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Simple nonlinear static analysis of steel portal frame with 
pitched roof exposed to fire
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Abstract. Plane steel portal frames, with pitched roof, exposed to fire, are examined. First, a
determinate frame is analysed by hand. For flexible columns and shallow roof, snap-through occurs before
plastic hinges mechanism is formed. An indeterminate frame with shorter columns and taller roof is also
analysed by hand. Then, the same frame is simulated by a truss and a nonlinear static analysis is
performed by use of a short computer program. The results of computer analysis by use of truss model
are compared with those of analysis by hand and a satisfactory approximation between them is observed.
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1. Introduction

A fire, occurring in a multi-bay, multi-storey frame, is usually confined in one compartment only,

thus a local collapse is possible. Whereas, in a portal frame exposed to fire, a global collapse may

happen, as a portal frame consists of one compartment only. This is a reason, for which the fire

analysis of portal frames has attracted a particular interest (Papadopoulos and Mathiopoulou 2005,

Wong 2001).

In a portal frame with pitched roof, if the beams are flexible and the roof shallow, a snap-through

of roof apex is possible. The circumstances, under which a snap-through occurs in such a frame, are

investigated in the literature (Scholz 1991, 1988). Recently, for the relevant problem of large

deflections of plane frames, a simple formulation has been proposed based on position description

(Coda and Greco 2004). The same concept is also used in the present work.

Aim of present work is to investigate the behavior of plane steel portal frames with pitched roof,

exposed to fire. Wherever this is possible, simple analyses, by a hand calculator, are performed. For

a more accurate nonlinear analysis of a frame, the Finite Element Method can be used. However,

the usual finite elements have complicated stiffness matrices and present particular difficulties in

handling nonlinear problems (Argyris 1978, 1981, 1984).

A bar of a truss is the finite element with the simplest stiffness matrix. A truss model can be used
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as an alternative of the usual finite elements discretizations (Absi 1978, Fraternali et al. 2002,

Papadopoulos and Mathiopoulou 2005, Papadopoulos and Karayannis 1988, Papadopoulos and

Xenidis 1999, Schlaich and Schäfer 1991) and can, in a simple way, describe material nonlinearities

by the nonlinear uniaxial stress-strain laws of the bars and geometric nonlinearities by writing the

equilibrium conditions with respect to the deformed structure within each step of an incremental

loading procedure. The truss models have been proved reliable by comparison of their results to

relevant published experimental data (Papadopoulos and Karayannis 1988) and to Codes

requirements (Papadopoulos and Xenidis 1999).

In the present work, for plane portal frames with pitched roof, subject to fire, a nonlinear static

analysis is performed, first by a hand calculator. Then, for more accuracy, a frame is simulated by a

truss and analysed by a short computer program. The corresponding results of two above analyses

are compared to each other.

2. Determinate frame analysed by hand

2.1 Given data

The plane determinate symmetric steel portal frame of Fig. 1(a), with a pitched roof and a vertical

load at the apex, is considered. Fig. 1(b) shows the shape and dimensions of the beam cross-section.

A grade S355 steel is used as a structural material, which, for room temperature T = 20oC, exhibits

Fig. 1 Input data for a determinate portal frame. (a) Geometry and loading of the frame, (b) Cross-section,
(c) Primary stress-strain curve of grade S355 steel for 20oC
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a bilinear elastic-perfectly plastic primary stress-strain σ-ε curve with yield strength fy20 = fp20 =

355 MPa and yield strain εy20 = εp20 = 0.002, as shown in Fig. 1(c).

The thermal expansion of steel is given by the formula

Δ� = αT (T − 20oC)�  (1)

where � undeformed length at temperature 20oC and the coefficient is αT = 1.4 × 10−5/oC.

By starting from room temperature 20oC, a gradual increase of structure’s temperature T is

considered, with a step ΔT = 10oC, up to a value 800oC.

For a gradual increase of temperature T from 20oC and 100oC up to 1200oC, with a step ΔT =

100oC, reduction factors are suggested by Eurocode 3 (1995), for the yield strength fyT, the initial

elasticity modulus EoT and the proportionality limit fpT, as shown in Fig. 2. For intermediate values

of the steel temperature, linear interpolation may be used.

