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Abstract. In this paper, the behavior of two collinear Mode-I cracks in piezoelectric/piezomagnetic
materials subjected to a uniform tension loading was investigated by the generalized Almansi’s theorem.
Through the Fourier transform, the problem can be solved with the help of two pairs of triple integral
equations, in which the unknown variables were the jumps of displacements across the crack surfaces. To
solve the triple integral equations, the jumps of displacements across the crack surfaces were directly
expanded as a series of Jacobi polynomials to obtain the relations among the electric displacement
intensity factors, the magnetic flux intensity factors and the stress intensity factors at the crack tips. The
interaction of two collinear cracks was also discussed in the present paper.
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1. Introduction

The piezoelectric/piezomagnetic materials possesses piezoelectric, piezomagnetic and magneto-
electric effects, thereby making the composite sensitive to elastic, electric and magnetic fields.
Consequently, they are extensively used as electric packaging, sensors and actuators, e.g., magnetic
field probes, acoustic/ultrasonic devices, hydrophones, and transducers with the responsibility of
electro-magneto-mechanical energy conversion (Wu and Huang 2000). When subjected to
mechanical, magnetic and electrical loads in service, magneto-clectro-elastic composites can fail
prematurely due to some defects, e.g., cracks, holes, etc. arising during their manufacturing
processes. Therefore, it is of great importance to study the magneto-electro-elastic interaction and
fracture behaviors of magneto-electro-elastic materials (Wu and Huang 2000, Sih and Song 2003,
Song and Sih 2003, Wang and Mai 2003, Gao et al. 2003c,d, Spyropoulos et al. 2003).

For the fracture problem of piezoelectric/piezomagnetic materials, Liu et al. (2001) studied the
generalized two-dimensional problem of an infinite magnetoelectroelastic plane with an elliptical
hole using the Green’s functions; Chung and Ting (1995) obtained the two-dimensional Green’s
functions for a magnetoelectroelastic anisotropic medium with an elliptical cavity or rigid
inclusion; Pan (2002) derived the three-dimensional Green’s functions in anisotropic
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magnetoelectroelastic bimaterials; Gao et al. (2003a,b) and Wang and Mai (2004) also studied the
fracture problem of piezoelectric/piezomagnetic composites by the Stroh formalism; Chen et al.
(2004) obtained the exact three-dimensional expressions for a full-space magneto-electro-thermo-
elastic field with a penny-shaped crack subject to a uniform load on the crack surfaces using six
harmonic functions; Wang and Shen (2002) obtained the general solution of three-dimensional
problems in magnetoelectroelastic media using five potential functions. The development of
piezoelectric/piezomagnetic composites has its roots in the early work of Van Suchtelen (1972)who
proposed the combination of piezoelectric/piezomagnetic phases may exhibit a new material
property—the magnetoelectric coupling effect. Since then, there have not been many researchers
studying magnetoelectric coupling effect in BaTiO;-CoFe,O4 composites, and most research results
published were obtained in recent years (Wu and Huang 2000, Sih and Song 2003, Song and Sih
2003, Wang and Mai 2003, Gao et al. 2003a,b,c,d, Spyropoulos et al. 2003, Liu et al. 2001,
Chung and Ting 1995, Pan 2002, Wang and Mai 2004, Chen et al. 2004, Wang and Shen 2002,
Harshe ef al. 1993, Avellaneda and Harshe 1994, Nan 1994, Benveniste 1995, Huang and Kuo
1997, Li 2000). Recently, the static fracture behavior of two parallel symmetry interface cracks
and two collinear cracks in piezoelectric/piezomagnetic materials had been investigated in (Zhou
and Wang 2004, Zhou et al. 2004, 2005b,c) by the Schmidt method (Morse and Feshbach 1958).
However, they just concentrated on the anti-plane shear fracture problems in piezoelectric/
piezomagnetic materials.

