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Abstract. This paper adopts the numerical assembly method (NAM) to determine the exact solutions of
natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various
concentrated elements including point masses, rotary inertias, linear springs, rotational springs and spring-
mass systems. First, the coefficient matrix for an intermediate station with various concentrated elements,
cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam
are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical
assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the
natural frequencies of the vibrating system are determined by equating the determinant of the last overall
coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding
values of integration constants into the associated eigenfunctions.
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1. Introduction

For a single-step beam, Balasubramanian et al. (1985,1990) and Subramanian (1985) investigated

their free vibration characteristics. Jang and Bert (1989a, 1989b) reported its exact and approximate

solutions for the natural frequencies under various boundary conditions. Maurizi and Belles (1994)

studied the natural frequencies of the one-span beams with stepwise variable cross-sections. Lee and

Bergman (1994) used the elemental dynamic flexibility method to study the free and forced

vibrations of the seven-step beam. Ju et al. (1994) used a first order shear deformation theory and

the corresponding finite element formulation to analyze the free vibration of the two-step beams. De

Rosa (1994) and De Rosa et al. (1995) deduced the free vibration frequencies of a single-step beam

by solving the differential equations of motion and the associated eigenvalue problem.

Naguleswaran (2002a) found the natural frequencies and mode shapes of an Euler-Bernoulli beam

on classical end supports and with one-step change in cross-section by equating the second order

determinant to zero, and also the natural frequencies of an Euler-Bernoulli beam on elastic end

supports and with up to three-step changes in cross-sections by equating the fourth order
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determinant to zero (2002b). 

For the uniform beams, Hamdan and Abdel (1994) found the exact natural frequencies of a

uniform beam with attached inertia elements. Wu and Chou (1998) found the approximate natural

frequencies and mode shapes of a uniform beam carrying any number of elastically attached lumped

masses by means of the analytical-and -numerical-combined method (ANCM). Later, Wu and Chou

(1999) obtained the exact solution of the similar vibrating system by using the numerical assembly

method (NAM). By means of the same method (NAM), Chen and Wu (2002) and Chen (2003)

obtained the exact solutions for the natural frequencies and mode shapes of the non-uniform

(wedge) beams carrying multiple spring-mass systems or other various concentrated elements

including point masses, linear springs and rotational springs. Lin and Tsai (2005,2007)determined

the exact values of natural frequencies and associated mode shapes of a “multi-span” uniform beam

carrying a number of point masses, spring-mass systems and “multi-step” beam carrying a number

of point masses and rotary inertias (2006) with the NAM. The objective of this paper is to extend

the theory of NAM to investigate the free vibration characteristics of a multi-span and multi-step

beam carrying various concentrated elements including point masses, rotary inertias, linear springs,

rotational springs and spring-mass systems. For convenience, a beam without any attachments is

called “bare” beam and a beam carrying any attachments is called “loaded” beam, in this paper.

2. Equation of motion and displacement function

Fig. 1 shows the sketch of a pinned-pinned beam with V-step changes in cross-sections and

carrying various concentrated elements. The points corresponding to the locations of the V-step

changes in cross-sections, simple supports, lumped masses, rotary inertias, linear springs, rotational

springs and/or spring-mass systems are referred to as “stations”. 

Fig. 1 Sketch for a pinned-pinned beam with multiple intermediate rigid (pinned) supports, multiple step
changes in cross-sections and carrying various concentrated elements 



On the natural frequencies and mode shapes of a multi-span and multi-step beam 533

The differential equation of motion for the i-th beam segment is given by

(1)

where E is Young’s modulus, Ii is moment of inertia of cross-sectional area of the i-th beam

segment,  is mass per unit length of the i-th beam segment,  is transverse displacement at

position x and time t for the i-th beam segment. 

For free vibrations, one has 

 (2)

where  is the amplitude of , ω is the natural frequency of the beam and .

Substitution of Eq. (2) into Eq. (1) gives

(3)

where  is the frequency parameter for the i-th beam segment corresponding to the v-th vibration

mode defined by

 (4a)

or

 (4b)

with  (4c)

where  is dimensionless frequency parameter for the i-th beam segment corresponding to the v-

th vibration mode.

The general solution of Eq. (3) takes the form 

(5)

which is the displacement function for the i-th beam segment located at the left side of the i-th

station. 

3. Coefficient matrices for intermediate stations and ends of the beam

At the arbitrary station i located at  (see Fig. 1), from Eq. (5) one has

(6)

(7)

EIi
∂

4
yi x t,( )

∂ x
4

--------------------- mi

∂
2
yi x t,( )

∂
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---------------------+ 0= i 1 2 … n, , ,=

mi yi x t,( )

yi x t,( ) Yi x( )ejω t
=

Yi x( ) yi x t,( ) j 1–=

Yi″″ x( ) βv i,

4
Yi x( )– 0=

βv i,

βv i,

4 ωv

2
mi

EIi
-----------=

ωv βv i, L( )
2 EI

miL
4

-----------⎝ ⎠
⎛ ⎞ 1/2

Ωv i,

2 EIi

miL
4

-----------⎝ ⎠
⎛ ⎞ 1/2

= =

Ωv i, βv i, L=

Ωv i,

Yi x( ) Ci 1, sin βv i, x( ) Ci 2, cos βv i, x( ) Ci 3, sinh βv i, x( ) Ci 4, cosh βv i, x( )+ + +=

x xi=

Yi ξi( ) Ci 1, sin Ωv i, ξi( ) Ci 2, cos Ωv i, ξi( ) Ci 3, sinh Ωv i, ξi( ) Ci 4, cosh Ωv i, ξi( )+ + +=

