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Abstract. In this study, the new three-dimensional finite element analysis model of guideway structures
considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved
finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway
structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom).
The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting
elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is
composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force,
which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring
model. By Lagrange’s equations of motion, the equations of motion of Maglev train are formulated.
Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge
interaction, the complete system matrices of Maglev train-guideway structure system are composed. 

Keywords: magnetic levitation train; Maglev train-guideway interaction; guideway structures; dynamic
analysis; finite element analysis.

1. Introduction

Recently, the concern about the feasibility of magnetic levitation train (here after, Maglev train) is

being increased all over the world. In 1960’s, the development of Maglev train had already

commenced in Japan and Germany, where experimental lines were constructed and many field

experiments were performed. Nowadays, the construction of commercial lines is being considered in

Japan and Germany. In 2004, the line connecting Shanghai with Pudong in China had been

constructed, where Transrapid08 (Germany) is being operated at the commercial speed of 430 km/h

(Esveld 2001). In Japan, the unmanned ML500 in Miyazaki line set the record for the speed of 517

km/h in 1979. Since 1997, Yamanashi testing line had been built newly, in which various
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experiments have been made through driving Maglev train. The manned MLX-01 with five-car

formation set the record for the speed of 552 km/h in 1999. In addition, the manned MLX-01 with

three-car formation set the best record for the speed of 581 km/h in 2003 (Sogabe et al. 2003). 

For the feasibility of ultra high-speed Maglev transport system, civil engineers, electrical

engineers, and mechanical engineers must do the design, manufacturing, and construction of

guideway structures, Maglev train, and super-conducting magnet (hereafter, SCM) without defects.

Among these terms, civil engineers must design and construct the guideway structures with the

structural safety and aesthetical beauty, of which the structural safety is directly related to human

life and so very important factor to be considered. Guideway structures must have not only the

structural safety for traffic load, earthquake load, and thermal load, but also the dynamic

serviceability for the vibration when Maglev train passes. To get the objective numerical data for

this purpose, the numerically accurate analysis model of guideway structures considering Maglev

train-guideway interaction must be developed.

The dynamic response prediction of railway bridges subjected to high-speed train loading is

complicated in nature, because the dynamic behavior of a bridge induced by the train moving on it

is influenced by the interaction not only between the train and bridge, but also between components

of a train itself. Recently, many researchers pay attention to the increase of the operating speed of a

train. As the operating speed of a train reaches 300 km/h or more, it becomes the more important

factor to consider accurately the train-bridge interaction for the design of a bridge. Many researchers

contributed to the analytical advancement of this field. Tanabe et al. (1997) developed the three-

dimensional analysis program for the dynamic interaction analysis of Shinkansen trains and railway

bridges. Park (1999) proposed the high-speed train models with seventeen degrees of freedom

(hereafter, DOF) and 38 DOF and applied those models to the analysis of railway bridges. Kim

et al. (1999) fulfilled the parametric study by means of the three-dimensional refined high-speed

train model. Song et al. (2001, 2003) proposed the simplified three-dimensional analysis method,

sub-structuring method, and full 3-dimensional analysis method for the dynamic analysis of high-

speed railway bridges. Kwark et al. (2004) performed experimental and theoretical studies to

determine the dynamic behavior of bridges crossed by a high-speed train. Xia et al. (2003) proposed

a dynamic analysis model of the bridge-articulated vehicle system, which is composed of the

articulated vehicle element model and three-dimensional bridge model, and investigated the

vibration of the train and bridge.

As mentioned above, many researchers carried out the dynamic analysis method of railway

bridges considering the high-speed train-bridge interaction all over the world. The researchers

performed the analysis of Maglev-train guideway interaction in USA, Japan, and Germany.

Particularly, Sogabe et al. (2003) proposed the vehicle model of Maglev train MLX-01 in

Yamanashi testing line and the three-dimensional analysis model of guideway structures, which

were modeled by beam elements. By using these models, they proposed the dynamic interaction

analysis scheme and investigated the characteristics of the dynamic response of guideway structures.

The model in this research was 3-dimensional frame model, and the refined and various 3-

dimensional finite elements were not applied to model complicate guideway structures.