In this paper, the similar problem that was treated by Gao et al. (2003b) was reworked using a
somewhat different approach, named the Schmidt method (Morse and Feshbach 1958), i.e., the
behavior of two collinear Mode-I cracks in piezoelectric/piezomagnetic materials subjected to a
uniform tension loading was investigated by the generalized Almansi’s theorem. The Fourier
transform was used to reduce the mixed boundary value problem was reduced to two pairs of triple
integral equations, in which the unknown variables are the jumps of displacements across the crack
surfaces. To solve the triple integral equations, the jumps of displacements across the crack surface
were directly expanded as a series of Jacobi polynomials to obtain the solution of the present paper.
The solving process of the present paper was quite different from that adopted in the previous
works (Wu and Huang 2000, Sih and Song 2003, Song and Sih 2003, Wang and Mai 2003, Gao
et al. 2003a,b,c,d, Spyropoulos et al. 2003, Liu et al. 2001, Chung and Ting 1995, Pan 2002, Wang
and Mai 2004, Chen et al. 2004, Wang and Shen 2002).

2. Basic equations of the piezoelectric/piezomagnetic materials

For the plane problem of linear elastic, homogeneous, transversely isotropic magnetoelectroelastic
composite materials with vanishing body force, free charges and free magnetic fields, the basic
equations are as follows (Song and Sih 2003, Wang and Mai 2003, Gao et al. 2003c,d,
Spyropoulos et al. 2003, Liu et al. 2001)
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where 0'( (x,2), D(j) (x,z) and BU )(x z) (i=x,z,k=x,z,j =1,2) are plane stresses, in-plane
electric displacements and in-plane magnetic fluxes, respectively; u v (x,z) and w? (x,z) represent
displacement components in the x- and z-directions, respectively; and ¢”(x,z) and y"\(x,z) are
electric potential and magnetic potential, respectively; ci1, c13, ¢33 and ¢4y are elastic stiffness,
respectively; &; and &; are dielectric constants, respectively; e;s, e;; and ej; are piezoelectric
constants, respectively; fis, f5; and f;; are piezomagnetic constants, respectively; g;; and gs; are
electromagnetic constants, respectively; 44, and g3 are magnetic permeabilities, respectively. It
should be noted that all the quantities with superscript j (f = 1, 2) correspond to the upper half plane
1 and the lower half plane 2 as shown in Fig. 1, respectively.
Substitution of Eq. (2) into Eq. (1) yields

(Cn%+C44§22)u0)(x’2)+(013+C44)5 > w(i)(x,z)
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3. The Mode-l crack

It is assumed that there are two collinear Mode-I Griffith cracks of length 1 —/ along the x-axis in
piezoelectric/piezomagnetic materials as shown in Fig. 1. 2/ is the distance between the two
collinear cracks (The solution of two collinear cracks of length » —/ in piezoelectric/piezomagnetic
materials can easily be obtained by a simple change in the numerical values of the present paper for
crack length 1—//r. r > [ > 0). As discussed in Parton (1976), the crack is very thin. So, it is
assumed that the electric potential, the magnetic potential, the normal electric displacement and the
normal magnetic flux are continuous across the crack surfaces in the present paper, i.e. the
permeable crack mode is adopted in the present paper. It is assumed that a distributed normal stress
loading o,.(x,0) = —7,(x) was directly applied on the upper and lower crack surfaces, which is
equivalent to investigating the perturbation fields for a remotely loaded cracked-body through the
standard superposition technique in fracture mechanics. So the boundary conditions along the crack
surfaces can be written as follows

o (x,0M)=02(x,0)=0, oi(x,0)=02(x,0)=-7, <K< (7)
(1) N _ . (2) - (1) N _ L, 2) -
{u (x,O)— (.X'O), w (x,O)—W (x70 ), |X|<l,|X|>1 (8)
o (x,0M) = o2(x,07), o)(x,0)=02(x,07)
¢"(x,07) = ¢7(x,07)
1) N (2) -
V00 =00 ©)

DV(x,0") = DP(x,07)
B (x,07) = BP(x,0)

where 7 is a magnitude of the uniform stress loading.
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Fig. 1 The coordinate system for two collinear crack in piezoelectric/piezomagnetic materials

4. Solution procedures

Egs. (3)-(6) can be solved by use of the method given by Yang (2001). As expression in Yang’s
work (2001), Egs. (3)-(6) can be rewritten as follows

u(x,z)
()
o (10)
P (x,z)
yO(x,z2)
where the operator is
7 il 7 7 & |
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where a, b, ¢, d and e are given in the Appendix. They are constants which only depend on the
properties of materials.