Yi′ ξi( ) Ωv i, Ci 1, cos Ωv i, ξi( ) Ci 2, sin Ωv i, ξi( )– Ci 3, cosh Ωv i, ξi( ) Ci 4, sinh Ωv i, ξi( )+ +[ ]=
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 (8)

 (9)

with

 (10)

In Eqs. (7), (8) and (9), the primes refer to differentiations with the respect to the coordinate xi.

3.1 Coefficient matrix [Bp] for an intermediate cross-section or/and concentrated element

If the station numbering of an intermediate step change in cross-section, point mass, rotary inertia,

linear spring and rotational spring is p, then the continuity of deformations and the equilibrium of

moments and forces at station p require that

(11a)

 (11b)

(11c)

(11d)

(12a,b,c,d,e)

where mp, Jp, kRp and kTp are respectively the lumped mass , rotary inertia, rotational spring constant

and linear spring constant at the p-th station.

Substitution of Eqs. (6)-(9) into Eqs. (11a)-(11d) leads to 

    (13a)

(13b)

(13c)

Yi″ ξi( ) Ωv i,

2
C– i 1, sin Ωv i, ξi( ) Ci 2, cos Ωv i, ξi( )– Ci 3, sinh Ωv i, ξi( ) Ci 4, cosh Ωv i, ξi( )+ +[ ]=

Yi′″ ξi( ) Ωv i,

3
C– i 1, cos Ωv i, ξi( ) Ci 2, sin Ωv i, ξi( ) Ci 3, cosh Ωv i, ξi( ) Ci 4, sinh Ωv i, ξi( )+ + +[ ]=

ξi xi/L=

Yp ξp( ) Yp 1+ ξp( )=

Yp′ ξp( ) Yp 1+
′ ξp( )=

Yp″ ξp( ) Jp
*Ωv p,

4 m1
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------⎝ ⎠
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*
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--------- Jp
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m1L
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*
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*
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3

EI1

------------ εp,=,,=,
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---------= =

Cp 1, Ωv p, ξp( )sin Cp 2, Ωv p, ξp( )cos Cp 3, Ωv p, ξp( )sinh Cp 4, Ωv p, ξp( )cosh+ + +

 Cp 1+ 1, Ωv p 1+,
ξp( )sin– Cp 1+ 2, Ωv p 1+,

ξp( )cos– Cp 1+ 3, Ωv p 1+,
ξp( )sinh– Cp 1+ 4, Ωv p 1+,

ξp( )cosh– 0=

Ωv p, Cp 1, cos Ωv p, ξp( ) Cp 2, sin Ωv p, ξp( )– Cp 3, cosh Ωv p, ξp( ) Cp 4, sinh Ωv p, ξp( )+ +[ ]

 Ωv p 1+,
Cp 1+ 1, cos Ωv p 1+,

ξp( ) Cp 1+ 2, sin Ωv p 1+,
ξp( )– Cp 1+ 3, cosh Ωv p 1+,

ξp( ) Cp 1+ 4, sinh Ωv p 1+,
ξp( )+ +[ ] 0=–

Ωv p,

2
Cp 1,– sin Ωv p, ξp( ) Cp 2, cos Ωv p, ξp( )– Cp 3, sinh Ωv p, ξp( ) Cp 4, cosh Ωv p, ξp( )+ +[ ]
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----⎝ ⎠
⎛ ⎞

– Ωv p,
Cp 1,

cos Ωv p,
ξp( ) Cp 2,

sin Ωv p,
ξp( )– Cp 3,

cosh Ωv p,
ξp( ) Cp 4,

sinh Ωv p,
ξp( )+ +[ ]–

εpΩv p 1+,

2
Cp 1+ 1, Ωv p 1+,

ξp( )sin–[ Cp 1+ 2, Ωv p 1+,
ξp( )cos– Cp 1+ 3, Ωv p 1+,

ξp( ) C+ p 1+ 4, Ωv p 1+,
ξp( )cosh ] 0=sinh+–
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(13d)

Writing Eqs. (13a)-(13d) in matrix form, one has

 (14)

where 

(15)

In the above Eqs. (14) and (15), the symbols, [ ] and { }, denote the rectangular matrix and

column vector, respectively. The coefficient matrix [Bp] is placed in Appendix A at the end of this

paper.

3.2 Coefficient matrix [Bu] for an intermediate spring-mass system

If the station numbering of an intermediate spring-mass system is u, then the continuity of

deformations and the equilibrium of moments and forces at station u require that

(16a)

  (16b)

(16c)

(16d)

(17)

where  is the mass of intermediate spring-mass system and Zu is the displacement amplitude of

 at the u-th station.

