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Abstract. An application is presented of a modified Vlasov model to the free vibration analysis of
plates resting on elastic foundations. The effects of the subsoil depth, the ratio of the plate dimensions,
the ratio of the subsoil depth to the plate dimension in the longer direction, and the value of the vertical
deformation parameter within the subsoil on the frequency parameters of plates on an elastic foundation
are investigated. This analysis has been caried out by the aid of a computer program. The first ten
frequency parameters are presented in tabular and the graphical forms to evaluate the effects of the
parameters considered in this study. Then mode shapes corresponding to the first six of the frequency
parameters are given in graphs. It is concluded that the effect of the subsoil depth on the frequency
parameters of the plates on an elastic foundation is generally larger than those of the other parameters
considered in this study.
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1. Introduction

The concept of plates resting on elastic foundations is extensively used by structural and
geotechnical engineers for static and dynamic analyses and for design of many practical soil-
structure interaction problems. For this reason, in the technical literature, numerous works have been
concerned with such problems. In these kinds of problems, developing a more realistic
mathematical model is essential to provide an accurate analysis of the soil-structure system for safe
and economical design.

Many researchers use the Winkler model for soil-structure interaction in the static and dynamic
analysis of plates resting on elastic foundations, where the vertical surface displacement of the plate
are assumed to be proportional at every point to the contact pressure at that point (Hetenyi 1950). In
the Winkler model, it is assumed that the foundation soil consists of linear elastic springs which are
closely spaced and independent of each other. One of the most important shortcommings of this
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model is that it assumes no interaction between the springs or discontinuous of the foundation.
In order to overcome this problem, several two parameter models have been suggested by many

researchers. The model proposed by Filenonko-Borodich acquires continuity between the individual
spring elements in the Winkler model by connecting them to a thin elastic membrane under a
constant tension. In the model proposed by Hetenyi, interaction between the independent spring
elements is accomplished by incorporating an elastic plate in three-dimensional problems. Another
model proposed by Pasternak acquires shear interaction between springs by connecting the ends of
the springs to a layer consisting of incompressible vertical elements which deform by lateral shear
only. Vlasov developed a two-parameter model that accounts for the effect of the neglected shear
strain energy in the soil and shear forces that come from surrounding soil by introducing an
arbitrary parameter, γ, to characterize the vertical distribution of the deformation in the subsoil
(Selvaduari 1979).

All these models are shown to lead to same differential equation. Basically all these models are
equivalent and defer only in the definition of the second parameter. The Vlasov model requires the
estimation of the value of the vertical deformation parameter, γ. Jones and Xenophontos (1979)
established a relationship between the γ parameter and the displacement characteristics, but did not
suggest any computational method. Vallabhan and Das (1988) determined γ parameter as a function
of the characteristics of the beam resting on an elastic foundation, using an iterative procedure.
They named this model as a modified Vlasov model. In this model, they mentioned that the three
parameters, k, 2t, and γ, are affected from loading, from the characteristics of the subsoil and the
material properties of the beam, and from the subsoil depth. It is really clear that the deflection of a
beam resting on an elastic soil can not be independent of the parameters such as the loading, the
characteristics of the subsoil and the material properties of the beam, and the subsoil depth.
Straughan (1990) used the modified Vlasov model for the static analysis of rectangular plates by the
finite difference method. Turhan (1990) used the same model for the static analysis of plates resting
on elastic foundation by the finite element method. Ayvaz et al. (1998) used the modified Vlasov
model for the earthquake analysis of plates resting on elastic foundation. Dalo lu et al. (1999)
applied the modified Vlasov model to the forced vibration analysis of rectangular plates on elastic
foundations. Omurtag and Kad o lu (1998), studied the free vibration analysis of orthotropic plates
on Winkler/Pasternak elastic foundation using Gateaux Differential Method. Çelik and Saygun
(1999) developed an iterative method to analyze the plates on a two-parameter elastic foundation.
Liu (2000) studied the static analysis of isotropic rectangular plates on Winkler foundation. He used
the first-order shear deformation theory. 