In this study, the new three-dimensional Maglev train model and guideway structure model are

proposed. By using these models, the dynamic analysis scheme considering Maglev train-guideway

interaction is proposed. Based on these models and analysis scheme, the finite element analysis

program is developed and the validities of this program are verified through numerical examples.

The existing non-conforming flat shell (hereafter, NFS) finite elements (Choi et al. 2001) are used
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to model the bridge deck of bridges. Therefore, the analysis of bridge decks can be accurate because

NFS finite elements with six DOF are very useful to accurately model the folded plate structures

like box-type girders. To model the sidewalls of guideways, three-dimensional beam finite elements

are used. To model the beam connecting sidewalls and bridge decks, spring connecting elements are

used. To model the levitation and guidance force between the super-conducting magnet (hereafter,

SCM) and sidewalls, the concept of the equivalent spring model is applied.

2. Operating principles of Maglev train

2.1 Super-conducting magnet

Maglev train can be levitated by the use of the SCM, in which super-conducting phenomena is

applied. Super-conducting phenomena means the state that special metals have no electrical

resistance for the direct current when they are refrigerated under the specific temperature. Therefore,

the special metals have no energy loss, which are expressed as the emission of heat, light, and so

on. Therefore, if the coils which are made of such metals are passed through by electrical current,

Fig. 1 Principle of super-conducting magnet
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they have the permanent electrical fields without the continuous supply of electrical power (Kim

1997).

In Japanese super-conducting magnetic levitation transport system, the coils, which are made of

the alloy of Niobium and Titanium (NbTi) and cooled down under −269oC to get the permanent

electrical fields, are installed on Maglev train to fulfill the function of SCM. The attractive and

repulsive force between the installed SCM and coils established on the sidewalls of guideways are

used to function the levitation, guidance, and propulsion force to incarnate the magnetic levitation

transport system. To make a progress practicable, Railway Technical Research Institute (RTRI) in

Japan carried out the related researches (Sogabe et al. 2003).

2.2 Principles of the propulsion, levitation, and guidance of Maglev train

When Maglev train with SCM passes on the sidewalls of guideways, the electrical current is

generated in the coils installed on sidewalls. Therefore, the electrical current is generated in the

coils on guideways and the electrical fields of pole-N and pole-S are formed in the coils. At the

same time, the attractive force is generated between the different poles and the repulsive force is

between the same poles. As a result, Maglev train moves forward by using the attractive and

repulsive force. As a matter of course, Maglev train must move forward with the wheels installed at

the bottom of a carbody to a certain speed. The coils established on the left and right sides of

sidewalls are mutually connected with electric power cables. Therefore, if a carbody leans toward

Fig. 2 Principle of Maglev train
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one side from the central position of the guideway, the attractive force is formed on the part distant

from the sidewall and the repulsive force is on the part near to the sidewall. In other words, a

carbody always comes back to the central position of the guideway whenever a carbody leans

toward one side.

3. Maglev train model

The first version of MLX-01 of Japanese Maglev train is the articulated bogie system and has

three-car formation, i.e., three cars and four bogies (Fig. 3). The second version of MLX-01 has

five-car formation, i.e., five cars and six bogies. MLX-01 can run magnetically at the speed of

500 km/h (maximum speed is 550 km/h). The power brake is used as the usual brake system and

the disk and air brake are set up as the backup system for urgent times (Yoshioka et al. 1998). In

Fig. 4, the cross-sectional view of ultra high-speed Maglev transport system including the levitation

coils and linear synchronous motor (hearafter, LSM) primary coils is shown. The main three-type

Fig. 3 MLX-01 of ultra high-speed Maglev train
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coils of LSM are installed on the inner and outer part of sidewalls. To connect the levitation coils

on the sidewalls of both sides, the null-flux cable is used (Higashi et al. 1999, Ohashi et al. 2000).

By the function of the null-flux connection, the electrical currents and magnetic force are generated

according to the position and speed of SCM installed on a bogie. When SCM moves under the

central position between the upper and lower levitation coils on the sidewall, the repulsive force is

generated between the super-conducting coils and lower levitation coils, and the attractive force is

generated between the super-conducting coils and upper levitation coils. As a result, the levitation

force is generated between the super-conducting coils of SCM and levitation coils of sidewall. By

the same way, the guidance force is generated and keeps a car body from straying out of the central

position. The super-conducting coils of sidewalls are used not only as the SCM of the levitation and

guidance system but also as the secondary LSM. In the system of MLX-01, there are eight pieces of

SCM per a bogie.