Substitution of Eqs. (6)-(9) into Eqs. (16a)-(16d) leads to 

  (18a)

 

(18b)

Ωv p,

3
Cp 1,– cos Ωv p, ξp( ) Cp 2, sin Ωv p, ξp( ) Cp 3, cosh Ωv p, ξp( ) Cp 4, sinh Ωv p, ξp( )+ + +[ ]

 mp
*Ωv p,

4 m1

mp

------⎝ ⎠
⎛ ⎞ kTp

*
I1

Ip

---⎝ ⎠
⎛ ⎞

–+ Cp 1, sin Ωv p, ξp( ) Cp 2, cos Ωv p, ξp( ) Cp 3, sinh Ωv p, ξp( ) Cp 4, cosh Ωv p, ξp( )+ + +[ ]

εpΩv p 1+,

3
Cp 1+ 1, cos Ωv p 1+,

ξp( )–[ Cp 1+ 2, sin Ωv p 1+,
ξp( ) Cp 1+ 3, cosh Ωv p 1+,

ξp( ) Cp 1+ 4, sinh Ωv p 1+,
ξp( )] 0=+ + +–

Bp[ ] Cp{ } 0=

Cp{ } Cp 1,   Cp 2,   Cp 3,   Cp 4,   Cp 1+ 1,   Cp 1+ 2,   Cp 1+ 3,   Cp 1+ 4,{ }=

Yu ξu( ) Yu 1+ ξu( )=

Yu′ ξu( ) Yu 1+′ ξu( )=

Yu″ ξu( ) εuYu 1+
″ ξu( )=

Yu″′ ξu( ) m̂
u
*Ωv u,

4 m1

mu

------⎝ ⎠
⎛ ⎞Zu+ εuYu 1+

′″ ξu( )=

m̂
u
* m̂

u
/ m1L( )=

m̂
u

m̂
u

Cu 1, sin Ωv u, ξu( ) Cu 2, cos Ωv u, ξu( ) Cu 3, sinh Ωv u, ξu( ) Cu 4, cosh Ωv u, ξu( )+ + +

 Cu 1+ 1, sin Ωv u 1+,
ξu( ) Cu 1+ 2, cos Ωv u 1+,

ξu( ) Cu 1+ 3, sinh Ωv u 1+,
ξu( ) Cu 1+ 4, cosh Ωv u 1+,

ξu( )–––– 0=

Ωv u, Cu 1, cos Ωv u, ξu( ) Cu 2, sin Ωv u, ξu( )– Cu 3, cosh Ωv u, ξu( ) Cu 4, sinh Ωv u, ξu( )+ +[ ]

 Ωv u 1+,
Cu 1+ 1, cos Ωv u 1+,

ξu( ) Cu 1+ 2, sin Ωv u 1+,
ξu( )– Cu 1+ 3, cosh Ωv u 1+,

ξu( ) Cu 1+ 4, sinh Ωv u 1+,
ξu( )+ +[ ] 0=–
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(18c)

(18d)

For the spring-mass system at station u, its equation of motion is given by 

 (19)

where  is the spring constant of intermediate spring-mass system and zu is the displacement of

 relative to the static beam at the u-th station, as one may see from Fig. 1.

When the spring-mass system performs free vibrations, one has 

 (20)

The substitution of Eqs. (2) and (20) into Eq. (19) gives

 (21)

or  (22)

where

 (23)

with

   (24)

The substitution of Eq. (6) into Eq. (22) leads to

  (18e)

Writing Eqs. (18a)-(18e) in matrix form, one has

 (25)

where 

(26)

and the coefficient matrix [Bu] is placed in Appendix B at the end of this paper.

Ωv u,

2
Cu 1,– sin Ωv u, ξu( ) Cu 2, cos Ωv u, ξu( )– Cu 3, sinh Ωv u, ξu( ) Cu 4, cosh Ωv u, ξu( )+ +[ ]

εuΩv u 1+,

2
Cu 1+ 1,– sin Ωv u 1+,

ξu( ) Cu 1+ 2, cos Ωv u 1+,
ξu( )– Cu 1+ 3, sinh Ωv u 1+,

ξu( ) Cu 1+ 4, cosh Ωv u 1+,
ξu( )+ +[ ]– 0=

Ωv u,

3
Cu 1,– cos Ωv u, ξu( ) Cu 2, sin Ωv u, ξu( ) Cu 3, cosh Ωv u, ξu( ) Cu 4, sinh Ωv u, ξu( )+ + +[ ] m̂

u
*Ωv u,

4 m1

mu

------⎝ ⎠
⎛ ⎞Zu+

 εuΩv u 1+,

3
Cu 1+ 1, cos Ωv u 1+,

ξu( )– Cu 1+ 2, sin Ωv u 1+,
ξu( ) Cu 1+ 3, cosh Ωv u 1+,

ξu( ) Cu 1+ 4, sinh Ωv u 1+,
ξu( )+ + +[ ]–

 0=

m̂
u
z··u k̂u zu yu–( )+ 0=

k̂u

m̂
u

zu t( ) Zue
jω t

=

k̂uYu k̂u m̂
u
ω

2
–( )Zu– 0=

Yu λu

2
1–( )Zu+ 0=

λu ω/ω̂
u

=

ω̂
u

k̂u/m̂u
=

Cu 1, sin Ωv u, ξu( ) Cu 2, cos Ωv u, ξu( ) Cu 3, sinh Ωv u, ξu( ) Cu 4, cosh Ωv u, ξu( ) λu

