. More complicated mechanical

and thermal boundary conditions may be handled using the proposed method.

The distribution of radial and hoop stresses along the radial direction for some different types of

boundary conditions are derived and plotted for the functionally graded cylinder. Study of Figs. 2, 4,

and 5 indicates that a functionally graded thick cylinder may be tailored, with the selection of

proper power law index, where the stress distribution along the radial direction become almost

uniform. This is the very advantage of the use of functionally graded materials, where proper stress

optimization may be obtained by the selection of a proper FGM profile. 
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