3.1 Maglev train model

In this study, the Maglev train model is proposed, which has twenty-four DOF, i.e., the six

DOF of a carbody, the six DOF of a bogie, and the three DOF of the corporate body of SCM and

frame structures (Figs. 5 and 6) (Yoshioka 1988). The six DOF of a carbody mean the sliding

motion, swaying motion, bouncing motion, pitching motion, rolling motion, and yawing motion

of a carbody . The six DOF of a bogie mean the sliding motion, swayingxc yc zc θc φc ϕc, , , , ,( )

Fig. 4 Transport system of Maglev train
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Fig. 5 Three-dimensional model of Maglev train
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motion, bouncing motion, pitching motion, rolling motion, and yawing motion of a bogie

. The three DOF of the corporate body of SCM and frame structures mean the

bouncing motion, pitching motion, and rolling motion of the corporate body of SCM and frame

structures . As a result, by applying the Lagrange’s equations of motion, the equations of

motion of leading and intermediate cars can be derived respectively. Therefore, by superposing

these equations of motion, the equations of motion of the multi-link Maglev train can be composed.

The dynamic properties and dimensions of Maglev train used in numerical examples are as shown

in Tables 1 and 2 (Azakami 1996, Higashi et al. 1999, Matsudaira and Takao 1994, Ohashi et al.

1998, Ohashi et al. 2000, Takao et al. 1996).

xt yt zt θt φt ϕt, , , , ,( )

zs θs φs, ,( )

Fig. 6 Three-dimensional model of the coupling part between bogie and carbody
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Table 1 Dynamic properties of Maglev train used in the mechanical model

Terms Symbol Unit Value

Carbody mass mB kg 1.37×104 

Carbody 
inertia moment

Rolling IBφ kg⋅m2 1.977×104

Pitching IBθ kg⋅m2 9.351×105

Yawing IBψ kg⋅m2 15.85×105

Bogie mass mT kg 6.3×103

Bogie inertia moment
Rolling ITφ kg⋅m2 1.634×103

Pitching ITθ kg⋅m2 1.480×103

Yawing ITψ kg⋅m2 1.785×103

SCM mass mS kg 2.8×103

SCM inertia moment
Pitching ISθ kg⋅m2 5.103×103

Rolling ISψ kg⋅m2 1.16×104

Pneumatic spring
Y Ksy N/m 2.25×105

X Ksx N/m 2.25×105

Z Ksz N/m 1.96×105

Bogie vertical damper Dsz N⋅s/m 2.45×103

Anti-rolling spring Krol N/m 3.8×104

Bogie lateral stopper spring Kbsx N⋅s/m 3.107×105

Bogie longitudinal anchor spring Kbsy N/m 4.9×105

SCM vertical spring Kpz N/m 1.225×105

Spring between carbodies Kcz N/m 4.9×105

Table 2 Dimensions of Maglev train used in the mechanical model

Terms Symbol Unit Value

Carbody
Aerowedge-type L1, L2 m 10.8, 10.8

Intermediate L1, L2 m 10.8, 10.8
Doublecusp-type L1, L2 m 10.8, 10.8

Bogie

d1 m 2.025
d2 m 2.025
e1 m 1.95
e2 m 1.75
e3 m 1.75
bu m 2.035
h1 m 1.4
h2 m 0.48
h3 m 0.1
h4 m 1.3
h5 m 0.8
r m 0.35

hbs m 0.4
hyaw m 0.4

SCM
br m 2.98/2
a m 1.35

Gap between carbodies g m 0.6
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3.2 Equations of motion of ultra high-speed Maglev train

To derive the equations of motion of the multi-link Maglev train, the equations of kinematic

energy, potential energy, and damping energy of all cars are substituted for the Lagrange’s equations

of motion. In general, to derive the equations of motion of complex system, the Lagrange’s

equations of motion based on the analytical dynamics are used as 

 (1)

where {qv} is the DOF of Maglev train. Therefore, the equations of motion of cars are expressed by

the DOF of carbodies, bogies, SCM, and a bridge (Appendix A).