2
1–( )Zu+ + + + 0=

Bu[ ] Cu{ } 0=

Cu{ } Cu 1,   Cu 2,   Cu 3,   Cu 4,   Cu 1+ 1,   Cu 1+ 2,   Cu 1+ 3,   Cu 1+ 4,   Zu{ }=
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3.3 Coefficient matrix [Br] for an intermediate rigid support

Similarly, if the station numbering of an intermediate rigid support is r, then the continuity of

deformations and the equilibrium of moments at station r require that

 (27a,b)

 (27c)

 (27d)

Introducing Eqs. (6)-(9) into Eq. (27), one obtains

(28a)

(28b)

 

(28c)

(28d)

or

  (29)

where (30)

and the coefficient matrix [Br] is placed in Appendix C at the end of this paper.

3.4 Coefficient matrix [B0] for the left end of the entire beam

If the left-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

(31a, b)

The substitution of Eqs. (6) and (8) into Eqs. (31a) and (31b) leads to

  (32a)

 (32b)

or in matrix form

 (33)

Yr ξr( ) Yr 1+ ξr( ) 0= =

Yr′ ξr( ) Yr 1+′ ξr( )=

Yr″ ξr( ) εrYr 1+
″ ξr( )=

Cr 1, sin Ωv r, ξr( ) Cr 2, cos Ωv r, ξr( ) Cr 3, sinh Ωv r, ξr( ) Cr 4, cosh Ωv r, ξr( )+ + + 0=

Cr 1+ 1, sin Ωv r 1+,
ξr( ) Cr 1+ 2, cos Ωv r 1+,

ξr( ) Cr 1+ 3, sinh Ωv r 1+,
ξr( ) Cr 1+ 4, cosh Ωv r 1+,

ξr( )+ + + 0=

Ωv r, Cr 1, cos Ωv r, ξr( ) Cr 2, sin Ωv r, ξr( )– Cr 3, cosh Ωv r, ξr( ) Cr 4, sinh Ωv r, ξr( )+ +[ ]

Ωv r 1+,
Cr 1+ 1, cos Ωv r 1+,

ξr( ) Cr 1+ 2, sin Ωv r 1+,
ξr( )– Cr 1+ 3, cosh Ωv r 1+,

ξr( ) Cr 1+ 4, sinh Ωv r 1+,
ξr( )+ +[ ]– 0=

Ωv r,

2
C– r 1, sin Ωv r, ξr( ) Cr 2, cos Ωv r, ξr( )– Cr 3, sinh Ωv r, ξr( ) Cr 4, cosh Ωv r, ξr( )+ +[ ]

εrΩv r 1+,

2
C– r 1+ 1, sin Ωv r 1+,

ξr( ) Cr 1+ 2, cos Ωv r 1+,
ξr( )– Cr 1+ 3, sinh Ωv r 1+,

ξr( ) Cr 1+ 4, cosh Ωv r 1+,
ξr( )+ +[ ]– 0=

Br[ ] Cr{ } 0=

Cr{ } Cr 1,   Cr 2,   Cr 3,   Cr 4,   Cr 1+ 1,   Cr 1+ 2,   Cr 1+ 3,   Cr 1+ 4,{ }=

Y0 0( ) Y0
″ 0( ) 0= =

C0 2, C0 4,+ 0=

C0 2,– C0 4,+ 0=

B0[ ] C0{ } 0=
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where

 (34)

 (35)

Similarly, if the left-end support of the beam is free, then the boundary conditions are

(36a, b)

and the boundary coefficient matrix is given by

 
 

 (37)

If the left-end support of the beam is clamped, one obtains the following boundary coefficient

matrix

 

 (38)

3.5 Coefficient matrix [Bn+1] for the right end of the entire beam

If the right-end support of the beam is pinned as shown in Fig. 1, then the boundary conditions are

 (39a, b)

Where n is the total number of intermediate stations.

Substituting Eqs. (6) and (8) into Eqs. (39a) and (39b), one obtains 

 (40a)

(40b)

or

(41)

where

(42)

1   2   3  4

B0[ ] 0  1  0  1

0  1–   0  1

1

2
=

C0{ } C0 1,   C0 2,   C0 3,   C0 4,{ }=

Y0
″ 0( ) Y0

″′ 0( ) 0= =

1    2   3  4

B0[ ] 0  1  – 0  1

1  – 0  1  0

1

2
=

1  2  3  4

B0[ ] 0  1  0  1

1  0  1  0

1

2
=

Yn 1+ L( ) Yn 1+
″ L( ) 0= =

Cn 1+ 1, sinΩv n 1+, Cn 1+ 2, cosΩv n 1+, Cn 1+ 3, sinhΩv n 1+, Cn 1+ 4, coshΩv n 1+,+ + + 0=

Cn 1+ 1, sinΩv n 1+,– Cn 1+ 2, cosΩv n 1+,– Cn 1+ 3, sinhΩv n 1+, Cn 1+ 4, coshΩv n 1+,+ + 0=

Bn 1+[ ] Cn 1+{ } 0=

   4n 1         + 4n 2+           4n 3+           4n 4+

Bn 1+[ ] sinΩv n 1+,   cosΩv n 1+,   sinhΩv n 1+,   coshΩv n 1+,

sinΩv n 1+,   – cosΩv n 1+,   – sinhΩv n 1+,   coshΩv n 1+,

q 1–  

q
=
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(43a)

In Eq. (42), q denotes the total number of equations for the integration constants given by

 (43b)

where S denotes the total number of spring-mass systems attached to the beam.

