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Abstract. A four-node plate finite element for the analysis of laminated composites which is developed
using strain gradient notation is presented. The element is based on a first-order shear deformation theory
and on the equivalent lamina assumption. Strains and stresses can be calculated at different points through
the thickness of the plate. They are averaged values due to the equivalent lamina assumption. A shear
correction factor is used as the transverse shear strain is taken to be constant over the plate thickness
while its actual variation is parabolic. Strain gradient notation, which is physically interpretable, allows for
the detailed a-priori analysis of the finite element model. The polynomial expansions are inspected and
spurious terms responsible for modeling errors are identified in the shear strains polynomial expansions.
The element is corrected by simply removing the spurious terms from the shear strains expansions. The
element is implemented into a FORTRAN finite element code in two versions; namely, with and without
spurious terms. Results are compared to show the effects of the spurious terms on the solutions. It is also
shown that a refined mesh composed of corrected elements provides solutions which approximate very
well the analytical solutions, validating the procedure. 

Keywords: laminated composites; plates; finite elements; locking; strain gradient notation; parasitic
shear.

1. Introduction

This work proposes a four-node rectangular finite element for the analysis of laminated composite

plates, which is developed using strain gradient notation. The element is based on a first-order shear

deformation theory, which considers the transverse shear strains according to Mindlin’s theory. The

element is also based on the equivalent lamina assumption, which treats the laminate as one single,
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orthotropic lamina plate whose constitutive properties are the average of the properties of all

laminae. 

Strain gradient notation consists in an alternative notation for writing finite element polynomials.

Strain gradient notation is a physically interpretable notation which relates displacements to the

kinematic quantities of the continuum. The identification of this relationship is possible due to a

procedure which identifies the physical contents of the polynomial coefficients (Dow 1999). The

main advantage of the use of such a notation is that the modeling characteristics of the finite

element are made clear since the early steps of the formulation. Thus, sources of modeling errors

can be identified and also removed from the finite element polynomial expansions prior to the

formation of its stiffness matrix.

Strain gradient notation has been employed to analyze various problems in structural mechanics.

The early application was in the description of the behavior of lattice structures (Dow et al. 1985,

Dow and Hyuer 1989). Next, the notation was employed to formulate stiffness matrices of plane

elasticity finite elements (Dow et al. 1985, Dow and Byrd 1988) where it was recognized the

possibility of precisely and physically identifying the erroneous terms which are responsible for

parasitic shear. A procedure for eliminating those spurious terms has been easily established. Then,

the use of strain gradient notation was extended to beam and plate analysis where a procedure to

remove or at least reduce the effects of shear locking was devised (Dow and Byrd 1988, Dow and

Byrd 1990). Further, it was applied in the analysis of laminated composite structures where

qualitative errors were identified (Abdalla 1992, Dow and Abdalla 1994, Abdalla and Dow 1994).

In the latter, laminated composite plate elements were formulated and modeling error analyses were

performed. That is, spurious terms present in the elements shear strains polynomial expansions were

identified and their effects in the performance of the elements were investigated. It was determined

that spurious terms were able to interfere with the correct representation of mode coupling of non-

symmetric laminates. Further, that refinement was not always able to attenuate the effects of the

spurious terms, enforcing the need to remove them prior to numerical analyses. Those works were

not however concerned with validating the elements for stresses computation. The present work is

therefore filling a gap as it validates the four-node laminated composite plate element by comparing

numerical stresses solutions to analytical stresses solutions.

Elimination of locking in finite element analysis of plates and shells has been a major concern for

many decades. As the literature is vast in this field, we will not attempt to make a thorough review,

but will make reference to a few important works, mostly those concerned with four-noded

elements. A pioneering work of Zienkiewicz and co-workers (Zienkiewicz et al. 1971) recognizes

that an element derived earlier (Ahmad et al. 1970) increases unduly in stiffness for thin problems.

Recognizing the phenomenon as parasitic shear, they apply a reduced-order integration to calculate

transverse shear stresses, obtaining acceptable results. Hughes and co-workers (Hughes et al. 1977)

use one-point quadrature to integrate the shear energy to avoid locking in a regular four-node Co-

continuity plate element (bilinear element) when analyzing thin plates. A follow-up work (Hughes

et al. 1978) addresses reduced and selective reduced integration of plate elements. Among many

positive conclusions, the authors point out the negative aspect that zero energy modes (rank

deficiency) cannot be eliminated completely through those techniques, and that the adding of

incompatible modes to the bilinear element does not provide satisfactory results. A four-node plate

element is devised which does not contain spurious zero energy modes, passes the patch test and

does not lock when applied to thin problems (Bathe and Dvorkin 1985). The element is based on

Mindlin/Reissner plate theory and assumes a transverse shear strain field. Another author (Prathap
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1997) uses the field-consistency approach to demonstrate the sources of locking in the four-node

Mindlin plate element and to explain why one-point Gaussian integration is not able to remove

locking when the plate gets thicker. Further, he proposes selective reduced integration strategies to

remove locking from the thick element. 