Maglev train is the multi-link train, which has the bogie at the connecting part between two

carbodies. Therefore, the behavior of carbodies is influenced by the behavior of bogies. As a result,

by using the equations of motion of all cars, the system matrices of Maglev train, which are mass

matrices, stiffness matrices, damping matrices, and load vectors, can be composed.

4. Guideway structure model

4.1 Three-dimensional model of guideway structures
 

The guideway structures of Maglev train are composed of the guideways and sub-structures as

shown in Fig. 7. To investigate accurately the dynamic behavior of the structural constituents of

guideway structures, the dynamic analysis system considering the three-dimensional Maglev train-

guideway interaction must be used. In this study, to model the guideway structures in three-

dimensional space, the decks, sidewalls, and springs constituting guideway structures are modeled

by the various proper finite elements to calculate the structural behavior of constituents accurately.

d

dt
----

∂ Ek

∂ q· v
---------⎝ ⎠

⎛ ⎞ ∂ Ek

∂ qv

---------–
∂ Ep

∂ qv

---------
∂ Ed

∂ q· v
---------+ + 0=

Fig. 7 Structural components of guideway structures
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4.2 Modeling of bridges

In this study, NFS finite element, which can be applied to the adaptive mesh refinement, is used

to model the deck of a bridge. NFS finite element has the six DOF per a node including the drilling

DOF and can be usefully used to model the folded plate structures like box-type girders, in which

the in-plane and out-of-plane deformations are coupled. In the analytical formulation of NFS finite

element, the behavior of the element is enhanced by adding the non-conforming mode and by using

the direct modification method to pass the patch test (Choi et al. 2001). In addition, it is assumed

that the in-planae and out-of-planae DOF in NFS finite element are independent. Therefore, the

stiffness matrix of NFS finite element is made by assembling the stiffness matrix of plate bending

element with stiffness matrix of membrane element. The stiffness matrix obtained through the

foregoing procedure is modified by the rigid link correction method to be accurately applied also in

the case of the warped geometry of an element. The mass matrix of NFS finite element is made by

the HRZ lumping scheme and the inertia moment for rotational DOF is neglected.

4.3 Modeling of sidewalls

Guideways are composed of sidewalls, rigid beams, and rubber bearings as shown in Fig. 9 and

these structural constituents are specifically modeled by various finite elements. Three-dimensional

beam elements are used to model sidewalls and rigid beams, and spring elements are used to model

rubber bearings. When Maglev train moves on guideways, the altitude of SCM passing on sidewalls

is variable according to the intensity of levitation force. In this study, it is assumed that SCM keeps

the altitude of the sectional centroid of sidewalls.

Fig. 8 Three-dimensional model of guideway structures
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4.4 Generation of the roughness profile of sidewalls

Guideways generally have the geometrical uncertainties in vertical and lateral direction, which

affect the dynamic response of guideway structures due to the passing train. These uncertainties

must be handled numerically following the general procedure of random sampling. To define the

roughness profile along the passing distance of SCM, the power spectral density (PSD) function

should be assumed. The roughness profile is considered through the stationary and ergodic process

in the space, i.e., the random functions in the passing distance x, and are characterized most

frequently by PSD function S(γ). The PSD function depends on the wave number (γ), which is

expressed as shown in Eq. (2).

 

 (2)

where λ is the wave length, T is the period of wave, V is the vehicle speed, and ω is the circular

frequency of wave.

The PSD function for the generation of roughness, which was proposed by RTRI in Japan through

the linear survey of Yamanashi test line, is shown in Fig. 10 (Matsuura et al. 1994). In this study, the

PSD function of Fig. 10 is used to generating the roughness profile of guideways. The roughness

profiles in vertical and lateral direction are generated with substituting the PSD function for Eq. (3).

 (3)

where x is the passing distance, N is the number of spectrum to be considered, and βi is the phase

angle distributed between 0 and 2π randomly. In this study, it is assumed that N is 1024 and λ is the

value between 1.8 m and 1000 m (Garg and Dukkipati 1984).