Silva et al. (2001) presented a numerical methodology for analysis of plates on tensionless elastic
foundation. They used Winkler model and illustrated the methodology by different examples. Huang
and Thambiratnam (2001) analyzed the plates resting on elastic supports and elastic foundation by
finite strip method. They assumed that the plate is resting on Winkler elastic foundation and
discussed the effects of dimension ratio on the static and free vibration responses. Shen et al. (2001)
examined free and forced vibration analysis of Reissner-Mindlin plates resting on a Pasternak-type
elastic foundation. Ayvaz and Özgan (2002) applied the modified Vlasov model to the free vibration
analysis of beams on elastic foundations and analyzed the effects of different parameters on the
frequency parameters of beams resting on elastic foundations. Xiang (2003) studied the vibration
behavior of rectangular Mindlin plates on non-homogenous elastic foundation. He discussed the
effects of several parameters on the frequency parameters of square Mindlin plates. Setoodeh and
Karami (2004) analyzed the static, free vibration and buckling responses of anisotropic thick
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laminated composite plates resting on elastic foundation using Winkler and Pasternak models. 
Yu et al. (2007) presented dynamic response analysis for a Reissner-Mindlin plate free along all

four edges resting on a tensionless elastic foundation of Winkler and Pasternak types. Güler and
Celep (1995) studied static and dynamic responses of a thin circular plate on a tensionless elastic
foundation. Celep and Güler (2004) analyzed static and dynamic responses of a rigid circular plate
on a tensionless Winkler foundation. Güler and Celep (2005) also studied response of a rectangular
plate-column system on a tensionless Winkler foundation subjected to static lateral load, harmonic
ground motion and earthquake motion. Celep and Güler (2007) also investigated axisymmetric
forced vibrations of an elastic free circular plate on a tensionless two parameter foundation.
Küçükarslan and Banerjee (2004) analyzed inelastic dynamic analysis of pile-soil-structure
interaction. Maheshwari et al. (2004) investigated three-dimensional nonlinear analysis for seismic
soil-pile-structure interaction and presented a three-dimensional method of analysis. Mezaini (2006)
investigated effects of soil-structure interaction on the analysis of cylindrical tanks. However, no
studies have been found for the free vibration analysis of plates resting on elastic foundations by
using the modified Vlasov model.

The aim of this paper is to apply, not to introduce, the modified Vlasov model to the free
vibration analysis of plates resting on elastic foundations and to analyze the effects of the subsoil
depth, the ratio of the plate dimensions, the ratio of the subsoil depth to the plate dimension in the
longer direction, and the value of the vertical deformation parameter, γ, within the subsoil on the
frequency parameters of plates on an elastic foundation. For this purpose, a computer program
coded by Ayvaz et al. (1998) is modified and then used to obtain the stiffness and mass matrices of
the plate-soil system. It should be noted that this study is an extension of the study made by Ayvaz
and Özgan (2002). 

2. Finite element modelling

The governing equation for a plate subjected to the free vibration with no damping is

(1)

where [K] is the stiffness matrix of the plate-soil system, [M] is the mass matrix of the plate-soil
system, {w} and  are the displacement and acceleration vectors of plate, respectively. 

The subsoil considered has a finite depth with a rigid boundary at the bottom (Fig. 1).
The total strain energy in the soil-structure system may be written as

(2)

where , and  are the stresses and corresponding strains in the
subsoil, D  is the flexural rigidity of plate, w, hp, Ep, and vp are the lateral
displacement, the thickness, the modulus of elasticity, and the Poisson’s ratio of the plate,
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respectively, and H is the height of the subsoil. By using constitutive relations and strain-
displacement equations of elasticity, the stresses at any point in the foundation can be expressed as

(3)

where Es and vs are the modulus of the elasticity and the Poisson’s ratio of subsoil, respectively. 
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Fig. 1 A simple plate on an elastic foundation
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If the assumptions of 
the vertical displacement (4)

the horizontal displacements (5)

are made, and if Eqs. (3), (4), and (5) are substituted into Eq. (2), the following equation can be
obtained.

(6)

In these equations, φ(z),  and  are the mode shapes defining the variation of the deflection
 in the z direction, the displacement of the subsoil in the x direction and y direction,

respectively, Gs is the shear modulus of the subsoil (Vallabhan and Das 1991), and  is equal to
.

By applying variations in Π due to variations in w and φ and using variational calculus, the
following equations can be obtained.

(7)

(8)

where

(9)

and

 (10)

In these expressions, k, 2t and γ are Winkler foundation modulus, shear foundation modulus and
vertical deformation parameter within the subsoil, respectively. The other terms are previously
defined.