Based on the cofactors Ay of det{MD] (i, k = 1, 2, 3, 4), and the method developed in Chen et al.
(2004), the general solution of Eq. (10) can be expressed as follows

[1”(x, 2), w(x,2), 87(x,2), ¥ (6, 2)] = (Ay Ay A, A FO(x,2), (i=1,2,3,4)

(11)
with FY )(x, z) satisfying the following equation

det[ MD]F(x,z) = 0 (12)

In the following analysis, we use only (A,;, Ay, Az, A,y ) for the present problem, which can be
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expressed as follows
6
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where oy (i=1,2,3,4;k=1,2,3,4) can be obtained as shown in the Appendix. They are
constants which only depend on the properties of materials.
Using the symmetry on x-axis and the Fourier transform on x, FY )(x z) can be expressed as follow

FOx,z) = % [7(s,2)cos(sx)ds (17)

Substitution of Eq. (17) into Eq. (12) yields
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which is a homogeneous equation and the solution of f v )(s, z) is a function of exp(—Asz) in which
A is the root of the following algebraic equation
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Depending on the properties of A% the function f v (s,z) has five different general solutions (for
z20,j = 1) (Other cases can be obtained using a similar method, but they are omitted in the
present paper for brevity.)

(a) If 1A% A5 #4;>0, then

R4:

18 —Aysz

FDs,2) = Ay(s)e " Ay(s)e T+ Ay(s)e T+ A, (s)e 1)

(b)If A1 =A%, =2.>0, then
FO(s,2) = A,(s)e "+ Ay(s)e "+ Ay(s)e " + Ay(s)sze (22)

() If £ A=A =1,>0, then
Fs,z) = 4, (s)e%lsz + Az(s)e%zsz + A3(s)sze71252 + A4(s)szzze%zsz (23)

(A)If A, =25=22=12,>0, then
f(l)(s, z) =4, (s)eijzsz +A2(s)sze%zsz +A3(s)szzze%zsz +A4(s)s3y3 e%zsz (24)

(e) If ﬁ >0, /1§> 0, /ﬁ:t/l; and /ﬁ, Aﬁ <0 or /ﬁ and /ﬁ being a pair of conjugate complex roots,
an(d) therefore A; and A, are a pair of conjugate complexes —J+ iw, the solution of the function
Ms,2) is

FO(s,2) = A,(s)e 7 Ay (s)e > 4 Ay(s)e M os(swz) + Ay(s)e P sin(swz) (25)

where 6 and @ > 0 and A(s) (i = 1, 2, 3, 4) is a function of s to be determined by the boundary
conditions. 4

Based on the solution of auxiliary function f (’)(s,z) , the displacement, stress, electric displacement
and electric potential fields are calculated by using Mathematica and using Egs. (21)-(25) and Eq.
(11). Because of the symmetry, it suffices to consider the problem for x>0, |z| <o . For the case of
/ﬁ # /ﬁ # /ﬁ # /142‘ >0, the displacements, stresses, electric displacements, electric potentials, magnetic
fluxes and magnetic potentials can be expressed, respectively, as follows (The other cases can be
obtained using a similar method. Here, they are omitted in the present paper for brevity.)

4 —Asz
u(l)(x,z) = 2Zﬁ§')IwAi(s)sﬁsin(sx)e " ds
= 0

4 —Asz
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e

4 —Asz
v (x,z) = 22@(.4) _[wAl.(s)sécos(sx)e " ds
m="
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To solve the problem, the jumps of displacements across the crack surfaces are defined as follows
£i@) = u(x,0) -4 (x,0) (30)

£(x) = w(x,0)-w?(x,0) (31)
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We can prove that f;(x) is an odd function and f,(x) is an even function.
Substituting Egs. (26)-(27) into Egs. (30)-(31), applying Egs. (28)-(29), the Fourier transform and
the boundary conditions (7)-(9), we have