Similarly, if the right-end support of the beam is clamped, then the boundary conditions are

(44a, b)

and the boundary coefficient matrix is given by

(45)

If the right-end support of the beam is free, one obtains the following boundary coefficient

matrix

(46)

4. Determination of natural frequencies and mode shapes of the beam

The integration constants relating to the left-end and right-end supports of the beam are defined

by Eqs. (35) and (43), respectively, while those relating to the intermediate stations are defined by

Eqs. (15), (26) and/or (30) depending upon step change in cross-section, point mass, rotary inertia,

linear spring, rotational spring, spring-mass system and/or rigid (pinned) support being located there.

The associated coefficient matrices are given by [B0] (cf. Eqs. (34), (37) or (38)), [Bp] (cf. Eq. (A1)

of Appendix A), [Bu] (cf. Eq. (B1) of Appendix B), [Br] (cf. Eq. (C1) of Appendix C) and [Bn+1]

(cf. Eqs. (42), (45) or (46)). From the last equations concerned one may see that the identification

number for each element of the last coefficient matrices is shown on the top side and right side of

each matrix. Therefore, using the numerical assembly technique as done by the conventional finite

element method (FEM) one may obtain a matrix equation for all the integration constants of the

entire beam

 (47)

Non-trivial solution of Eq. (48) requires that its coefficient determinant is equal to zero, i.e., 

 (48)

Which is the frequency equation for the present problem.

Cn 1+{ } Cn 1 1,+
  Cn 1 2,+

  Cn 1 3,+
  Cn 1 4,+

{ }=

q 4 n 1+( ) S+=

Yn 1+ L( ) Yn 1+′ L( ) 0= =

   4n 1         + 4n 2+           4n 3+           4n 4+

Bn 1+[ ] sinΩv n 1+,   cosΩv n 1+,   sinhΩv n 1+,   coshΩv n 1+,

cosΩv n 1+,   sinΩv n 1+,   – coshΩv n 1+,   sinhΩv n 1+,

q 1–  

q
=

   4n 1         + 4n 2+           4n 3+           4n 4+

Bn 1+[ ] sinΩv n 1+,   – cosΩv n 1+,   – sinhΩv n 1+,   coshΩv n 1+,

cosΩv n 1+,   – sinΩv n 1+,   coshΩv n 1+,   sinhΩv n 1+,

q 1–  

q
=

B[ ] C{ } 0=

B 0=
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In this paper, the incremental search method is used to find the natural frequencies of the

vibrating system, ωv . For each natural frequency ωv, one may obtain the

corresponding integration constants from Eq. (48). The substitution of the last integration constants

into the displacement functions of the associated beam segments will determine the corresponding

mode shape of the entire beam, . 

5. Numerical results and discussions

Before the free vibration analysis of a multi-step multi-span beam carrying multiple concentrated

elements is performed, the reliability of the theory and the computer program developed for this

paper are confirmed by comparing the present results with those obtained from the conventional

finite element method (FEM). Besides, in FEM, the two-node beam elements are used and the

entire beam is subdivided into 40 beam elements. Since each node has two degrees of freedom

(DOF’s), the total DOF for the entire unconstrained beam is 2(40 + 1) = 82. The dimensions of the

three-step beam studied in this paper are (cf. Fig. 2): d1 = 0.05 m, d2 = 0.075 m, d3 = 0.10 m and

d4 = 0.15 m; L1 = 0.2 m, L2 = 0.3 m, L3 = 0.25 m and L4 = 0.25 m. The total length of the stepped

beam is  m; the locations for the step changes in cross-sections are ξr1 =

0.20, ξr2 = 0.50 and ξr3 = 0.75; the mass density of beam is ρ = 7.8 × 103 kg/m3 and the Young’s

modulus is  N/m2. The reference mass is  kg, the reference

rotary is , the reference linear spring is = EI1/L = 6.34761 × 104 N/m

and the reference rotational spring is = EI1/L = 6.34761 × 104 Nm/rad. Each beam segment is

subdivided into ten beam elements; therefore, the lengths for each beam element in each beam

segment are 0.02, 0.03, 0.025 and 0.025 m, respectively.

5.1 A single-span three-step beam carrying multiple concentrated elements excluding
spring-mass systems

The first example is a pinned-pinned beam with three-step changes in circular cross-sections as

v 1 2 …, ,=( )

Y
v( )
ξ( )

L L1 L2 L3 L4+ + + 1.0= =

E 2.069 10
11×= m

O
m1L 15.3153= =

J
O

m1L
3

15.3153 kgm
2

= = kT

O

kR

O

Fig. 2 Sketch for a pinned-pinned beam with three-step changes in cross-sections and carrying two point
masses, two rotary inertias, one linear spring and one rotational spring
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shown in Fig. 2 with diameter ratios = 1.0, 1.5, 2.0 and 3.0 ( ), and carrying two

point masses, two rotary inertias, one linear spring and one rotational spring. The distributions of

the concentrated elements are: there are a point mass m2 with rotary inertia J2, a linear spring kT2

and a rotational spring kR2 located at the intermediate point with ξ2 = x2/L = 0.35; there is a point

mass m4 with rotary inertia J4 at ξ4 = 0.75. The corresponding dimensionless parameters are:  =

m2/  = 1.0, = 0.04, = 1.0, = 1.0,  = 1.0, = 0.02. Three

types of boundary conditions (P-P, F-C and C-F) are studied. Where P, C and F represent the

abbreviations of pinned, clamped and free, respectively. The lowest five natural frequencies for the

loaded beam with three boundary conditions are shown in Table 1. From the table one sees that the

results of the present paper are in good agreement with those of FEM.