For every set of values of the three parameters fy, Eo, fp, for a specific value of temperature T, the

corresponding stress-strain σ-ε curve can be drawn, as determined by Eurocode 3 (1995) (see Fig. 3a).

For the strain range εp < ε < εy = 0.020, the Eurocode 3 (1995) suggests a 2nd order ellipse as a

fitting stress-strain σ-ε curve, which passes through the points P and Y and has a tangent at the

point P with inclination tga = Eo and a horizontal tangent at the point Y.

The above 2nd order elliptical fitting σ-ε curve is expressed in Eurocode 3 (1995) by quite

complicated formulas. Here, an alternative fitting σ-ε curve is proposed, in the strain range εp < ε <

εy = 0.020, which is a 2nd order parabola, passing through the points P and Y and having a

horizontal tangent at Y, and is expressed by the formula

 (2)σ fy
fy fp–( )

0.020 εp–( )2
----------------------------- 0.020 ε–( )2–=

Fig. 2 Reduction factors KY, KE, KP with respect to temperature T, for the yield strength fy of steel, the initial
elasticity modulus Eo and the proportionality limit fp, respectively, according to Eurocode 3 (1995).
Proposed reduction factor K' (common for fy, Eo, fp) of present work for computer analysis ( – – – –)
and K' (common for fy, Eo, fp) for hand calculation (⋅⋅⋅⋅⋅⋅)
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where the tangent elasticity modulus is

 (3)

The above proposed parabolic fitting σ-ε curve, described by Eqs. (2), (3), is much simpler than

the elliptical σ-ε curve suggested by Eurocode 3 (1995). However, the latter is smoother at point P,

as shown in Fig. 3(b).

By the above prescriptions of Eurocode 3 (1995), the diagram of Fig. 4 is obtained, with the

primary stress-strain σ-ε curve of grade S355 steel, for temperature T varying from 20o, 100oC up to

800oC, with a step ΔT = 100oC, in the strain region 0 ≤ ε ≤ εy = 0.020. After some trials and errors,

these stress-strain σ-ε curves of the diagram of Fig. 4 are approximated by simplified bilinear

elastic-perfectly plastic primary stress-strain σ-ε curves, as recommended in the literature (Bruneau

et al. 1997) (sections 2.7.2, 2.7.3, pages 45-49), which are shown in Fig. 4.

The above set of simplified bilinear elastic-perfectly plastic stress-strain σ-ε curves, which

approximate the set of primary σ-ε curves of grade S355 steel suggested by Eurocode 3 (1995),

corresponds to a quadrilinear reduction factor K', common for fy and Eo, where fp = fy is assumed,

too. This K' variation is shown in Fig. 2 by interrupted lines and is expressed by the simple

formulas

Et dσ/dε +
2 fy fp–( )

0.020 εp–( )2
----------------------------- 0.020 ε–( )= =

Fig. 3 (a) Primary stress-strain σ-ε curve of steel as determined by the three parameters: yield strength fy,
elasticity modulus Eo, proportionality limit fp (for a specific temperature T), according to Eurocode 3
(1995), (b) The same σ-ε curve in the region of small strains up to εy = 0.020, with five times larger ε
scale, in order to demonstrate the fitting curve between the points P and Y
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 (4)

For a further simplified hand calculation, a trilinear reduction factor K'' can be used, which is

again common for fy and Eo, where also fp = fy. This is shown in Fig. 2, by dotted lines, and is

expressed by the formulas

 (5)

2.2 Snap – through analysis

The geometric non-linearity is taken into account by using the concept of position for the apex,

not the concept of displacement (Coda and Greco 2004). The position of the apex is defined by its

ordinate y above the head of column, as shown in Fig. 5(a), in the half of the symmetric frame.
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Fig. 4 Primary stress-strain σ-ε curves of grade S355 steel (strain-hardening not included), as suggested by
Eurocode 3 (1995), for temperatures T starting from 20oC, 100oC and then ranging up to 800oC, with a
step ΔΤ = 100oC, compared with the adopted, in the present work, corresponding elastic-perfectly
plastic σ-ε curves.
Notation: EC – Eurocode, EP – elastic plastic
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For a given value of y, we can write the accurate nonlinear geometric equation, according to

Pythagoras theorem

y2 + (L + u)2 = Lo
2, or 

y2 + (16.0 + u)2 = 16.02 + 3.02 = 265.0  (6)

where u horizontal displacement of eave, and the reasonable assumption of constant length Lo of the

rafter is adopted. From the above equation, we can easily, for a given y, find the corresponding u.