As it can be seen from Eq. (10), the values of γ varies with the displacement of the plate and the
depth of the subsoil. Therefore, the variables w, k, 2t, H and γ are all connected to each other for a
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w x y z, ,( ) w x y,( )φ z( ) for φ 0( ) 1 ve φ H( ) 0===

u x y z, ,( ) 0 and v x y z, ,( ) 0==

Π D

2
---- ∇2

w( )
2

2 1 vp–( ) ∂
2
w

∂ x
2

----------
∂

2
w

∂ y
2

----------⎝ ⎠
⎛ ⎞ ∂

2
w

∂ x∂ y
-------------⎝ ⎠
⎛ ⎞

2

––

⎩ ⎭
⎨ ⎬
⎧ ⎫

dxdy 
lx/2–

+lx/2

∫
ly/2–

+ly/2

∫=

 Ew
2 ∂ Φ

∂ z
--------⎝ ⎠
⎛ ⎞

2

Gs w∇( )2Φ2
+ dxdydz

∞–

+∞

∫
∞–

+∞

∫
0

H

∫+

u v

w x y z, ,( )
E

Es 1 vs–( )/ 1 vs+( ) 1 2vs–( )

k E
Φd

zd
-------⎝ ⎠
⎛ ⎞

2

zd
0

H

∫=

2t GsΦ
2

zd
0

H

∫=

Φ z( )
sinhγ 1 z

H
----–⎝ ⎠

⎛ ⎞

sinhγ
------------------------------=

γ

H
----⎝ ⎠
⎛ ⎞

2

1 2vs–( ) w∇( )2 x ydd
∞–

+∞

∫
∞–

+∞

∫

2 1 vs–( ) w
2

x ydd
∞–

+∞

∫
∞–

+∞

∫

----------------------------------------------------------=



640 Yusuf Ayvaz and Celal Burak O uzhang
o

2.1 Evaluation of the stiffness matrix

The MZC rectangle finite element (Weaver and Johnston 1984) is used in this study. Nodal
displacements at each node are

, i = 1, 2, 3, 4  (11)

and the displacement function is

  (12)

where {we} is the nodal displacement vector containing all 12 components of the type shown in
Eq. (11). The matrix [N] contains the displacement shape function (Weaver and Johnston 1984,
Zienkiewicz 1977). 

By using the standard procedure in the finite element methodology for the assemblage of
elements, the global stiffness matrix is constructed as a half-banded matrix

  (13)

where n is the total number of plate finite elements, and [kp] is the conventional element stiffness
matrix of the plate (Weaver and Johnston 1984, Zienkiewicz 1977). The stiffness matrix for the
axial strain effect in the soil, [kk], is obtained by minimizing the total energy with respect to each
component of displacement vector (Turhan 1990), and may be written as 

 (14)

in which a and b are the half of the dimensions of the rectangular element in the x and y directions,
and ξ and η are natural co-ordinates. [kt] is the stiffness matrix which accounts for the shear effect
in the soil, expressed as

 (15)

the matrices [kk] and [kt] are not presented here since they will take excessive space, so for more
information about these matrices, see reference (Turhan 1990).

2.2 Evaluation of the mass matrix

According to Hamilton’s variational principle, the total kinetic energy of the plate-soil system may
be written as
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the time variable, and μ is the mass density matrix of the form

 (17)

where , h is the thickness of the plate, and ρp and ρs

are the mass densities of the plate and the soil, respectively (Kolar and Nemec 1989). 
Then the consistent mass matrix, M, of the plate on an elastic foundation is obtained by the

following equation.

  (18)

In the view of Eq. (12), the following expression can be written for each finite piece

 (19)

The consistent mass matrix of the plate and the soil can be evaluated after substituting Eq. (19)
into Eq. (18) and integrating it over the domain. It is symmetric 12 ×12  matrix, and its upper
triangle is given in Ayvaz et al. (1998).

As mentioned before, the governing equation for a beam subjected to a free vibration with no
damping is represented by Eq. (1). After substituting w = Wsinωt into this equation, the following
equation can be obtained. 

 (20)

where {W} is a vector of mode shape of vibration and λ (= ω2, ω is the circular frequency) is the
frequency parameter. This is a generalized eigenvalue problem. The eigenvalue solution of this
equation yields the frequency parameters and corresponding mode shapes. For the solution of
Eq. (20), the program, MATLAB, is used after the matrices [K] and [M] are included in the
program as data.

3. Numerical examples

3.1 Data for numerical examples

In this study, different values of H, ly/lx and γ are used for the parametric study of the free
vibration analysis of plates resting on elastic foundations. The values of the vertical deformation
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5 m, 10 m and 15 m for each γ parameter considered, and the aspect ratio, ly/lx, the plate are taken
as 1.0, 1.5 and 2.0 for each subsoil depth. Different values of the ratio, H/ly, are used depending on
the subsoil depth, H. In the calculation of the mass matrix, the mass densities of plate and subsoil
are taken to be 2500 kg/m3 and 1700 kg/m3, respectively. The shorter length, lx, of the plate is kept
constant at 10 m. The properties of the plate-soil system are as follows: The thickness of the plate
is 50 cm; the modulus of elasticity of plate is 2.7 1010 N/m2; the Poisson’s ratio of the plate is 0.2;
the modulus of elasticity of the subsoil is 2.0 107 N/m2 and the Poisson’s ratio of the subsoil is
0.25.