The roughness profiles in vertical and lateral direction generated through the foregoing process are

given in Fig. 11. Because the roughness profiles are different for each sidewall, the roughness

profiles are generated differently for each sidewall by use of the different seed number in random

sampling.

γ
1

λ
---

1

VT
-------

ω

2π
------= = =

z x( ) 4Sz γi( ) γΔ cos 2πγix βi–( )
i 1=

N

∑=

Fig. 9 Model of guideways
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Fig. 10 PSD function to generate the roughness in the sidewall

Fig. 11 Roughness profile in the sidewall
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5. Maglev train-guideway interaction

When Maglev train moves on guideways, the interaction force additional to static force is

produced due to the restoration of the levitation and guidance force between SCM and guideways.

The coupling terms between DOF of Maglev train and guideway structures in composing the

system matrices of Maglev train-guideway system are formed by considering the interactive force

between SCM and guideways. The interactive force means the reaction force, which is resulted

from the deformation of the equivalent spring to model the levitation and guidance force between

SCM and guideways. 

Eight pieces of SCM are installed in each bogie. The interaction force between the first SCM (j1)

of the j-th bogie and guideway is given as Eqs. (4) and (5).

(4)

(5)

where  is the sprung mass of the j1-SCM, and Rrz and Rrx are the relative deformations between

j1-SCM and guideway in vertical and lateral direction (Appendix A). Kss and Knn are the equivalent

spring constants to compensate for the restoring force of the levitation and guidance force in vertical

and lateral direction. The equivalent spring constants are the variables of the Maglev train speed

(V), i.e.,  and  as given in Eqs. (6) and (7) (Figs. 12 and 13) (Ohashi et al.

1998).

(6)

(7)

where EXP(·) is the exponential function.

In modeling the sidewalls with beam elements, the vertical and lateral interactive force as shown

in Eqs. (4) and (5) are transferred to the nodes of the finite element mesh by interpolation. Then,

the equations of motion of guideway structures are given as Eq. (8).

Fbz

j1 1

16
------Ms

j1
g KssRrz

j1
+=

Fbx

j1
KnnRrx

j1
=

Ms

j1

Kss fz V( )= Knn fx V( )=

fz V( ) 5.43 EXP× 6.18/V–( ) MN/m( )=

fx V( ) 2.75 EXP× 14.5/V–( ) MN/m( )=

Fig. 12 Vertical equivalent spring coefficient fz(V)
according to the speed of Maglev train

Fig. 13 Lateral equivalent spring coefficient fx(V)
according to the speed of Maglev train
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 (8)

where , and  are the mass matrix, damping matrix, stiffness matrix, and

vector of nodal DOF of guideway structures, respectively and  is the load vector transferred

to the nodes.

From the foregoing Eqs. (1), (4), (5), and (8), the equation of motion of the Maglev train-

guideway structure system is derived as

(9)

in the other form,

 (10)

where , and  are respectively the mass matrix, damping matrix, and

stiffness matrix of the Maglev-guideway structure system which vary with time as these matrices

are determined by the positions of SCM.  is the load vector and 

is the vector composed of nodal DOF of guideway structure and DOF of SCM, bogies, and

carbodies.  is composed of the mass matrices of guideway structures ([Mb]) and mass

matrices of Maglev train ([Mv]).  is composed of the damping matrices of guideway

Mb[ ] q··b t( ){ } Cb[ ] q· b t( ){ } Kb[ ] qb t( ){ }+ + Fb t( ){ }=

Kb[ ] Cb[ ] Kb[ ], , qb t( ){ }
Pb t( ){ }

Mtotal t( )[ ] q·· t( ){ } Ctotal t( )[ ] q· t( ){ } Ktotal t( )[ ] q t( ){ }+ + Ptotal t( ){ }=

Mb  0

0  Mv

q··b t( )

q··v t( )⎩ ⎭
⎨ ⎬
⎧ ⎫ Cb  0

0  Cv

q· b t( )

q· v t( )⎩ ⎭
⎨ ⎬
⎧ ⎫ Kb Kp t( )+   Kc t( )

Kc

T
t( )  Kv

qb t( )

qv t( )⎩ ⎭
⎨ ⎬
⎧ ⎫

+ +
Pb t( )