The inertia moment of the beam cross-section is (Fig. 1(b))

J = 2 × 1.6 × 20 × 24.22 + 1.02 × 46.83/12 + 2 × 20 × 1.63/12 = 46208 cm4  (7)

Thus, the lateral stiffness of the column is

 = 2.4606 kN/cm  (8)

The horizontal thrust of the column is Fx = ku, the inclination of the rafter tga = y/(L + u) and the

corresponding load at the apex P = 2Fx tga. For values of y ranging from +6.0 m up to −6.0 m

(with a step Δy = 0.1 m), by applying the above equations, the diagram of Fig. 5(b) has been

drawn, which shows the variation of the load P at the apex with respect to the ordinate y of the

k
3EJ

H
3

---------
3 17.750× 46208×

1000
3

---------------------------------------------= =

Fig. 5 (a) Position description of the half of the determinate frame, (b) Variation of the load P with respect to
the apex ordinate y for T = 20oC
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apex, for room temperature 20oC.

We observe in Fig. 5(b) that, for a vertical load P = 9.851 kN, directing downwards, for a roof

ordinate y = +1.70 m, a snap-through of the apex occurs, which suddenly jumps to a new position

y = −3.45 m.

All the above happen for a room temperature T = 20oC. For an increase of temperature to T =

300oC, the rafter expands to 1.0042Lo, thus the unloaded roof height increases to y = 3.3512 m >

3.0 m. By following the previous procedure, we find that the critical snap-through load increases

now to Ps = 13.63 kN, for a roof height y = 1.95 m. That is, for T = 300oC, the frame is

strengthened against snap-through. However, for further increase of temperature, with values T >

300oC, the reduction of Young modulus E leads to a reduction of column lateral stiffness, resulting

to a reduction of the critical snap-through load Ps, as well.

For values of temperature T ranging from 20oC up to 800oC, the critical snap-through loads Ps

and the corresponding roof heights ys have been found and the diagrams of Fig. 6 have been drawn

showing the variations Ps − T and ys − T.

2.3 Limit plastic analysis

In Fig. 7(a), we calculate the ultimate plastic bending moment of the beam cross-section, for T =

20oC, which is Mp = 748.1 kNm. As Mp depends on the yield stress σy of steel, it remains constant

up to 300oC and then linearly decreases to zero for 800oC. In Fig. 7(b), the plastic hinge collapse

mechanism of the frame is presented, for which we write the virtual work principle and find the

ultimate plastic load Pp

 (9)

In order to take into account the geometric nonlinearity, because the apex ordinate y varies

P

2
---υ Mpϑ Mp

u

H
---- Mp

y

LH
-------υ Pp 2Mp

y

LH
-------=→= = =

Fig. 6 Variations with respect to temperature T of: (a) The apex ordinate ys at which snap-through occurs, (b)
The snap-through critical load Ps, as well as the ultimate plastic load Pp
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significantly with the load P, we use, in the above Eq. (9), the minimum possible y for which snap-

through occurs, which has been found in the previous section 2.2, Fig. 6(a), with respect to the

temperature T. In this way, the plastic limit analysis becomes more realistic and, at same time, lies

within the side of safety (Horne 1985).

We observe in Fig. 6(b) that, in the specific frame under consideration, for every value of

temperature T, the ultimate plastic load Pp is larger than the corresponding critical snap-through load

Ps. That is, the snap-through always happens before the plastic hinge collapse mechanism is formed.