5.2 A single-span three-step beam carrying multiple concentrated elements including

spring-mass systems

The second example is the same as the first one studied in the last subsection, but two additional

intermediate spring-mass systems are carried as one may see from Fig. 3. The locations of the two

spring-mass systems are at ξ4 = 0.6 and ξ6 = 0.8, respectively. The lowest five natural frequencies of

the loaded beam are shown in Table 2, it is evident that the results of the present paper are also in

good agreement with those of FEM.

From Table 2 one sees that the lowest two natural frequencies (ω1 and ω2) of either P-P or F-C

loaded beam are close to the natural frequencies of the two spring-mass systems (with respect to the

static beam) given by Eq. (24),  = 192.6825 rad/sec and  = 248.7521 rad/sec, respectively.

Note that the subscripts 4 and 6 of  refer to the numberings of stations at which the spring-mass

sysytems are attached. Besides, for the P-P and F-C loaded beams, the lowest 3-5 natural

frequencies shown in Table 2 are close to the lowest 1-3 natural frequencies shown in Table 1.

From the last phenomena one may conclude that, for the three-step P-P or F-C loaded beam as

shown in Fig. 3, its lowest two natural frequencies are mainly due to the two spring-mass systems

vibrating with respect to the static beam, while its lowest 3-5 ones are mainly due to the loaded

beam. The situation for the C-F loaded beam is slightly different from that for the the P-P or F-C

loaded beam: The lowest 2 and 3 natural frequencies of the C-F loaded beam shown in Table 2 are

close to the natural frequencies of the two spring-mass systems with respect to the static beam (i.e.,

 = 192.6825 rad/sec and  = 248.7521 rad/sec), but the lowest 1, 4 and 5 are close to the

lowest three ones of the C-F loaded beam shown in Table 1. This is because the lowest natural

di
* di/d1= i 1 4–=

m2

*

m
O

J2

* J2/J
O

= kT2

* kT2/kT

O

= kR2

* kR2/kR

O

= m4

* J4

*

ω̂
4

ω̂
6

ω̂

ω̂
4

ω̂
6

Table 1 The lowest five natural frequencies of the 3-step loaded beam shown in Fig. 2 

Boundary
conditions

Methods
Natural frequencies, ω

v
  (rad/sec)

ω1 ω2 ω3 ω4 ω5

P-P
Present 645.8333 2144.4495 4415.9401 11513.0024 13503.7156

FEM 645.8340 2144.4522 4415.9458 11513.0607 13503.7352

F-C
Present 749.5601 2287.0554 4306.2718 6333.2844 14849.3279

FEM 749.5610 2287.0580 4306.2782 6333.2913 14849.4523

C-F
Present 100.0990 1173.3380 2725.6397 5212.7459 14968.9856

FEM 100.0992 1173.3395 2725.6434 5212.7517 14969.1174
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frequency (ω1) of the C-F loaded beam is lower than the natural frequencies of the two spring-mass

systems with respect to the static beam (i.e.,  = 192.6825 rad/sec and  = 248.7521 rad/sec).

5.3 A multi-span three-step beam with multiple concentrated elements

The third example is shown in Fig. 4, it is the same as the second one studied in the last

subsection, except that there are three intermediate rigid (pinned) supports located at ξi = xi /L = 0.1,

0.7 and 0.85, respectively, with i = 1, 6 and 9. It is similar to Tables 1 and 2 that the P-P beam, F-C

beam and C-F beam are studied. For each kind of supporting conditions, three cases with total

number of in-span supports Ns = 1, 2 and 3 are discussed. The results are shown in Table 3. From

the table one sees that the lowest five natural frequencies of the loaded beam increase with

increasing the total number of intermediate supports as expected and the present results are in good

agreement with those obtained from the FEM.

ω̂
4

ω̂
6

Fig. 3 Sketch for a pinned-pinned beam with three-step changes in cross-sections and carrying two point
masses, two rotary inertias, one linear spring, one rotational spring and two spring-mass systems

Table 2 The lowest five natural frequencies of the 3-step loaded beam shown in Fig. 3

Boundry
conditions

Methods
Natural frequencies, ω

v
 (rad/sec)

ω1 ω2 ω3 ω4 ω5

P-P
Present 192.8043 248.3318 649.4005 2144.7423 4416.3347

FEM 192.8049 248.3319 649.4016 2144.7447 4416.3401

F-C
Present 193.1215 249.2113 749.7701 2287.5297 4306.2761

FEM 193.1221 249.2115 749.7707 2287.5325 4306.2826

C-F
Present 92.6318 205.5406 252.9763 1174.1703 2725.6832

FEM 92.6320 205.5412 252.9766 1174.1723 2725.6868
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Fig. 4 Sketch for a pinned-pinned beam with three-step changes in cross-sections and carrying two point
masses, two rotary inertias, one linear spring, one rotational spring, two spring-mass systems and
having three intermediate pinned supports (i.e., N

s
 = 3)

