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Shear lag prediction in symmetrical laminated composite 
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Abstract. Presence of high degree of orthotropy enhances shear lag phenomenon in laminated
composite box-beams and it persists till failure. In this paper three key parameters governing shear lag
behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness
of the identified key parameters is proved with the help of finite element method (FEM) based studies. In
addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated
composite box beams a feed forward back propagation neural network (BPNN) model is developed. The
network is trained and tested using the data base generated by extensive FEM studies carried out for
various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been
established which can effectively learn the pattern. Computational efficiency of the developed ANN makes
it suitable for use in optimum design of laminated composite box-beams. 

Keywords: laminated composites; shear lag; effective width ratio; finite element method; artificial
neural networks.

1. Introduction

In the elementary theory of bending, the normal stress in the longitudinal direction is assumed to

be proportional to the distance from the neutral axis and therefore uniform across the flange width.

However, for a beam with wide flanges such as box beams, this assumption becomes invalid: the

normal stress distribution is not uniform in the wide flange. The stress is maximum in general at the

web-flange junction, decreasing towards the middle of the flange as shown in Fig. 1. This

phenomenon is caused by the lag of shear strain in the flange plate between the web plates and is

referred to as the shear lag phenomenon. Neglecting this effect amounts to an overestimate of the

strength of the beam (Nakai and Yoo 1988). These effects are far more pronounced for highly

anisotropic composites than for isotropic materials.

The shear lag problem has long been recognized in engineering fields. The exact solution of shear

lag problem is quite complicated and it is difficult to get close form solutions particularly in case of

orthotropic material. 

The concept of effective width, be, was first proposed by Von Karman (1924) in order to measure
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the effect of shear lag in thin-walled structures and has been widely adopted. Several methods are

available in the literature for the solution of shear lag problem in box beams. These methods

include the energy method (Reissner 1946), the folded-plate method (Kristek 1979), the bar-

simulation method (Evans and Taherian 1980), the harmonic analysis method (Kristek et al. 1981),

the parallel processing method (Fafitis and Rong 1995), the single Fourier series method (Tahan

et al. 1997) and the finite segment method (Luo et al. 2002). Mostly these approaches deal the

problem of shear lag with isotropic material. 

There are a few studies on shear lag effect in beams made of orthotropic material. Pavlovic et al.

(1998a, 1998b) studied shear lag effect in rectangular orthotropic plates by deriving closed-form

solutions using single Fourier series under in-plane boundary shear. Bending stiffness of flange

(being a thin plate) of the girder was neglected and as such the problem is treated as the plane-

stress problem. Lopez-Anido and GangaRao (1996) developed a warping solution for shear lag in

prismatic thin-walled orthotropic composite beams without considering the ply stress of panels of

composite box beam. Wu et al. (2002) presented a method for analyzing the shear lag and shear

deformation effects on symmetrical laminated thin-walled composite box beams under bending. The

method is based on the principle of minimum potential energy. Wu et al. (2004) proposed the initial

value solutions of static equilibrium differential equations of single-cell thin-walled composite

laminated box beams under bending loads. Shear lag effect induced non uniform distribution

function of axial displacement along the flange width is expressed by a cubic parabola. Tenchev

(1992) conducted two-dimensional finite element analysis using 8-node isoparametric plane stress

elements to deal with the shear lag problem. However, orthotropy of material is accounted by

considering high E/G ratio. Shear lag effect on glass fiber reinforced plastic (GFRP) pultruded box

and wide flange sections was studied by Nagaraj and GangaRao (1997). Pultruded beams,

orthotropic in nature, are approximated to be isotropic in arriving at beam rigidity. Upadhyay and

Kalyanaraman (2003) presented a semi-empirical method to calculate shear lag in fiber reinforced

plastic (FRP) box girders. Expressions are derived for shear-lag parameter using three bar analogy

approach.