Thus, the snap-through determines the load that the frame can receive, and we find in Fig. 6 that,

for the given external load  P = 8.0 kN, the snap-through happens for a temperature T 540oC.

3. Indeterminate frame

3.1 Given data

The indeterminate portal frame of Fig. 8 is now examined. The columns are shorter, thus stiffer

and the roof taller than in previous example. Two vertical loads P = 80 kN are applied at the

middles of the rafters. All the other given data are the same as in the first application.

Obviously, this second frame is stronger than the first one, that is it can receive heavier loads.

Also, it will be shown that this frame finally fails by formation of a plastic collapse mechanism, not

by a snap-through effect.

≈

Fig. 7 (a) Ultimate plastic bending moment of beam cross-section for T = 20oC, (b) Plastic hinge collapse
mechanism of the determinate frame
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3.2 Static loading and thermal expansion analysis by hand

For T = 20oC, the linear analysis of the frame is performed, for the static loading, by a hand

calculator. The results are shown in Fig. 9(a). As the Young modulus E varies with T, it can be

shown that the stresses of the frame due to static loading remain constant, whereas the deformations

due to static loading are constant up to 300oC and then, for T > 300oC, they increase being

multiplied by the ratio 500/(800 − T).

For T = 300oC, the linear analysis of the frame is performed by hand, for thermal expansion only,

without static loading. The results are shown in Fig. 9(b).

It can be shown that the thermal deformations are proportional to the temperature T, whereas the

thermal stresses, up to T = 300oC, are proportional to T and then, for T > 300oC, they vary by the

ratio 10−4/15 T (800 − T), having as reference state that for 300oC, and they present a maximum

value for T = 400oC, for which this ratio becomes 1.067.

For T ranging from 20oC up to 800oC, we find the vertical apex displacement, due to static loads

on one hand and to thermal expansion to the other, as well as the total displacement υ. The results

Fig. 8 Input data for an indeterminate portal frame

Fig. 9 Linear analysis of the indeterminate frame. (a) Static loading for T = 20oC, (b) Thermal expansion for
T = 300oC
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are shown in Fig. 10(a).

Also, for T ranging from 20oC up to 800oC, we find the bending moment at the base of column,

due to static loads on one hand and to thermal expansion on the other hand, as well as the total

moment Mc, as shown in Fig. 10(b).

Fig. 11 shows a simple computation of the bending moment M of the beam cross-section when

yielding starts at the outer surfaces of the flanges for 20oC. This is

  My = 1100 kN × 0.484 m + 396.6 kN × 0.312 m =

 = 532.4 kNm + 123.7 kNm = 656.1 kNm   (10)

Fig. 10 Variation with respect to temperature T of: (a) Vertical displacement υ of the apex, (b) Bending
moment Mc at the base of column. Both due first to static loading, then to thermal expansion and
total values

Fig. 11 Bending moment My of beam cross-section when yielding starts at the outer surfaces of flanges, for
room temperature T = 20oC
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This yield bending moment My of the section remains constant up to T = 300oC and then linearly

decreases up to zero for T = 800oC. In Fig. 10(b), the bilinear curve representing the variation of My

with respect to T intersects the curve representing the variation of the maximum bending moment

Mc of the frame, at the base of the column, with respect to T, at a point where T = 492.8oC and

Mc = My = 403.2 kNm. That is, the linear static analysis strictly holds up to the temperature T =

492.8oC. For higher temperatures, some deviations from linearity start to appear.

3.3 Limit plastic analysis by hand

We consider a collapse mechanism of the frame with three plastic hinges, at the sections where

the bending moments with maximum absolute values appear, as shown in Fig. 12(a) for T = 20oC.

We write the virtual work principle for this collapse mechanism

Fig. 12 (a) Plastic hinges collapse mechanism of the indeterminate frame, (b) Variation of the ultimate plastic
load Pp with the temperature T
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 (11)

As the Mu significantly varies with T, whereas y, H slightly vary, we determine the variation of the

ultimate plastic load P with T, which is shown in Fig. 12(b). We observe that, for the external load

P = 80 kN, the plastic collapse mechanism is formed for T = 625.0oC.