Table 3 The lowest five natural frequencies of a three-step P-P, F-C or C-F beam carrying two lumped
masses, two rotary inertias, one linear spring, one rotational spring, two spring-mass systems and
having one to three intermediate pinned supports

Boundry 
conditions

Locations of 
In-span rigid 

supports, ξ
s
 = x

s
/L

Methods
Natural frequencies, ω

v
 (rad/sec)

ω1 ω2 ω3 ω4 ω5

P-P

0.10
*(N

s
 = 1)

Present 192.9732 248.9206 1059.9582 3372.6617 4417.0620

FEM 192.9737 248.9207 1059.9594 3372.6669 4417.0673

0.10, 0.70
(N

s
 = 2)

Present 193.1335 249.3241 2986.5109 3484.6825 13381.4347

FEM 193.1340 249.3244 2986.5151 3484.6876 13381.4527

0.10, 0.70, 0.85
(N

s
 = 3)

Present 193.1358 249.3266 3108.1705 3507.1133 18318.3851

FEM 193.1363 249.3269 3108.1744 3507.1189 18318.5502

F-C

0.10
(N

s
 = 1)

Present 193.1235 249.2590 1972.1805 3042.4729 6333.0737

FEM 193.1239 249.2592 1972.1830 3042.4778 6333.0807

0.10, 0.70
(N

s
 = 2)

Present 193.1346 249.3243 2561.1091 3371.7764 12291.7468

FEM 193.1351 249.3246 2561.1126 3371.7814 12291.8055

0.10, 0.70, 0.85
(N

s
 = 3)

Present 193.1358 249.3261 2607.8757 3421.0516 12296.6772

FEM 193.1364 249.3263 2607.8790 3421.0568 12296.7361

C-F

0.10
(N

s
 = 1)

Present 114.1003 207.7561 253.2336 1404.2636 3454.0220

FEM 114.1005 207.7565 253.2339 1404.2657 3454.0270

0.10, 0.70
(N

s
 = 2)

Present 193.0501 249.2845 1215.6978 3406.3689 3671.6730

FEM 193.0506 249.2848 1215.6993 3406.3741 3671.6779

0.10, 0.70, 0.85
(N

s
 = 3)

Present 193.1358 249.3261 3112.3938 3523.5295 16998.2692

FEM 193.1362 249.3264 3112.3985 3523.5352 16998.3572

*N
s
 = total number of in-span rigid (pinned-pinned) supports.
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5.4 Mode Shapes of the three-step beams with multiple concentrated elements

Figs. 5(a)-(d) show the mode shapes corresponding to the lowest five eigenfrequencies of the P-P

three-step beam (cf. Fig. 4). The diameter ratios for the three step changes in circular cross-sections

are:  = 1.0, 1.5, 2.0 and 3.0 and located at ξ2 = 0.20, ξ4 = 0.50 and ξ7 = 0.75,

respectively. In which, the 1st, 2nd, 3rd, 4th and 5th mode shapes are represented by the curves,
_ ____

, ··············, 
__ _ __

, 
_ _ _

, and —·—·—·, respectively. Note that Fig. 5(a) is for the “single-

span” beam without attachment; Fig. 5(b) is for the “single-span” beam with two point masses, two

rotary inertias, one linear spring, one rotational spring and two spring-mass systems; Fig. 5(c) is for

the “two-span” beam with attachments the same as Fig. 5(b); Fig. 5(d) is for the “three-span” beam

with attachments the same as Fig. 5(b).

For Fig. 5(b), the corresponding dimensionless parameters (  and

) and the locations of step changes of cross-sections (ξ2, ξ4, ξ7) are the same as subsection 4.2.

The intermediate pinned support for the two-span beam is locatated at ξ1 = 0.10, while the ones for

di
* di/d1=

m3
* J3

*, kT3
* kR3

* m7
* J7

* k̂5
* m̂

5

* k̂8
*, , , , , , ,

m̂
8

*

Fig. 5 The mode shapes corresponding to the lowest five eigenfrequencies of the P-P three-step beam (cf. Fig.
4): (a) single span without attachment; (b) single span with two lumped masses, two rotary inertias,
one linear spring, one rotational spring and two spring-mass systems; (c) two spans with attachments
the same as (b); (d) three spans with attachments the same as (b)
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the three-span beam are locatated at ξ1 = 0.10 and ξ6 = 0.70, respectively.