For the sake of accuracy in the results, rather than starting with a finite element mesh size, the
mesh size required to produce the desired accuracy is determined. To find out the required mesh
size, convergence of the frequency parameters is checked for different mesh sizes. It is concluded
that the results have acceptable error when equally spaced 10 × 10 elements are used for a 10 m ×
10 m square plate. Lengths of the elements in the x and y directions are kept constant for different
ly/lx ratios. 

3.2 Results

The first ten frequency parameters of plate considered for several subsoil depth, plate dimensions,
their ratio and the value of the vertical deformation parameter within the subsoil are presented in
Tables 1, 2, 3 and 4. In order to see the effects of the changes in these parameters better on the first
six frequency parameters, they are planned to be also presented in graphical form, but presentation
of all of data obtained in this study in graphical form would take up excessive space. Hence, only
the data for γ = 1, 5 and 8 with different values of ly/lx and H/ly are given in Figs. 2, 3, 4, 5, 6 and
7, respectively.

As seen from Tables and Figs. 2, 3 and 4, the values of the frequency parameters for a constant
value of H decrease as the aspect ratio, ly/lx, increases. This behavior is understandable in that a
plate on an elastic foundation with a larger aspect ratio becomes more flexible and has smaller
frequency parameters.

The values of the frequency parameters for a constant value of ly/lx ratio decrease as H increases.
The decrease in the frequency parameters with increasing aspect ratio, ly/lx, for a constant value of
H gets larger for larger values of the frequency parameters and smaller for smaller values of the
aspect ratio, ly/lx.

The changes in the frequency parameters for a constant aspect ratio, ly/lx, with increasing subsoil
depth, H, are larger than the changes in the frequency parameters for a constant subsoil depth, H,
with decreasing the aspect ratio. The changes in the frequency parameters for a constant aspect
ratio, ly/lx, with increasing subsoil depth, H, are also larger than the changes in the frequency
parameters for a constant subsoil depth, H, as the vertical deformation parameter, γ, increases. This
shows that the effects of the changes in the subsoil depth, H, on the frequency parameters are larger
than those of the changes in the aspect ratio, ly/lx, and in the vertical deformation parameter, γ.

As seen from Tables and Figs. 5, 6 and 7, the values of the frequency parameters for a constant
value of H increase as H/ly ratio increases, but the values of frequency parameters for a constant H/
ly ratio decrease as the value of H increases. 

It should be noted that the increase in the frequency parameters with increasing H/ly ratios for a
constant value of H gets larger for larger values of the frequency parameters.
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Table 1 The first 10 frequency parameters of plates on elastic foundations for different values of H, H/ly for γ = 1, and 2

γ
H 

(m)
ly 

(m)
H/ly

Frequency parameters, λ

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

1

5

20 0.250 1571.98 1989.22 2758.50 2918.06 3569.62 5071.84 5507.29 8023.94 9563.05 10099.65

15 0.333 1640.12 2338.66 2863.57 4073.73 4233.23 7920.53 8250.50 9542.44 11910.23 16971.65

10 0.500 1803.90 3089.09 3089.09 5918.41 7765.27 9327.86 15838.86 15838.86 34236.77 34236.77

5 1.000 2285.14 3776.76 5742.41 9434.44 13362.06 34948.61 37186.04 68349.04 92962.04 94392.59

3 1.667 2860.19 4644.22 10446.42 10753.19 28743.57 36716.85 83515.26 116666.89 192409.67 300566.89

10

20 0.500 605.09 914.87 1507.94 1645.25 2161.79 3283.42 3645.15 5342.54 6567.80 6918.15

15 0.667 651.43 1176.17 1598.86 2569.38 2700.27 5476.71 5554.71 6473.31 8264.98 11742.25

10 1.000 741.04 1742.39 1742.39 3744.54 4899.29 5667.83 9662.21 9662.21 18332.52 18332.52

6 1.667 971.05 2205.41 3357.43 6597.82 7792.57 20487.14 23307.01 24700.49 37898.67 50676.39

15

20 0.750 365.33 639.01 1157.27 1297.86 1768.44 2733.01 3102.37 4393.93 5615.87 5781.74

15 1.000 403.03 867.27 1245.54 2133.15 2270.14 4602.72 4736.06 5435.47 6974.81 9961.25