3.4 The proposed truss model

In order to perform a more accurate nonlinear analysis of the frame under consideration, by taking

into account in detail the material nonlinearities i.e. the gradual formation of plastic hinges, and the

geometric nonlinearities i.e., N – M (axial force-bending moment) interaction, due to large

displacements, we can use the Finite Element Method (Argyris 1978, 1981, 1984). However, the

usual Finite Elements have complicated stiffness matrices and present particular difficulties in

handling nonlinear problems.

A bar of a truss is the Finite Element with the simplest local stiffness matrix. And a truss model

can be used as an alternative of a usual finite element discretization (Absi 1978, Fraternali et al.

2002, Papadopoulos and Mathiopoulou 2005, Papadopoulos and Karayannis 1988, Papadopoulos and

Xenidis 1999, Schlaich and Schäfer 1991). A truss model can simply take into account material

nonlinearities by the nonlinear uniaxial stress-strain laws of the bars and geometric nonlinearities by

writing the equilibrium conditions with respect to the deformed structure and updating the stiffness

matrix of the truss within each step of an incremental loading procedure.

Numerical results by truss models have been compared with published experimental data

(Papadopoulos and Karayannis 1988) and Codes requirements (Papadopoulos and Xenidis 1999) and

a satisfactory approximation between them has been observed.

The local stiffness matrix of a bar, in 2D, is written

(12)

where

(13)

and κe elastic stiffness, κg geometric stiffness, E elasticity modulus, A cross-section area, �o

undeformed length of the bar,  = {cx cy} direction cosines of bar axis, N axial force, present length

of the bar.

The global stiffness matrix of the bar is written 

KG = Bdiag (κoi)B
t i = 1 … nb, (14)

where B = (Biκ), i = 1… nn, κ = 1… nb, the Boolean linkage matrix of the truss, nn number of

nodes, nb number of bars, Biκ = −1 if node i is left end of bar κ, Biκ = +1 if node i is right end of

bar κ and Biκ = 0 if there is no connection between node i and bar κ.
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If we have to simulate a usual steel beam element with a double-tau cross-section, by a

rectangular plane truss element, the flanges are first, in a simple and obvious way, simulated by bars

(Fig. 13(a)).

Then, by considering the correspondence between the biaxial elasticity equations of a plate

element, which is the web of the steel beam element, and the nodal force-displacement equations of

the rectangular plane truss element and by assuming a Poisson ratio ν = 1/3, we determine the

sections of bars of the truss element (Fig. 13(b)), by the following formulas

 (15)

If the angle of the web element, in Fig. 13(b), is α < 21o, the above formulae cannot be used

because negative sections A1 result, which is inadmissible. In this case of a long web element with

� >> d and α < 21o, the following simplified formulae can be used for the determination of bar

sections of the truss element simulating the web of the beam element (Fig. 13(b))

 (16)

A short, thus transparent, computer program, with only about 350 Fortran instructions, has been

developed for the analysis of a plane truss model, by an incremental loading (temperature increase)

procedure, by taking into account material and geometric nonlinearities.

3.5 Discretization of the frame

The column of the frame under consideration is discretized by four truss elements (Fig. 14). The

rafter is discretized by eight elements. And there is one more element for the column-rafter joint.

That is, there are totally 8 + 4 + 1 = 13 elements, thus 28 nodes, which means that an algebraic

system 56 × 56 of equilibrium equations is solved within each step of the incremental loading

algorithm. There are 13 × 5 = 65 bars. The two nodes at the base of column have both DOFs
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Fig. 13 Simulation of a steel beam element, with double – tau section, by a plane truss element
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restricted. The two nodes of rafter, at symmetry axis, have the horizontal DOFs restricted. For the

determination of bar sections, all the elements are approximately considered as rectangular. The

column and rafter elements are long with � ≈ 4d and α ≈ 14o < 21o (Fig. 13(b)), thus the simplified

formulae (16) are used for the determination of bar sections. Only the rafter-column joint element is

short with � ≈ d, thus α ≈ 45o > 21o, so here the formulae (15) are used for the determination of bar

sections.