Pv t( )⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Mtotal t( )[ ] Ctotal t( )[ ], Ktotal t( )[ ]

Ptotal t( ){ } q t( ){ } <qb t( )  qv t( )>T
=

Mtotal t( )[ ]
Ctotal t( )[ ]

Fig. 14 Storage scheme of system matrices by skyline algorithm
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structures ([Cb]) and damping matrices of Maglev train ([Cv]).  is composed of the

stiffness matrices of guideway structures ([Kb]), stiffness matrices of Maglev train ([Kv]), stiffness

matrices for equivalent spring of the levitation and guidance force , and stiffness matrices of

coupling terms among the DOF of Maglev train and guideway structures ( ).  is

composed by considering the relative relation between the DOF of SCM and guideway structures.

The load vector  consists of the contributions to guideway structures ( ) and

Maglev train ( ). As a result, all the system matrices of Maglev train-guideway structure

system are composed.

To obtain the numerical solution for the equations of motion of Maglev train-guideway structure

system, Newmark’s β method with average acceleration (γ = 1/2 and β = 1/4), which is

unconditionally stable, is used. As shown in Eq. (10), there exist the coupling terms between the

DOF of Maglev train and guideway structures in the system matrices. Because the coupling terms

are differently composed as the position of SCM as time step, the storage scheme using skyline

algorithm as shown in Fig. 14 is used to store the system matrices efficiently in computer memory

units. Total running time of analysis is the interval from the arrival of a leading aerowedge-type car

until the leaving of a doublecusp-type leading car as shown in Fig. 15.

6. Numerical examples

The proposed dynamic analysis system of guideway structures considering ultra high-speed

Maglev train-guideway interaction is verified through the exemplificative numerical analyses. 

In the real guideway structures constructed in Japan, the sub-structure of a bridge is the simply

supported PC (pre-stressed concrete) box girder with 37.8m-span, which is continuously arranged to

form the total bridge section. The guideways, which are the sidewalls of the inverted-T shaped type

in Japan, are constructed on the bridge. The levitation, guidance, and propulsion coils are installed

Ktotal t( )[ ]

Kp t( )[ ]
Kc t( )[ ] Kc t( )[ ]

Ptotal t( ){ } Pb t( ){ }
Pv t( ){ }

Fig. 15 Total running time of analysis
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in these sidewalls. 

In this analysis, the three sidewalls with 12.6m-span are set up longitudinally on the bridge. The

structural properties of the bridge and sidewall for the analysis are given in Fig. 7, Tables 3, and 4

(Sogabe et al. 2003). MLX-01 of Japanese Maglev train has three-car formation and five-formation,

and MLX-01 with five-car formation is applied in this analysis.

Table 3  Material properties of the bridge for the analysis

Terms Unit Value

Concrete

Young’s modulus kN/m2 3×107

Poisson’s ratio - 0.15

Specific weight t/m3 2.5

Damping ratio % 2.4

Table 4 Structural properties of the sidewall for the analysis

Terms Unit Value

Young’s modulus kN/m2 3.3×107

Area m2 0.4461

Horizontal moment of inertia m4 0.0172

Veritical moment of inertia m4 0.0710

Additional dead load (coil etc.) kN/m 2.533

Fig. 16 Three-dimensional finite element model of guideway structures and data points of analysis results
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The vertical deflections at the mid-span of the sidewalls and bridge are observed as analysis

results (Fig. 16). The natural vibration frequencies and modes of guideway structures are shown in

Fig. 17, which are in close connection with the resonance phenomena of guideway structures when

Maglev train passes. The relation between the critical speed of Maglev train (Vcr) and natural

frequencies of guideway structures can be expressed as Eq. (11). The critical speed of Maglev

train means the speed of Maglev train, which makes resonance phenomena of guideway structures

occur.

 (11)

where ω is the natural frequency of the guideway structure and d is the effective beating interval,

which is 21.6 m in this analysis. The beating interval means the distance between the fore bogie and

rear bogie of a carbody. By the foregoing Eq. (11), the critical speed for each mode of the guideway

structure is given as Table 5. 