10 1.500 485.63 1437.38 1437.38 3552.00 4715.92 5315.61 9733.97 9733.97 17957.96 17957.96

2

5

20 0.250 1743.43 2124.21 2798.29 2955.66 3536.32 4947.94 5342.12 7728.20 9207.23 9675.46

15 0.333 1806.76 2436.11 2889.37 3992.44 4136.05 7595.97 7918.18 9202.04 11376.28 16327.00

10 0.500 1959.92 3083.24 3083.24 5663.11 7417.53 8883.01 15111.52 15111.52 33270.31 33270.31

5 1.000 2401.08 3670.28 5284.45 8843.91 12463.95 33694.43 35617.99 66467.82 90437.79 91737.48

3 1.667 2926.37 4413.81 9063.01 9898.30 26614.44 35026.84 80475.21 113966.21 188018.35 296628.31

10

20 0.500 639.67 909.10 1413.94 1535.52 1974.99 2982.77 3282.28 4869.20 5934.33 6267.01

15 0.667 681.27 1134.57 1488.79 2327.08 2434.85 4901.16 5041.47 5883.00 7476.13 10695.59

10 1.000 760.92 1606.26 1606.26 3307.47 4315.62 5093.84 8574.87 8574.87 17027.81 17027.81

6 1.667 970.17 1981.92 2901.73 5790.43 6787.22 18496.26 21580.44 22965.08 35118.89 47263.06

15

20 0.750 371.32 600.08 1032.86 1148.09 1535.07 2379.41 2663.55 3876.82 4858.81 5078.24

15 1.000 404.25 791.41 1102.93 1844.28 1947.36 4042.80 4051.86 4756.09 6093.53 8713.99

10 1.500 477.58 1254.61 1254.61 2999.31 3999.86 4679.12 8381.91 8381.91 16475.23 16475.23
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Table 2 The first 10 frequency parameters of plates on elastic foundations for different values of H, H/ly for γ = 3, and 4

γ
H

(m)
ly

(m)
H/ly

Frequency parameters, λ

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

3

5

20 0.250 2154.17 2513.10 3126.93 3278.24 3811.99 5150.57 5521.02 7806.70 9244.67 9658.59

15 0.333 2215.08 2801.90 3208.27 4231.37 4366.31 7659.24 7969.31 9247.94 11274.73 16151.64

10 0.500 2364.04 3380.46 3380.46 5781.04 7467.53 8846.36 14880.75 14880.75 32832.97 32832.97

5 1.000 2786.78 3899.61 5259.98 8716.16 12119.07 33065.30 34786.15 65352.92 88902.88 90065.71

3 1.667 3288.45 4559.62 8353.86 9584.76 25365.77 34095.04 78578.59 112278.63 185148.06 294012.03

10

20 0.500 750.57 992.70 1434.77 1541.62 1925.27 2839.85 3097.64 4592.87 5543.01 5852.18

15 0.667 789.33 1193.24 1497.61 2232.56 2325.45 4554.77 4732.40 5522.40 6949.93 9992.10

10 1.000 862.85 1595.48 1595.48 3066.56 3968.60 4722.59 7835.43 7835.43 16086.25 16086.25

6 1.667 1061.85 1907.00 2649.90 5268.56 6121.55 17099.66 20362.56 21705.68 33081.39 44813.01

15

20 0.750 416.63 613.46 982.59 1076.08 1400.61 2142.86 2367.62 3510.22 4311.74 4544.21

15 1.000 446.45 777.94 1038.78 1662.49 1743.20 3563.01 3641.20 4262.41 5434.43 7784.20

10 1.500 514.37 1159.84 1159.84 2616.02 3499.08 4195.54 7374.52 7374.52 15320.91 15320.91

4

5

20 0.250 2686.49 3033.95 3613.62 3760.43 4267.24 5559.18 5918.71 8138.61 9558.04 9934.28

15 0.333 2746.30 3310.08 3689.27 4663.69 4794.84 7988.52 8284.63 9563.03 11498.48 16338.52

10 0.500 2894.01 3848.86 3848.86 6143.63 7788.21 9106.38 15035.83 15035.83 32846.52 32846.52

5 1.000 3309.10 4328.91 5535.11 8930.99 12208.70 32978.76 34597.62 64953.65 88309.77 89355.16

3 1.667 3800.54 4940.74 8210.86 9693.54 24917.18 33842.63 77773.24 111582.63 183801.83 292769.71

10

20 0.500 901.58 1128.40 1532.20 1630.20 1980.45 2835.82 3072.23 4502.58 5395.30 5679.46