3.6 Results of truss model

The results of the analysis of the second application (indeterminate frame) by the truss model are

presented in Fig. 15, for the following characteristic temperatures: (1) Room temperature T = 20oC.

(2) T = 200oC, up to which yield stress σy and elasticity modulus Eo of steel are assumed constant,

equal to their initial values. (3) T = 400oC, for which σy, Eo are reduced to eighty percent of their

initial values. (4) T = 570oC, at which, for first time, a bar yields (a web diagonal bar at the base of

column). 

For every one of the above four characteristic temperatures, the deformed configuration of the

frame has been drawn, with a large scale for displacements, along with the free body diagram of the

frame (Fig. 15). 

Fig. 16 shows the plastic collapse mechanism of the frame, which happens at a temperature T =

610oC, close to the value T = 625oC found by the limit plastic calculation done by hand. However,

a different failure mode is revealed by the truss model: The yielding of the column is of shear type

that is the diagonals of the web yield, whereas the hand limit plastic calculation assumed the

formation of a plastic hinge at the base of the column. 

In Figs. 10(a,b), the variations with T of total vertical apex displacement υ, and of total bending

moment Mc at base of column, respectively, obtained by the truss model, are compared with the

corresponding ones, obtained previously by the linear hand calculation, and a satisfactory

approximation between them is observed.

Fig. 14 Discretization of the indeterminate frame
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Fig. 15 Results (deformed configuration and free body diagram) of the truss model of the indeterminate
frame, for characteristic temperatures: (a) Room temperature T = 20oC, (b) T = 200oC up to which
yield strength fy and elasticity modulus Eo remain constant, (c) T = 400oC at which the σy, Eo are
reduced to the 0.8 of their initial values, (d) T = 570oC when, for first time, a bar yields (web
diagonal at the base of column)

Fig. 16 Plastic collapse mechanism of the indeterminate frame, revealed by the truss model, due to shear yield
at the column web, for temperature T = 610oC
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4. Conclusions

1. In a determinate portal frame with pitched roof, a simple analysis by hand can be performed, in

order to investigate the snap-through effect.

2. If the columns of the frame are flexible and the pitched roof shallow, snap-through may occur

before the formation of a plastic collapse mechanism.

3. In a simplified linear analysis of an indeterminate frame for static loading only, it is observed

that the stresses remain constant for any temperature T, whereas the deformations are constant up to

T = 300oC and then, for T > 300oC, as Young modulus decreases, they increase by the ratio 500/

(800 – T).

4. In a simplified linear analysis of an indeterminate frame for thermal expansion only, it is

observed that the deformations increase proportionally with the temperature T, whereas the stresses,

for T ≤ 300oC, increase proportionally with T, and then, for T > 300oC, they vary by the ratio (10−4/

15) T(800 – T), which takes a maximum value 1.067 for T = 400oC.

5. For an accurate nonlinear analysis, a frame can be simulated by a truss model. A bar of a truss

is the finite element with the simplest local stiffness matrix. And a truss model can simply take into

account material nonlinearities by the nonlinear uniaxial stress-strain laws of the bars and geometric

nonlinearities by writing the equilibrium conditions with respect to the deformed structure and by

updating the stiffness matrix of the truss within each step of an incremental loading (temperature

increase) procedure.

6. Numerical results for a steel frame exposed to fire, obtained by a truss model, are found in a

satisfactory approximation with corresponding results obtained by a linear hand calculation, as

regards to deformations and reactions for various values of temperature, as well as the temperature

of the final plastic collapse mechanism of the frame. However, a different failure mode is revealed

by the truss model: A yielding of diagonals is observed in the column web, which is a shear yield.

Whereas the hand limit plastic analysis assumed the formation of a plastic hinge at the base of

column.

7. In the region of a primary stress-strain σ-ε curve of steel (for a specific temperature T) between

the proportionality limit P and the yield point P, a 2nd order parabolic fitting σ-ε curve is proposed,

in the present work, which is much simpler than the corresponding elliptical curve proposed by the

Eurocode 3 (1995). However, the latter is smoother in the vicinity of proportionality limit.
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