Vcr 3.6 ω× d  km/h( )×=

Fig. 17 Natural vibration modes and frequencies of guideway structures

Table 5 Critical Maglev train speed for each mode

Mode No. Critical speed (km/h)

1 255

2 316

3 764

4 779

5 863
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Maglev train moves by wheels at the speed under 160 km/h and it moves by the aid of the

magnetic force at the speed over 160 km/h. Therefore, the objective speed of Maglev train in this

analysis is chosen as 160, 300, and 550 km/h. Analysis results for each speed of Maglev train are

compared with those of moving load and static analysis as shown in Figs. 18, 19, 20, and 21. In the

analysis case of 160 km/h, it is known that the vibration of guideway structures is sensitively

influenced by the roughness of sidewalls and vibration of Maglev train as shown in Fig. 18. In the

analysis case of 300 km/h, because the speed is close to the critical speed of 316 km/h for Mode 2,

Fig. 18 Time histories of vertical deflections (V = 160 km/h)
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the resonance phenomena of guideway structures come into existence as shown in Fig. 19. In the

analysis case of 550 km/h, which is the maximum speed of Maglev train, the difference of analysis

results with moving load analysis is observed as shown in Figs. 20 and 21, which is the same

tendency as shown in the analysis results of other speeds.

Judging from the comparison of all analysis results, it is known that the analysis results in this

study have the obvious difference with those of moving load and static analysis. The analysis results

Fig. 19 Time histories of vertical deflections (V = 300 km/h)



 Dynamic analysis of guideway structures by considering ultra high-speed 375

at the mid-span of the bridge are not so much different from those of moving load analysis.

However, the analysis results at the mid-span of the inner and outer sidewalls are very different

from those of moving load analysis. Therefore, by using the dynamic analysis system proposed in

this study, it is possible to analyze accurately the sidewalls, which are the important structural

constituents in guideway structures.

Fig. 20 Time histories of vertical deflections (V = 550 km/h)
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7. Conclusions

In this study, the new three-dimensional finite element analysis model for the dynamic analysis of

guideway structures considering ultra high-speed Maglev train-guideway interaction, was proposed.

As a numerical example, the simply supported PC box-girder bridge was analyzed by the present

study. Judging from the analysis results, the conclusions as following can be obtained.

Fig. 21 Time histories of vertical deflections (V = 550 km/h) : 2 trains
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(1) Although it takes much time to make the input data of three-dimensional guideway structures

to use the dynamic analysis system proposed in this study, it is possible to analyze the dynamic

behavior of the specific structural constituents of guideway structures. In addition, it is possible to

model efficiently the connecting part of the sidewalls and sub-structures by using the variable-node

NFS finite element.

(2) In the existing three-dimensional train-bridge interaction analysis methods, the position of a

train in each time step is calculated and the equations of motion of a bridge are solved after

calculating the interactive force between the train and bridge from the assumed deflections of a

bridge. The above-mentioned computations are repeated to obtain the final solution of equations of

motion of a bridge, until the difference between the assumed deflections and the solved deflections

of a bridge is smaller than a certain tolerance. On the other hand, in this study, the equations of

motion of Maglev train-guideway structure system are directly composed and solved in each time

step. Therefore, it is possible to obtain efficiently the solution of the deflections of guideway

structures without the repetition of computations.

(3) Judging from the analysis results of the simply supported PC box-girder bridge, there is the

obvious difference between the analysis results of the present study and moving load analysis. As a

result, for the accurate and efficient analysis of the dynamic behavior of guideway structures, the

three-dimensional finite element analysis system proposed in this study must be used.

(4) In the prospective construction of guideway structures, by applying the three-dimensional

finite element analysis system proposed in this study, it is possible to grasp the characteristics of the

dynamic behavior, to evaluate the dynamic serviceability and safety, and to estimate fatigue life of

guideway structures.
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Appendix A. Equations of motion of Maglev train model

A.1 Equations of motion of the aerowedge-type leading car with twenty-four DOF

The equations of motion for the aerowedge-type leading car can be derived by substituting the equations,
which define the kinetic energy (Ek), potential energy (Ep), and damping energy (Ed) of the aerowedge-type
leading car, for Lagrange’s equations of Eq. (1). To apply the Lagrange’s equations of motion, Ek, Ep, and Ed

for the Maglev train model with 24 DOF as shown in Figs. 5 and 6 are defined as follow;

(1) Kinetic energy (Ek)
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 (A.2)

(3) Damping energy (Ed)

 (A.3)

For the definition of Ep and Ed, the relative deformations of the springs and dampers of suspensions should
be defined. For the Maglev train model with 24 DOF as shown in Figs. 5 and 6, the relative deformations are
as follow.