15 0.667 938.87 1314.23 1587.81 2259.30 2344.81 4433.19 4621.23 5389.02 6707.73 9660.74

10 1.000 1009.08 1674.03 1674.03 3006.75 3846.01 4565.27 7478.80 7478.80 15581.17 15581.17

6 1.667 1203.74 1947.22 2579.81 5039.01 5811.47 16374.89 19722.97 21010.23 31948.71 43491.06

15

20 0.750 483.64 662.20 991.58 1072.41 1359.34 2035.66 2229.37 3316.21 4023.37 4249.45

15 1.000 511.74 810.62 1039.44 1590.25 1659.86 3308.83 3424.59 4000.16 5060.69 7268.97

10 1.500 577.05 1142.07 1142.07 2424.99 3240.22 3916.75 6813.05 6813.05 14633.80 14633.80
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Table 3 The first 10 frequency parameters of plates on elastic foundations for different values of H, H/ly for γ = 5, and 6

γ
H

(m)
ly 

(m)
H/ly

Frequency parameters, λ

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

5

5

20 0.250 3258.05 3598.84 4157.41 4301.49 4791.81 6054.23 6408.32 8584.84 9996.61 10346.86

15 0.333 3317.26 3867.28 4229.57 5173.82 5303.13 8436.64 8720.65 10000.83 11879.10 16700.54

10 0.500 3464.53 4381.47 4381.47 6611.94 8230.17 9507.40 15378.48 15378.48 33095.23 33095.23

5 1.000 3875.58 4837.74 5947.56 9308.45 12511.60 33173.45 34738.97 64945.92 88215.14 89170.56

3 1.667 4361.49 5420.17 8362.87 10008.45 24893.06 33943.85 77549.27 111420.81 183273.17 292283.48

10

20 0.500 1066.38 1284.20 1663.76 1756.77 2086.45 2904.75 3129.98 4515.56 5380.54 5643.64

15 0.667 1102.83 1460.93 1714.93 2347.42 2429.14 4433.48 4621.12 5380.34 6629.20 9537.35

10 1.000 1171.11 1794.12 1794.12 3043.18 3844.46 4533.50 7338.32 7338.32 15338.20 15338.20

6 1.667 1363.59 2043.88 2607.10 4972.10 5698.97 16025.86 19413.38 20650.97 31343.77 42801.50

15

20 0.750 558.72 726.55 1030.54 1104.35 1368.24 2003.17 2180.46 3226.29 3885.85 4099.84

15 1.000 585.81 865.06 1073.35 1579.50 1643.41 3190.92 3320.29 3875.11 4862.12 6998.18

10 1.500 649.77 1164.79 1164.79 2344.08 3119.25 3769.77 6514.19 6514.19 14241.48 14241.48

6

5

20 0.250 3840.11 4176.57 4720.95 4863.33 5342.69 6585.32 6936.35 9082.83 10491.44 10823.16

15 0.333 3898.95 4439.89 4790.78 5715.02 5843.32 8937.59 9211.90 10494.24 12334.41 17145.53

10 0.500 4046.00 4937.59 4937.59 7125.94 8726.50 9975.15 15810.68 15810.68 33462.53 33462.53

5 1.000 4454.50 5378.17 6423.49 9762.53 12917.59 33508.63 35043.29 65142.76 88370.55 89258.16

3 1.667 4936.87 5941.16 8665.34 10422.50 25085.39 34221.51 77619.56 111530.34 183156.75 292185.45

10

20 0.500 1235.50 1447.55 1810.68 1900.70 2216.79 3010.48 3228.30 4583.07 5433.70 5680.21

15 0.667 1271.42 1618.19 1858.93 2465.84 2545.41 4495.95 4679.96 5436.03 6637.91 9521.38

10 1.000 1338.46 1933.54 1933.54 3128.40 3904.94 4570.21 7310.40 7310.40 15237.98 15237.98

6 1.667 1529.65 2167.93 2684.78 4989.94 5688.83 15869.70 19276.71 20474.45 31017.82 42435.08

15

20 0.750 636.71 797.72 1084.46 1154.11 1402.87 2010.40 2178.24 3193.87 3827.70 4029.70

15 1.000 663.17 929.65 1123.97 1601.01 1661.70 3144.77 3278.25 3823.26 4759.97 6856.12

10 1.500 726.36 1208.12 1208.12 2321.10 3070.64 3698.06 6353.80 6353.80 14012.61 14012.61
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Table 4 The first 10 frequency parameters of plates on elastic foundations for different values of H, H/ly for γ = 7, and 8 