GRS

D) g B0 = | (32)
As(s) Bs(s) 0
Ay(s) B,(s) 0
A6 [Be)] |2

P20 - | B0 = | (33)
As(s) Bs(s) 0
Au(s) B,(s) 0

Here a superposed bar indicates the Fourier transform.
Solving eight Equations of Eqgs. (32)-(33) with eight unknown functions, substituting the solution

into Eq. (28) and applying the boundary conditions (7)-(9), we have (The solving processes can be
obtained as shown in the Appendix)

oé?(x, 0) = ’%IOOO sfo(s)cos(sx)ds =—1,, [<x<1 (34)
oD(x,0) = % j0°° sfi(s)sin(sx)ds =0, [<x<1 (35)

Jw71 (s)sin(sx)ds =0
O ,0<x<l, x>1 (36)
fow]_pz(s)cos(sx)ds =0

where f(j=1,2) are non-zero constants which are dependent on the material properties, which can
be obtained as shown in the Appendix. Here, we just give these constants for the case of
/1?¢/1§¢/1§¢/12>0. The other cases can be obtained using the same method. The two pairs of
triple integral Eqs. (34)-(36) must be solved to determine the unknown functions f1(s) and £(s).

5. Solution of the triple integral equations

The Schmidts method (Morse and Feshbach (1958) is used to solve the triple integral Egs. (34)-(36).
The jumps of displacements across the crack surfaces were expanded by the following series

2\ 1/2
x_]_+l (x—17+/)
£ =S a,P — 2o | | for I<x<1 37)

n=0 1__1 (1;/)2
2 2
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fi(x) =0, for 0<x</, 1<x (38)
2\ 1/2
) -1 (-1
£ =3 b, l—j | for Isxs] (39)
n=0 - _
2 (T/)
f(x) =0, for 0<x</, 1<x (40)

where a, and b, are unknown coefficients, Pf,”z’”z)(x) is a Jacobi polynomial (Gradshteyn and
Ryzhik 1980). The Fourier Transform of Eqs. (37)-(40) is (Erdelyi 1954)

— 0 1 1-
7= 3 a6 (1) @
() = 35,7600, (L)) (42)
’,:0 n n n 2 n 2
r(n 1+ l) (—1)"/2sin(s17+/), n=0,2406,..

where F, = 2./x , Gﬁ,l)(s) =

n!
_1) P cos( st ,n=173,517,...
( 2

(-1)"’Zcos( 17”) n=0,2,406, ..

Gf,z)(s) = , ['(x) and J,(x) are the Gamma and Bessel functions,
(_1)"”’25in(sli’), n=1,3,517,..
2
respectively.

Substituting Egs. (41)-(42) into Egs. (34)-(36), it can be shown that Eq. (36) are automatically
satisfied. After integration with respect to x in [/, x], Egs. (34) and (35) are reduced to the following
forms

@ibnﬂ leGf,z)(s)Jn+I(SIT_/)[sin(sx)—sin(sl)]ds = _n(x—1), I<x<1 (43)
ﬂ.n=0 0 S
B w1 (1) 1-1 _
—Za,,F,,J' =G, (), 1| s—][cos(sx)—cos(sl)]ds = 0, [<x<1 (44)
= 0 s 2

From Eq. (44), it can be derived that @, =0 (n =0,1,2,3,...). So fi(x) =0.
From the relationships (Gradshteyn and Ryzhik 1980)
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sin[nsin ' (bla)] .,
n 2
[ (as)sin(bsyds =1,
0 s a sin(nzw/2) b>a
n[b+ b’ —a’]
cos[nsin_](b/a)] a>h
n b
_[m lJ,,(as)cos(bs)afs = .,
0 s a cos(nn/2) b>a
n[b+ b -’
the semi-infinite integral in Eq. (43) can be modified as follows
* lJ,H . (sl—_l) cos( 1—”) sin(sx)ds
0 S 2 2
n+1
(1 2—/) sin((n +21 )ﬂ)
-1 _ sin[(n ; 1)sin_1(1+l—_2xﬂ 45)
2(n+1) el 1-1