All these researchers either used analytical approach or FEM to investigate shear lag in box-

beams under bending. Analytical methods are based on many simplified assumptions and involve

Fig. 1 Stress distribution affected by shear lag
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solution of number of equations whereas FEM is computationally expensive (Seible and Scordelid

1983, Upadhyay and Kalyanaraman 2003). Design of laminated composites is more involved due to

large number of design variables, constraints and relative inexperience. Hence necessitates the use

of optimization procedure in the design. Optimum design methods require many repeated analysis.

The finite element method is prohibitively time consuming and impractical at this stage of design.

In view of this a computationally efficient procedure is needed. Recently, ANN has emerged as an

efficient tool for such applications. 

ANN is a model free estimator and it can be trained provided sufficient database is available.

Researchers have started using ANN to study the various problems related with the civil

engineering, especially when it is difficult to find an accurate mathematical based solution. Zhang

and Friedrich (2003) reviewed the application of ANN to polymer composites and concluded that

use of ANN is still in basic stage as far as polymer composites are concerned and recommended

the promotion of ANN in this field of research. Mishra and Upadhyay (2004) used ANN for

finding out percentage area of steel for rectangular columns subjected to combined axial

compression and bending. They used a feed-forward back propagation artificial neural network. It

is concluded that developed ANN model have immense potential to predict reasonably accurate

values of percentage of steel for columns subjected to combined axial compression and bending. El

Kadi (2006) reported the work done in the mechanical modeling of fiber-reinforced composite

materials using ANN during the last decade. Use of ANN in medical applications, image and

speech recognition, classification and control of dynamic systems is already established but only

recently researchers started using this tool in modeling the mechanical behaviour of fiber-reinforced

composite materials. Koker et al. (2007) investigated the effect of various training algorithms on

learning performance of the neural networks on the prediction of bending strength and hardness

behaviour of particulate reinforced metal matrix composites. The Levenberg-Marquardt training

algorithm was found the fastest converging one and working with high accuracy in prediction.

Turias et al. (2005) applied ANN to estimate the effective thermal conductivity of a composite in

normal direction to the fiber axes. It was shown on the basis of the computing time required that

ANN is computationally more efficient than FEM and well-suited for estimation of transverse

conductivities. 

Lot of work has been done by changing boundary conditions, load type etc. in box-beams made

of isotropic material. On the other hand less work is done for beams made of laminated composites

where this phenomenon gets enhanced. So, in the present work more emphasis is given on material

aspects i.e., on laminated composite beams. ANN also requires large database for training purpose

and keeping this fact in mind only one type of boundary condition and load type are considered and

large database is developed, in place of dealing with more cases having small databases.

The main objective of the present work is to train an ANN which can serve as a computationally

efficient analysis tool. Such tools will be quite useful in the optimum designs of laminated

composites. To achieve this objective a large database is generated by FEM studies. Subsequently,

key parameters are identified to study the shear lag effect in laminated composite box beam and

these are used as input parameters for the ANN. 

2. Shear lag parameters identification and definitions

An approximate method of dealing with shear lag is to use an effective width concept, in which
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the actual width b of a flange is replaced by a reduced width be given by

be = b × (Nominal bending stress/Maximum bending stress) (1)

Nakai and Yoo (1988) reported that effective width of box beam made of isotropic material is

affected by two parameters ω and κ in addition to L/b (ratio of span to width of box beam). ω and

κ represent orthotropy parameter of flange plate and cross-sectional parameter respectively.

On the basis of numerical studies three parameters are identified which govern the shear lag effect

in symmetrical laminated composite box beams. These are L/b, ω1, and κ1. The effect of parameter

L/b on shear lag in case of wide flanged box beam is an established fact. As L/b increases, shear lag

effect decreases. The parameter ω1 is the orthotropy parameter of the top flange and web and it

depends on extensional stiffnesses of these elements. The influence of ω1 indicates that the effective

width decreases with increase in value of ω1. The parameter κ1 is a cross-sectional shape parameter

and the effective width decreases for the larger values of κ1. Based on work carried out by