γ
H

(m)
ly 

(m)
H/ly

Frequency parameters, λ

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

7

5

20 0.250 4425.00 4758.44 5292.61 5433.87 5905.45 7134.00 7483.14 9607.69 11015.11 11333.03

15 0.333 4483.59 5018.09 5361.81 6270.89 6398.57 9465.45 9732.03 11016.41 12829.58 17634.45

10 0.500 4630.52 5504.02 5504.02 7662.85 9250.80 10478.54 16290.56 16290.56 33895.24 33895.24

5 1.000 5037.23 5933.53 6932.91 10257.23 13378.98 33920.51 35435.65 65454.74 88661.61 89497.12

3 1.667 5517.10 6482.76 9051.73 10889.64 25397.39 34595.03 77850.72 111788.33 183263.92 292300.71

10

20 0.500 1406.18 1614.25 1965.56 2053.65 2360.15 3136.50 3351.32 4681.52 5524.16 5757.60

15 0.667 1441.74 1780.55 2011.77 2600.78 2679.01 4592.62 4772.33 5527.44 6695.96 9564.57

10 1.000 1507.92 2083.19 2083.19 3240.47 3999.75 4646.43 7344.87 7344.87 15219.31 15219.31

6 1.667 1698.26 2306.80 2790.73 5055.04 5735.37 15818.83 19236.12 20402.26 30847.30 42243.89

15

20 0.750 715.98 872.33 1146.64 1213.63 1451.36 2040.04 2201.98 3194.74 3813.55 4005.06

15 1.000 742.00 999.58 1183.86 1640.64 1699.33 3138.54 3272.33 3812.48 4713.11 6785.20

10 1.500 804.72 1262.92 1262.92 2330.44 3062.31 3670.68 6270.11 6270.11 13877.47 13877.47

8

5

20 0.250 5010.85 5342.05 5868.55 6009.01 6474.79 7692.81 8040.71 10148.57 11555.67 11862.96

15 0.333 5069.25 5598.95 5935.52 6835.07 6962.36 10009.06 10269.41 11555.57 13348.67 18149.44

10 0.500 5216.11 6076.06 6076.06 8213.09 9791.57 11003.41 16798.84 16798.84 34367.73 34367.73

5 1.000 5621.49 6497.34 7462.36 10776.17 13873.54 34378.56 35880.49 65837.30 89033.36 89827.81

3 1.667 6099.51 7036.35 9489.47 11388.51 25781.81 35025.87 78178.08 112135.12 183503.57 292543.60

10

20 0.500 1577.62 1782.78 2125.19 2211.95 2511.34 3274.82 3486.99 4799.06 5637.00 5859.99

15 0.667 1612.92 1945.83 2169.89 2745.71 2823.04 4709.86 4885.40 5640.50 6784.50 9643.19

10 1.000 1678.47 2238.97 2238.97 3368.76 4115.32 4747.26 7416.88 7416.88 15250.74 15250.74

6 1.667 1868.20 2454.62 2914.03 5148.81 5816.06 15830.42 19253.35 20394.15 30770.29 42155.91

15

20 0.750 795.94 948.92 1213.87 1279.04 1509.32 2083.39 2241.37 3216.31 3825.78 4008.39

15 1.000 821.65 1072.68 1249.40 1691.33 1748.69 3156.34 3288.89 3826.57 4700.22 6756.76

10 1.500 884.06 1324.73 1324.73 2359.31 3078.30 3671.07 6232.27 6232.27 13799.81 13799.81
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The decreases in the frequency parameters with increasing value of H for a constant H/ly ratio

gets less for larger values of H. This behavior is also understandable in that a plate on an elastic

foundation with a larger subsoil depth becomes more flexible and has smaller frequency

parameters.

The changes in the frequency parameters with increasing subsoil depth for a constant value of H/ly

Fig.  2 The effects of different values of H and ly/lx on the first six frequency parameters of plates on elastic
foundations for γ = 1. Key for H values: -●-, 5 m; -○-, 10 m; -▼-, 15 m
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ratio is larger than that in the frequency parameters with increasing H/ly ratios for a constant value

of H.

Fig.  3 The effects of different values of H and ly/lx on the first six frequency parameters of plates on elastic
foundations for γ = 5. Key for H values: -●-, 5 m; -○-, 10 m; -▼-, 15 m
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These observations indicate that the effects of the change in the subsoil depth on the frequency

parameter of the plate on an elastic foundation are always larger than those of the change in the

Fig.  4 The effects of different values of H and ly/lx on the first six frequency parameters of plates on elastic
foundations for γ = 8. Key for H values: -●-, 5 m; -○-, 10 m; -▼-, 15 m
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other parameters considered in this study.