2 2
X+ 1_+l+ (x+1il) _(1;/)
2 2 2
” lJn . l(s 1;/) sin(sli/) sin(sx)ds
0 s 2 2
n+1
(1;/) cos((n + 1)72')
1+/— 2xﬂ _ 2 2
1-1 3 >
X+ 1_+l+ (x+lll) _(1;/)
2 2 2
Thus the semi-infinite integral in Eq. (43) can be evaluated directly. Eq. (43) can now be solved

for coefficients b, by the Schmidt method (Morse and Feshbach 1958). For brevity, the Eq. (43) can
be rewritten as follow

1
S 2(n+1)

cos[(n + l)sinfl( (46)

n+1

S b,E,(x) = Uk), l<x<l (47)

where E,(x) and U(x) are known functions and coefficients b, are unknown and will be
determined. A set of functions P,(x) which satisfy the following orthogonality conditions

| Pa@)P,(0)dx = N,8,,, N, = [ Py(x)dx (48)

can be constructed from the function, £,(x), such that
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P = Y TRE ) 9)

i=0
where M;; is the cofactor of the element d; of matnx D, which is defined as follows
dOO: dOla dOZa sy dO
le: dll: dl27 sy dln

dZOa d21a dZZa teey dz 1
D, = . dy = [ E(x)E (x)dx (50)

ana dnb dn27 LR d
Using Eqs. (48)-(50), we obtain

= M, 1
b= g2 with qj:ﬁj]1 U(x)P;(x)dx (51)
J

j=n Jj

6. Intensity factors

Once we have coefficients a, and b, we can obtain the entire stress fields, the electric
displacement fields and the magnetic flux fields. However, in fracture mechanics, it is important to
determine the stresses o'V, 6!, the electric displacements D!"”, D" and the magnetic fluxes
BU, B in the vicinity of the crack tips, respectively. In the present study, o', ot), DV DV
B and B!" along the crack line can be expressed, respectively, as follows

oD(x,0) = b Z b,F, j G (s)J H(s—/) cos(xs)ds (52)
oD(x,0) =0 (53)

D(x,0) = %i by [ G () (s ’)cos(xs)ds (54)
DV(x,0) = %‘ S bF, [ GD5),, l(s L ines)ds (55)
BY(x,0) = ﬁSzan,, I G(z)(s)J,,H( —’)cos(xs)ds (56)
BU(x,0) = %i b.F, | G(z)(s)JnH( : /)sm(xs)ds (57)

where S(i=3,4,5,6) are non-zero constants which depend on the properties of materials. These
constants can be obtained as shown in the Appendix.
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Observing the expressions in Egs. (52)-(57) and using the following relationships (Gradshteyn and
Ryzhik 1980)

cos[nsin”' (b/a)]

2 2
a-b

, a>b

.[an(sa)cos(bs)ds
0 a'sin(n7/2)

- , b>a
S —d b+ -d]

sin[nsin_'(b/a)]

2 2
a—b

a>b

IwJ,,(sa)sin(bs)ds
0 a’cos(nm/2)

Jo—dp+ -]

the singular parts of the stress field, the electric displacement and the magnetic flux can be
expressed, respectively, as follows (x > 1 or x <)

b>a

A= LS b F 1), o) =0 (58)
27rn=0
DY) = ﬁib F.H(,x), DY =0 (59)
z! 27Z'n=0 nt ntin X
BY = 55 b F ), B =0 (60)
z 27Tn=0 nt ntin X

where H,(L.x) = {(—1)”+'R(l,x, n), 0<x<I
—R(l,x,n), x>1
2(1-1)""!
S+ =20 (1 =11+ 1=2x] + 1+ 1=2x7 = (1=1)"]"
At the left tip of the right crack, we obtain the normal stress intensity factor Kj; as follow

o —~ . W _, | 1 o 1y
Ky = hml«/zﬂ(l x): 0..0=f 272_(1_)6)’12::0( 1) b,F, (61)

x>

R(l,x,n) =

1

At the right tip of the right crack, we obtain the normal stress intensity factor Kz as follow