(4)  (i = 1~8)

For i = 1, 2
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where l = integer[(i + 1)/2] and m = integer[(i + 2)/2].
For i = 3~6
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For i = 7, 8
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 KbsyiRKbsyi

2

i 1=

8

∑ KyawiRKyawi

2

i 1=

4

∑ KgxiRgxi

2

i 1=

2

∑ KpziRpzi

2

i 1=

8

∑+ + + +

 KnniRrxi

2

i 1=

16

∑ KsniRrxi

2

i 1=

16

∑ KnsiRrzi

2

i 1=

16

∑ KssiRrzi

2

i 1=

16

∑+ + + +

Ed

1

2
--- DsziD

·
Dszi

2

i 1=

8

∑=

RKsxi RKsyi RKszi RKbsyi RDszi, , , ,

RKsxi 1–( )
i

xc1 xtl– h1φc h2φ tl+ +( ) 1–( )
m 1+

Ll d1+( )ϕc1+=

RKsyi 1–( )
l

yc1 ytl– h1θc1 h2θtl––( ) 1–( )
m 1+

e2 ϕc1 ϕtl–( )+=

RKszi zc1 ztl– 1–( )
l 1+

Ll d1+( )θc1 1–( )
i 1+

e1 φc1 ϕtl–( )+ +=

RKbsyi 1–( )
l

yc1 ytl– h1 hbs–( )θc1– h2 hbs–( )θtl–( ) 1–( )
m 1+

e3 ϕc1 ϕtl–( )+=

RDszi RKszi=

RKsxi 1–( )
i

xc1 xtl– h1φc1 h2φ tl+ +( ) 1–( )
m 1+

Ll d1–( )ϕc1+=

RKsyi 1–( )
l

yc1 ytl– h1θc1 h2θtl––( ) 1–( )
m 1+

e2 ϕc1 ϕtl–( )+=

RKszi zc1 ztl– 1–( )
l 1+

Ll d1–( )θc1 1–( )
i 1+

e1 φc1 ϕtl–( )+ +=

RKbsyi 1–( )
l

yc1 ytl– h1 hbs–( )θc1– h2 hbs–( )θtl–( ) 1–( )
m 1+

e3 ϕc1 ϕtl–( )+=

RDszi RKszi=

RKsxi 1–( )
i

xc2 xtl– h1φc2 h2φ tl+ +( ) 1–( )
m 1+

Ll 1– d1–( )ϕc2+=

RKsyi 1–( )
l 1+

yc2 ytl– h1θc2 h2θtl––( ) 1–( )
m 1+

e2 ϕc2 ϕtl–( )+=

RKszi zc ztl– 1–( )
l 1+

Ll 1– d1–( )θc2 1–( )
i 1+

e1 φc2 ϕtl–( )+ +=

RKbsyi 1–( )
l 1+

yc2 ytl– h1 hbs–( )θc2– h2 hbs–( )θtl–( ) 1–( )
m 1+

e3 ϕc2 ϕtl–( )+=

RDszi RKszi=



380 Myung-Kwan Song and Yozo Fujino

(5)  (i = 1~4)

 (A.19)

 (A.20)

For i = 2, 3 

 (A.21)

 (A.22)

where l = integer[(i + 1)/2] and m = integer[(i + 2)/2].
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where q = integer[(i + 7)/8] and v = integer[(i + 1)/2].
For i = 9~16, v = integer[(i + 1)/2] − 4, and ub and wb are the deflection of a bridge in lateral and vertical

direction.
By the same way, the equations of motion for the doublecusp-type leading and intermediate cars can be

derived by substituting the equations, which define the kinetic energy (Ek), potential energy (Ep), and damping
energy (Ed) of the doublecusp-type leading and intermediate cars, for Lagrange’s equations.
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