From the mode shapes corresponding to the lowest five eigenfrequencies of the “single-span” beam

carrying two point masses, two rotary inertias, one linear spring, one rotational spring and two

Fig. 6 The mode shapes corresponding to the lowest five eigenfrequencies of the three-step pinned-pinned
beam carrying two lumped masses, two rotary inertias, one linear spring ,one rotational spring, two
spring-mass systems (cf. Fig. 4): (a) first mode; (b) second mode; (c) third mode; (d) fourth mode; (e)
fifth mode
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spring-mass systems as shown in Fig. 5(b) one sees that the mode shapes corresponding to the

lowest five eigenfrequencies of the loaded beam are very close to the 3rd one, this is because the 3rd

natural frequency of the loaded beam (ω3 = 649.4005 rad/sec) is very close to the 1st one of the bare

beam (ωb1 = 645.8333 rad/sec) and the mode shapes corresponding to the lowest two

eigenfrequencies of the loaded beam are close to the natural frequencies of the two spring-mass

systems with respect to the static beam. In other words, the mode shapes corresponding to the lowest

two eigenfrequencies of the loaded beam are major in the deformations of the two spring-mass

systems and the 3rd mode shape is major in the deformation of the three-step beam itself as one may

see from Figs. 6(a)-(c). Actually, from Figs. 6(d) and 6(e) one sees that the 4th and 5th mode shapes

of the loaded beam are also major in the deformation of the three-step beam itself, therefore, the 4th

and 5th mode shapes of the loaded beam shown in Fig. 5(b) are far from each other. 

It is noted that the foregoing statements for the mode shapes corresponding to the lowest five

eigenfrequencies of the single span beam shown Fig. 5(b) are also correct for those of the two-span

beam shown in Fig. 5(c) and the three-span beam shown in Fig. 5(d). The mode shapes

corresponding to the lowest five eigenfrequencies for the same three-step beam with F-C and C-F

supporting conditions are shown in Figs. 7(a)-(d) and Figs. 8(a)-(d) for the single-span bare beam,

Fig. 7 The mode shapes corresponding to the lowest five eigenfrequencies of the F-C three-step loaded
beams. Key as Fig. 5 
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single-span loaded beam, two-span loaded beam and three-span loaded beam, respectively. Their

keys are the same as those for Figs. 5(a)-(d).

6. Conclusions

From this study the following concluding remarks can be made:

1. Because the literature regarding the “exact” solutions for the natural frequencies and associated

mode shapes of a multi-span beam with multi-step changes in cross sections and carrying

multiple concentrated elements (such as point masses with rotary inertias, linear springs,

rotational springs and/or spring-mass systems) are rare, and the classical analytical methods will

suffer much difficulty for writing the high order (such as 38 × 38) explicit-form overall

coefficient matrix [B] for calculating the value of the associated determinant |B|, the theory and

the “exact” solutions for the examples presented in this paper will be useful for checking the

accuracy of the numerical results obtained from various “approximate” methods.

2. For a beam carrying multiple spring-mass systems, if some of the natural frequencies (ωi) of the

Fig. 8 The mode shapes corresponding to the lowest five eigenfrequencies of the C-F three-step beams. Key
as Fig. 5
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loaded beam is very close to some of the natural frequencies ( ) of the multiple spring-mass

systems, then the corresponding mode shapes of the loaded beam are major in the deformations

of some of the multiple spring-mass systems. On the other hand, the mode shapes of the loaded

beam with corresponding natural frequencies (ωr) far from the natural frequencies ( ) of the

multiple spring-mass systems are major in the deformations of the loaded beam itself.
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Appendix A

The coefficient matrix [Bp] for Eq. (14) is given by

 (A1)
where

(A2)

(A3)

, ,  (A4)

Appendix B

The coefficient matrix [Bu] for Eq. (25) is given by

(B1)
Where

(B2)

(B3)

 

sθv p,
sinΩv p,

ξp=   cθv p,
cosΩv p,

ξp=   shθv p,
sinhΩv p,

ξp=  chθv p,
coshΩv p,

ξp=, , ,

sθv p 1+,
sinΩv p 1+,

ξp=   cθv p 1+,
cosΩv p 1+,

ξp=   shθv p 1+,
sinhΩv p 1+,

ξp=  chθv p 1+,
coshΩv p 1+,

ξp=, , ,

αp Jp
*Ωv p,

4 m1

mp

------⎝ ⎠
⎛ ⎞

kRp
* I1

Ip

----⎝ ⎠
⎛ ⎞

––= σp mp
*Ωv p,

4 m1

mp

------⎝ ⎠
⎛ ⎞

kTp
* I1

Ip

----⎝ ⎠
⎛ ⎞

–= εp
Ip 1+

Ip

---------=

 

sθv u,
sinΩv u,

ξu=   cθv u,
cosΩv u,

ξu=   shθv u,
sinhΩv u,

ξu=  chθv u,
coshΩv u,

ξu=, , ,

sθv u 1+,
sinΩv u 1+,

ξu=   cθv u 1+,
cosΩv u 1+,

ξu=   shθv u 1+,
sinhΩv u 1+,

ξu=  chθv u 1+,
coshΩv u 1+,

ξu=, , ,
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Appendix C

The coefficient matrix [Br] for Eq. (29) is given by

(C1)
where

(C2)

(C3)

 

sθv r,
sinΩv r,

ξr=   cθv r,
cosΩv r,

ξr=   shθv r,
sinhΩv r,

ξr=  chθv r,
coshΩv r,

ξr=, , ,

sθv r 1+,
sinΩv r 1+,

ξr=   cθv r 1+,
cosΩv r 1+,

ξr=   shθv r 1+,
sinhΩv r 1+,

ξr=  chθv r 1+,
coshΩv r 1+,

ξr=, , ,