Kig = lim 22x=1)- o' = — L_S»F 62
= lim 2T ol = p, i S, (©2)

However, at the right and the left tips of the right crack, we obtain the shear stress intensity

factors Kz = lim /27(x—1)- 0'922) and K;;; = lim J22(/—x)- 0'923) are all equal to zero.

x—>1 xA)/»]

At the left tip of the right crack, we obtain the electric displacement intensity factor Kﬁ in z-
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direction as follow

K2 = lim 22(0-x)- D) = L Syt r =P 63
L xin?" (l-x)- D 3 272(1_1)’;)( ) 'y B, L (63)

At the right tip of the right crack, we obtain the electric displacement intensity factor Kb, in z-
direction as follow

K2 = lim 22(x=1)-D') = — L Sy r =B 64

w = Am ( ) Dz B 272(1_1)”2::0 B, (64)

However, at the right and the left tips of the ri%ht crack, we obtain the electric displacement

intensity factors KIDIR = lim v27(x-1) -Df(i)) and K, = 1irqlA/2ﬂ(I —X) -Df(i)) in x-direction are all
equal to zero. g

x—>1
At the left tip of the right crack, we obtain the magnetic flux intensity factor KfL in z-direction as
follo

Kl = lim [l B = p [ i(—l)"”anﬁ%Ku (65)
x— 1

2m(1-1) <,
At the right tip of the right crack, we obtain the magnetic flux intensity factor KfR in z-direction
as follow

Kl = lim 2ax—1)-DY) = —p, |— 1S p = Dok 66
= L m(x—1)-Dyy B 272(1—1),;) =g R (66)

However, at the right and the left tips of the right crack, we obtain the magnetic flux intensity
factors Ki, = lim 2 7(x~1) -B,%) and K, = lim J272(I—x) -B,%) in x-direction are all equal to
Zero0. x—>1 x> 1"

7. Numerical results and discussion

As discussed in the works (Zhou and Wang 2004, Zhou et al. 2005a, Zhou and Wang 2006), it
can be seen that the Schmidt method performs satisfactorily if the first ten terms of the infinite
series in Eq. (47) are retained. The numerical results are plotted as shown in Fig. 2. From the
results of the solution, the following observations are very significant:

(1) In the present paper, the similar problem that was treated by Gao ef al. (2003b) was reworked
using a somewhat different approach, named the Schmidt method (Morse and Feshbach 1958), i.e.
the behavior of two collinear Mode-I cracks in piezoelectric/piezomagnetic materials subjected to a
uniform tension loading was investigated by the generalized Almansi’s theorem. This generalized
Almansi’s theorem in the present paper is feasible for general cases, as discussed in Egs. (21)-(25),
and thus the obtained solution is valid to general cases. However, the Eshelby-Stroh’s method which
adopted in Gao et al. (2003b) is valid only for the cases of non-degenerate materials. The unknown
variables of triple integral equations are the jumps of displacements across the crack surfaces, not
the analytic functions or the dislocation density functions. This is the major difference between the
current work and the available work in the literature (Wu and Huang 2000, Sih and Song 2003,
Song and Sih 2003, Wang and Mai 2003, Gao et al. 2003a,b,c,d, Spyropoulos et al. 2003, Liu
etal 2001, Chung and Ting 1995, Pan 2002, Wang and Mai 2004, Chen et al. 2004, Wang and
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Shen 2002). The problem in the present paper is a special case in the Gao et al. (2003b). The
multiple collinear cracks in Gao et al. (2003b) can be also solved by using the Schmidt method, the
generalized Almansi’s theorem and the representative crack unit method. We will consider this
problem in the future. Certainly, the problem of multiple cracks is a more general case in the
practice.

(ii) In the present paper, it was also assumed that two collinear cracks only subject to a uniform
tension stress loading, do not subject to an electric field or a magnetic flux loading at the same
time. Certainly, the loading and the geometry of cracks are symmetry. However, the uniform
mechanical-electric-magnetic loads are considered at the same time in Gao et al. (2003b). In the
Gao et al. (2003b) it is assumed that the medlum is only subject to the remote uniform loading

, = [05, O, 053, D5, B5] and 22 = [0}1, 012, 013, E1, H, ] . It was also assumed that the electric
potential, the magnetic potential, the normal electric displacement and the normal magnetic flux are
continuous across the crack surfaces. Certainely, the solution in the Gao et al (2003) can be
returned to one of the present paper.