As also seen from all figures, the curves for a constant value of H/ly 

ratio and the aspect ratio, ly/lx

Fig.  5 The effects of different values of H and H/ly on the first six frequency parameters of plates on elastic
foundations for γ = 1. Key for H values: -●-, 5 m; -○-, 10 m; -▼-, 15 m
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are fairly getting closer to each other as the value of H increases. This shows that the curves of the

frequency parameters will almost coincide with each other when the value of the subsoil depth, H,

Fig.  6 The effects of different values of H and H/ly on the first six frequency parameters of plates on elastic
foundations for γ = 5. Key for H values: -●-, 5 m; -○-, 10 m; -▼-, 15 m
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increases more. In other words, the increase in the subsoil depth will not affect the frequency

parameters after a determined value of H. In addition, variation occurring in the frequency

Fig.  7 The effects of different values of H and H/ly on the first six frequency parameters of plates on elastic
foundations for γ = 8. Key for H values: -●-, 5 m; -○-, 10 m; -▼-, 15 m
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parameters increases as the value of H/ly ratio increases.

As also seen from these figures, depending on the increase in H/ly ratio, the increase occuring in

the frequency parameters for the larger values of the vertical deformation parameters, γ, gets less as

γ increases.

In this study, the mode shapes of the plates on an elastic foundation are also obtained for all

parameters considered. Since presentation of all of these mode shapes would take up excessive

Fig.  8 The first six mode shapes of the plate on elastic foundations for γ = 1, H = 5 m and ly/lx = 1 
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space, only the mode shapes corresponding to the six lowest frequency parameters of the plate for

γ = 1, H = 5 m and ly/lx = 1.0, and 2.0 and for γ = 1, H = 15 m and ly/lx = 1.0, and 2.0 are

presented. These mode shapes are given in Figs. 8, 9, 10, and 11, respectively. In order to make the

visibility better, the mode shapes are plotted with exaggerated amplitudes. The scale factors used in

these figures are not the same since the important thing in a mode shape is the shape of the mode,

not the amplitude. It is well known that when an eigenvector is calculated, one value of the

eigenvector is chosen by the user. Therefore, the amplitude of a mode shape can differ depending

Fig.  9 The first six mode shapes of the plate on elastic foundations for γ = 1, H = 5 m and ly/lx = 2 
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on the first value chosen by the user. 

As seen from these figures, the number of half wave increases as the mode number increases. It

should be noted that appearences of the mode shapes not given here for the other values of the

parameters H, H/Ly, ly/lx, and γ are similar to those of the mode shapes presented here. 

It should be noted that the results obtained by using a Modified Vlasov model are not compared

with the results of the Winkler model, which is simpler, because the stiffness parameter, k, is

calculated within the program depending on the assumed values of γ, but this parameters in the

Winkler model should be given to the program as data.

Fig.  10 The first six mode shapes of the plate on elastic foundations for γ = 1, H = 15 m and ly/lx = 1 
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4. Conclusions 

The purpose of this paper was to apply the modified Vlasov model to the free vibration analysis

of plates resting on elastic foundations and to analyze the effects of the subsoil depth, the ratio of

the plate dimensions, the ratio of the subsoil depth to the plate dimension in the longer direction,

and the value of the vertical deformation parameter, γ, within the subsoil on the frequency

parameters of plates on an elastic foundation. As a result, the modified Vlasov model has been

applied effectively to the free vibration analysis of plates resting on elastic foundation. In addition,

Fig.  11 The first six mode shapes of the plate on elastic foundations for γ = 1, H = 15 m and ly/lx = 2  
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the following conclusions can be drawn from the results obtained in this study.

• The frequency parameter always decreases with increasing aspect ratio, ly/lx for any values of H.

• The frequency parameter always increases with increasing H/ly ratio for any values of subsoil

depth.

• The frequency parameter always decreases as the subsoil depth increases for any values of ly/lx
and H/ly.

• The frequency parameter generally increases with increasing γ values for any values of H and

H/ly.

• In general, the frequency parameters of the plates on elastic foundations are more sensitive to

the changes in the subsoil depth than the changes in the aspect ratio, ly/lx, and H/ly ratio. 

It should be noted that the results obtained by using a Modified Vlasov model are not compared

with the results of the Winkler model, which is simpler, because the stiffness parameter, k, is

calculated within the program depending on the assumed values of γ, but this parameters in the

Winkler model should be given to the program as data. 

It should also be noted that several similar conclusions were also found in the case of beam

resting on elastic foundation (Ayvaz and Ozgan 2002).
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