Upadhyay (1998) on FRP box beam, Rajesh (2005) reported the use of these parameters to study

the negative shear lag in laminated composite cantilever box beam. However, the effect of web fiber

orientations is not incorporated in parameter ω1 which may have significant influence on the

phenomenon. In the present work parameter ω1 is modified to incorporate the effect of web fiber

orientations to study shear lag in symmetrical box beams made up of laminated composites. The

modified parameter ω1 and parameter κ1 are given

 (2)

 (3)

Where,

  (4)

(EA)TF, (EA)BF and (EA)W are smeared axial stiffness of top flange, bottom flange and web

respectively and are given by

(EA)TF = (ET)TF × b (5)

(EA)BF = (ET)BF × b (6)

(EA)W = (ET)W × (h − tTF − tBF) × 2 (7)

Where,

(8)

(9)

 (10)

(EI)G = the flexural rigidity of the beam section = [(EI)TF + (EI)BF + (EI)W]  (11)

(EI)TF, (EI)BF and (EI)W are flexural stiffness of top flange, bottom flange and web respectively

and are given by
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 (12)

(13)

(14)

‘D’ represents depth of beam, t represents thickness of element, nC represents the depth of neutral

axis from top of beam. Suffix TF, BF, and W correspond to top flange, bottom flange and web

respectively. Equivalent axial and flexural stiffness parameters for FRP box beams are adopted as

defined by Upadhyay and Kalyanaraman (2003). Aij, Bij and Dij terms represent extensional,

coupling and bending stiffness of the laminate, and the definitions of these terms are readily

available in text books.

3. Validation of approach

Upadhyay and Kalyanaraman (2003) studied the shear lag phenomenon in a simply supported

graphite epoxy composite box beam (Fig. 2(a)) subjected to central point load using MSC-

NASTRAN. They reported effective width ratios for two beams having fiber orientations of 0o and
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Fig. 2 Shear-lag in composite box beam: (a) beam details, (b) effect of orthotropy on shear-lag
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90o respectively, in all the elements. To validate the approach, identical box beams are analyzed

using ANSYS 7.1. The properties of graphite epoxy material are as per Table 1. The comparison of

results shown in Fig. 2(b) validates the modeling aspects used in this paper.

Tripathy et al. (1994) carried out bending analysis for the study of deflections for box beams of

isotropic and laminated composites subjected to different kinds of loading conditions. A finite

element model had been developed based on the strain energy principle, and the results were

compared with commercial software “COSMOS/M”. To validate the approach identical cantilever

glass-epoxy composite box beams are analyzed using ANSYS 7.1. The material properties and

beam dimensions are longitudinal elastic modulus, E11 = 39.3 GPa, transverse elastic modulus, E22 =

8.30 GPa, shear modulus, G12 = 4.14 GPa, Poisson’s ratio, ν12 = 0.26, ν21 = 0.0549, They

considered box beams of span 0.4 m, width 0.2 m and depth 0.05 m. Top and bottom flange

thickness is 3.8 mm each and web thickness is 3.3 mm. Table 2 shows comparison of deflection

with those reported by Tripathy et al. (1994) and the good match validates the modeling aspects of

present work.

4. Numerical studies

4.1 Finite element models

Symmetric graphite epoxy box beams are considered with b/D = 2 to 6, L/b = 2 to 7.5, tF/tW = 0.6

to 1.5, n = 6. All elements of the box beam are made of balanced symmetric laminates. Various

specially orthotropic symmetric configurations are used in every panel of the beams in order to

eliminate the couplings like bending-stretching, bending-twisting etc. The material properties for

graphite epoxy material are taken as per Table 1. Box beam model is discretized with 8-node

isoparametric laminated shell element (SHELL 99) in ANSYS 7.1 as shown in Fig. 3. In total 243

studies are carried out.