(iii) The solution of the stress intensity factors in the present paper was the same as one in Gao
et al. (2003b). However, the electric displacement and the magnetic flux intensity factors were
different from ones in Gao et al. (2003b) because the boundary conditions were not the same as
each other.

(iv) From the solution, it can be obtained that the singular stress, the singular electric
displacement and the singular magnetic flux in piezoelectric/piezomagnetic materials carry the same
forms as those in elastic materials.

(v) From Egs. (43) and (61)-(62), it can be obtained that the stress field does not depend on the
material properties except the crack length. So in all computation, the material constants were not
considered. However, the electric displacement and magnetic flux intensity factors depend on the
stress intensity factors and the properties of materials as shown in Egs. (63)-(66). The electro-
magneto-clastic coupling effects can be obtained as shown in Egs. (63)-(66). This means that an
applied mechanical load alone can produce the electric displacement and the magnetic flux
singularities. The results of the electric displacement intensity factors and the magnetic flux
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Fig. 2 The stress intensity factor versus /
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intensity factors can be directly obtained form the results of the stress intensity factors through Egs.
(63)-(66). In the present paper, they are omitted for brevity.

(vi) The stress intensity factors decrease with the increase in the distance between two cracks as
shown in Fig. 2. The stress, the electric displacement and the magnetic flux fields near the inner
crack tips are larger than ones near the outer crack tips. It can be also obtained that the interaction
of two collinear cracks decreases with the increase in the distance between two collinear cracks.
The electric displacement and the magnetic flux intensity factors have the same changing tendency
as the stress intensity factors. However, the magnitudes of the electric displacement intensity factors
or the magnetic flux intensity factors are different from the stress intensity factors.

8. Conclusions

In the present paper, the similar problem that was treated by Gao e al. (2003b) was reworked
using a somewhat different approach, named the Schmidt method. From the solution, it can be
obtained that the singular stress, the singular electric displacement and the singular magnetic flux in
piezoelectric/piezomagnetic materials carry the same forms as those in elastic materials. It can be
also founded that the stress intensity factors do not depend on the material properties for the
electrically and magnetically permeable mode-I crack in piezoelectric/piezomagnetic materials as
shown in isotropic materials. However, the electric displacement intensity factors and the magnetic
flux intensity factors depend on the stress intensity factors and the properties of piezoelectric/
piezomagnetic materials. The electro-magneto-elastic coupling effects can be also obtained as shown
in Egs. (63)-(66).
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Appendix: Coefficients

2 2 2
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The solving processes of the constants 5, 5, Bs, b, fs and S

For ﬁ # /15 # /ﬁ #* ﬂi >0 case, the matrices [X;] (i = 1,2) can be expressed as follows

(1) (1) (1) (1) (2) (2) (2) (2)
B B B 4 1 " B 4
(1) (1) (1) (1) 3) 3) (3) (3)
Ll = 11(3) 12(3) o li3) - Lel= ﬁ1(4) ﬁ2(4) ﬁ24) i4) (A1
X X X3 X Bi p) 3 3
“4) (4) (4) “4) 2) (2) (2) 2)
Y4 X2 X3 Xa Y4 X2 X3 Xa

From Egs. (32)-(33), it can be obtained
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1
= -[X;
a 2[ 1
A B
where a = |~ , b= ’
43 B,
4 B,

-zl

So the unknown functions 4; and B; can be expressed as follows

A4;

= Lé[miLfl + ”iL]72]a B; = Lé[miu;l—”n]é]
2s 2s

where [m],., = [X17, [nli= X617
Substituting Egs. (A-3) into Egs. (32)-(33), it can be obtained
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So it can be obtained
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Substituting Eqs. (A-3) into Eq. (28) and applying Eqgs. (A-6)-(A-7), we have
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