Table 1 Properties of graphite epoxy material

Particulars Values

Longitudinal elastic modulus, E11 (GPa) 145

Transverse elastic modulus, E22 (GPa) 16.5

Shear modulus, G12 (GPa) 4.48

Poisson’s ratio, ν12 0.314

Poisson’s ratio, ν21 0.037

Table 2 Comparison of maximum deflections (mm)

Box beam and load type
Tripathy et al. (1994) Present approach

 (using ANSYS)FEM model COSMOS/M

Composite tip load
Single cell
Twin cell

0.62743
0.35905

0.67208
0.37567

0.64824
0.33218
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4.2 Simply supported composite box beam under point load at mid span

A simply supported box beam subjected to an identical pair of concentrated loads at the mid span

is considered to get stress distribution in top flange. Using these stresses the force is calculated in

the top flange of the box beam. This force is used to evaluate the effective width ratio of top flange

in the analysis of this paper. 

4.3 Evaluation of ω1, and κ1

ω1, and κ1 values are calculated using expressions (2) and (3) for each case. Few sets of numerical

studies are reported in Table 3. Using developed computer program it is possible to keep shear lag

parameters ω1, and κ1 almost same for given value of L/b by varying other parameters of box beam

such as b/D, b/tF, tF/tW. 

 Fig. 3 Discretized model of laminated composite box beam

Table 3 Comparison of (be/b) for given values of L/b, ω1, and κ1

b/D b/tF tF/tw
Fiber 

orientation
In flanges

Fiber 
orientation

In web
L/b ω1 κ1 be/b

% Error in 
corresponding 

be/b

2.933 122.222 1 [0/0/0]s [0/0/0]s 5 21.823 0.3779 0.44
0

3.611 147.727 0.804 [0/0/0]s [0/0/0]s 5 21.823 0.3771 0.44

2.933 122.222 1 [0/0/0]s [90/90/90]s 5 16.987 0.4826 0.59
1.69

3.611 147.727 0.804 [0/0/0]s [90/90/90]s 5 16.987 0.4828 0.58

2.933 122.222 1 [0/0/0]s [0/90/90]s 5 18.599 0.4415 0.52
5.77

3.611 147.727 0.804 [0/0/0]s [0/90/90]s 5 18.599 0.4416 0.49

2.933 122.222 1 [0/0/0]s [0/0/0]s 5 21.823 0.3779 0.45
2.17

4 111.111 0.703 [0/0/0]s [0/0/0]s 5 21.823 0.3771 0.46
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From the sets of numerical studies as given in Table 3 it has been observed that for given L/b, ω1,

and κ1 the value of effective width ratio (be/b) is almost constant. Maximum percentage error is 5.77.

These studies show that the parameters proposed in present work can be used as key parameters for

estimating shear lag effect in symmetrical laminated composite box beam with reasonable accuracy.

Also, these parameters form the basis to develop ANN model for further studies. 

5. ANN based shear lag prediction

ANN has emerged as a powerful tool for function approximation used in the various engineering

applications. Neural network architecture consists of a number of interconnected units or layers: the

layer where the input patterns are applied is called the input layer, the layer where the output is

obtained is the output layer, and the layers between the input and output layers are the hidden layers

(Fig. 4). 

A supervised training mechanism called Feed forward back-propagation training algorithm

(Kartalopoulos 2000) is commonly used in most of the engineering applications. In the back-

propagation training mechanism, the input data are presented at the input layer, the information is

processed in the forward direction, and the output is calculated at the output layer. The target values

are known at the output layer, so that the error can be estimated. The total error at the output layer

Table 3 Continued

b/D b/tF tF/tw
Fiber 

orientation
In flanges

Fiber 
orientation

In web
L/b ω1 κ1 be/b

% Error in 
corresponding 

be/b

2.933 122.222 1 [0/0/0]s [0/0/0]s 5 21.823 0.3779 0.45
0

2 222.222 1.513 [0/0/0]s [0/0/0]s 5 21.823 0.3775 0.45

2 222.222 1.513 [0/0/0]s [90/90/90]s 5 16.987 0.4824 0.57
3.39

2.933 122.222 1 [0/0/0]s [90/90/90]s 5 16.987 0.4826 0.59

2.933 122.222 1 [0/45/-45]s [0/0/0]s 5 6.955 0.2817 0.56
3.45

2 222.222 1.525 [0/45/-45]s [0/0/0]s 5 6.955 0.2820 0.58

6 166.667 0.652 [0/0/0]s [0/0/0]s 3.33 21.823 0.4049 0.32
0

4 166.667 1 [0/0/0]s [0/0/0]s 3.33 21.823 0.4042 0.32

4 166.667 1 [0/45/-45]s [0/0/0]s 3.33 6.956 0.3187 0.47
0

6 166.667 0.643 [0/45/-45]s [0/0/0]s 3.33 6.956 0.3183 0.47

3 166.667 1 [0/0/0]s [0/0/0]s 7.5 21.823 0.3833 0.55
1.78

2.933 122.222 1 [0/0/0]s [0/0/0]s 7.5 21.823 0.3779 0.56

3 166.667 1 [0/0/0]s [0/0/0]s 7 21.823 0.3833 0.53
1.85

2.933 122.222 1 [0/0/0]s [0/0/0]s 7 21.823 0.3779 0.54

3 166.667 1 [0/0/0]s [0/0/0]s 6.5 21.823 0.3833 0.51
1.92

2.933 122.222 1 [0/0/0]s [0/0/0]s 6.5 21.823 0.3779 0.52

3 166.667 1 [0/0/0]s [0/0/0]s 6 21.823 0.3833 0.49
0

2.933 122.222 1 [0/0/0]s [0/0/0]s 6 21.823 0.3779 0.49
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is distributed back and the connection weights are adjusted. This process of feed-forward

mechanism and back propagation of errors and weight adjustment is repeated iteratively until

convergence in terms of an acceptable level of error is achieved. This whole process is called the

training of the ANN. The trained ANN is then validated on the testing data set, which it has not

seen before. Once an ANN has been trained and tested, it can be used for prediction or modeling

the physical system for which it is has been designed. 

5.1 Development and training of the network

The L/b, ω1, and κ1 are taken as input parameters and effective width ratio be/b is taken as output

parameter for the preparation of network. All the available 243 input numerical data sets are

normalized between 0 and 1. Out of these, 198 representative data sets have been chosen for the

purpose of training the network and remaining 45 data sets have been kept for testing. Table 4

shows the range of maximum and minimum values of the training and testing data that is used in

this study. In the training process of the network, these normalized 198 data sets of input parameters

have been fed to the input nodes of the network and the corresponding values of be/b have been fed

to the network as desired outputs. After sufficient number of training iterations, the network attains

an ability to promptly provide the effective width ratio (be/b) information for a given set of input

parameters.

Fig. 4 Structure of a Feed-Forward ANN 

Table 4 Range of training and testing parameters

Parameters
Training data Testing data

Maximum Minimum Maximum Minimum

L/b 7.50 3.33 7.50 3.33

ω1 21.82 1.99 21.82 1.99

κ1 0.4921 0.1620 0.4824 0.2016
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5.2 Architecture of the network

As stated earlier, BPNN training approach was used in this investigation. The network consists of

3 input nodes (corresponding to L/b, ω1, and κ1) and one output node (corresponding to be/b).

Connection weights were adjusted during the training process through minimization of the mean

square error (MSE) using the gradient descent based algorithm in Neural Network toolbox of

MATLAB 7.0 for error back propagation. As Levenberg-Marquardt algorithm appears to be the

fastest method for training moderate-sized feed forward neural networks (up to several hundred

weights) it is used in the present study. The Levenberg-Marquardt method is based on approaching

second-order training speeds without having the computation of Hessian matrix, in other words,

second derivatives (Hagan and Menhaj 1994, Hagan et al. 1996). The advantage of this training

method is its fast convergence about minimum and giving more accurate results. The transfer

function determines the relationship between input and outputs of a node and a network. Tansig

transfer function was used in the hidden layer and Purelin transfer function was used in the output

layer. The number of hidden layers and the number of nodes in the hidden layers were decided by

trial and error based on comparative performance of large number of network architectures as

shown in Table 5. Studies carried out to select appropriate architecture for the ANN show that

performance of 3-3-9-1 is better than other architectures. Hence, in present work architecture 3-3-9-

1 is finally selected. 

5.3 Prediction of shear lag by BPNN

The network is trained for sufficiently large number of iterations till the training error and testing

error reach minimum and the network is stable. In the present case, training of 3-3-9-1 BPNN has

been continued till 5,000 iterations and the training error reaches its minimum value of 7.48e-4.

When the performance of the network is checked for the testing data, MSE comes out to be

5.42e-3.

Fig. 5 shows the ANN predicted and target values of effective width ratio, when the network has

been assigned to recall the 198 samples used for training the network and the network has predicted

Table 5 Training and testing error for the various BPNN architectures

S. No
No. of
layers

No. of Nodes MSE 
up to 5,000 iterations 

Input
layer

Hidden layer Output
layer1st 2nd Training Testing

1 4 3 2 2 1 8.20e-3 2.78e-2

2 4 3 3 2 1 7.92e-3 1.97e-2

3 4 3 3 3 1 6.85e-3 1.69e-2

4 4 3 3 5 1 6.10e-3 1.01e-2

5 4 3 3 7 1 4.41e-3 8.65e-3

6 4 3 3 8 1 2.19e-3 7.23e-3

7 4 3 3 9 1 7.48e-4 5.42e-3

8 4 3 3 10 1 7.11e-4 5.73e-3

9 4 3 3 11 1 6.32e-4 7.45e-3
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them very well. Fig. 6 shows the ANN predicted and target values of effective width ratio, when the

network has been assigned to predict for 45 number of testing data set and even in this case the

prediction of the network is very close to those obtained by a rigorous FEM analysis. It has been

observed from the results that the network can predict the shear lag (in terms of be/b) almost

accurately with error less than 7%. On the other hand, considering the computing time required by

the proposed analysis takes around 3s and the corresponding FEM analysis takes 147s. From this it

is evident that this procedure based on ANN is computationally efficient. 

6. Conclusions

Shear lag is very important phenomenon in case of wide flanged box beams. Especially when

material is orthotropic (FRP), this phenomenon enhances and exists till failure of member. Thus it

should be accounted in design. In this paper a simple and quick approach for estimating shear lag

effect in symmetrical laminated composite box beam is presented. Three unique parameters (L/b,

 Fig. 5 Results of ANN predictions with training data 

 Fig. 6 Results of ANN predictions with testing data
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ω1, and κ1) governing the shear lag behaviour of laminated composite box beams are identified and

their uniqueness is validated with numerical studies. A numbers of FEM studies are carried out to

generate training and testing data sets for the development of an ANN model (3-3-9-1) for

prediction of shear lag in laminated composite box beam. Average and maximum error on testing

data are 1.7% and 6.28% respectively. It will be very useful for the designers as this provide a

handy way to predict shear lag in simply supported laminated composite box beam subjected to

mid-span point load. This neural network will be quite useful in predicting shear lag behaviour

during the optimum design of FRP box beams.
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Notations

Aij : extensional stiffness coefficients of the laminate
b : width of flange of box beam
be : effective width of top flange
Bij : coupling stiffness coefficients of the laminate
D : depth of beam
Dij : bending stiffness coefficients of the laminate
E : Young’s elastic modulus
E11, E22 : longitudinal and transverse elastic modulus
(EA)G : the smeared axial rigidity of the beam section
(EA)TF, (EA)BF and (EA)w : the smeared axial stiffness of top flange, bottom flange and web respectively
(EI)TF, (EI)BF and (EI)w : the flexural stiffness of top flange, bottom flange and web respectively
(ET)TF, (ET)BF, (ET)w : smeared extensional stiffness of top flange, bottom flange, and web per unit width
G : shear modulus
G12 : longitudinal shear modulus
h : total thickness of laminate
hk : z-coordinate of ply ‘k’ from mid plane the flexural rigidity of the beam section
L : span of beam
n : number of plies in the laminate
nc : the depth of neutral axis from top of beam section
tF : thickness of flange
tTF, tBF : thicknesses of top and bottom flanges respectively
tw : thickness of web
κ, κ1 : cross-sectional parameters
ν12, ν21 : major and minor Poisson’s ratio
ω, w1 : orthotropical parameters