In this work, the spurious terms which are present in the shear strain polynomial expansions of

the proposed element are identified. It is demonstrated both theoretically and numerically that they

are flexural terms which cause stiffening of the model by increasing the element´s shear strain

energy when bending of the plate occurs. Mesh refinement reduces the locking effects of the

spurious terms and, eventually, it might be able to remove them. Here, after their precise

identification, which is done by inspection, the spurious terms are removed from the shear strain

expressions, rendering a corrected element for locking. Therefore, locking is taken care a-priori of

the formation of the stiffness matrix and of the computer implementation such that no numerical

technique need be employed during analysis to remove it.

Research on analytical and numerical modeling of laminated composites has been very active in

order to achieve accurate representation of the actual behavior of this kind of structures. A very

thorough review on theories for isotropic and anisotropic laminated plates is performed, citing over

four hundred references (Ghugal and Shimpi 2002). An also thorough review on theories and

computational models for laminated composites is presented (Reddy and Averill 1991). That review

has been updated more recently (Reddy 2004).

High-order deformation theories have been proposed in several works (Lo et al. 1977, Singh and

Rao 1995, Bose and Reddy 1998) among others. An interesting work (Reddy and Wang 2000)

presents an overview of the relationships between classical and shear deformation theories.

Computational models ranging from simple to refined which allow for numerical evaluation of all

those theories have been developed (Reddy 1989, Bose and Reddy 1998). Further, a layerwise

model is proposed where locking is avoided by prescribing a transverse shear deformation field

compatible with the assumed displacement field (Botello et al. 1999). A four-noded mixed finite

element for composites is developed which is based on the work of Bathe and Dvorkin (Brank and

Carrera 2000). A triangular element for composites is developed which is based on Reddy’s simple

higher-order shear deformation theory (Sheikh and Chakrabarti 2003). The element is free of

locking and does not contain any spurious modes. Reddy’s displacement for third order shear

deformation theory is employed to derive a set of equations to model the behavior of laminated

plates. A triangular finite element is implemented using those equations (Aagaah et al. 2003).

In spite of all the advances in the numerical analysis of laminated composites, this paper

addresses the formulation and performance of a first-order shear deformation theory element and

demonstrates an alternative procedure to identify and eliminate the sources of locking. The element

is implemented in a FORTRAN finite element code in both versions, that is, with the spurious terms

and after their elimination. Comparison of numerical results show how the spurious terms stiffens

the model, requiring more refined meshes in order to attain convergence. Also, the corrected model

is validated by comparing numerical solutions with results obtained from analytical solutions

(Reddy 2004).

2. Theoretical description

For completeness, this section presents the macromechanical theory adopted to describe laminated
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composites as well as the necessary expressions pertaining to Mindlin’s theory of plates. Also, strain

gradient notation is introduced into the formulation of the laminate prompting it for finite element

development.

The macromechanical theory for laminated composite plates adopted here is based on the

following assumptions: (1) Plane sections normal to the middle surface of the plate remain plane,

but not necessarily normal after bending. Thus, the model accounts for transverse shear deformation

of the plate; (2) There is a perfect bond between laminae, preventing relative slippage. That is, the

behavior of the laminate may be represented by the behavior of its middle surface, and laminae

compatibility is imposed; and (3) Normal-to-the-middle-surface components of stress and strain are

negligible, not being included in the model.

The laminate has the capability of developing in-plane displacements u and v along the x and y

directions, respectively; out-of-plane displacements w, and rotations q and p in the x and y

directions, respectively (or around the y and x axes, respectively). The displacements w are

independent of rotations q and p, allowing for transverse shear deformation. The kinematic relations

of the plate are the following

(1)

 (2)

  (3)

  (4)

  (5)

where u0 and v0 are middle surface in-plane displacements, and z is the coordinate which is

associated to the thickness of the plate.

The strains are arranged in vector form as shown below 

(6)

where the first vector contains membrane strains and the second vector contains plate bending

strains.

The strain energy of the laminate is the sum of the strain energies of its laminae. Hence

(7)

where k is a typical lamina, n is the total number of laminae, {ε}k is the strain vector of lamina k,

[Q]k is the constitutive properties matrix of lamina k, and Ωk is the volume of lamina k.
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At this point, strain gradient notation is introduced into the formulation. Displacements are related

to kinematic quantities of the continuum, which are rigid body modes, strains, and first-order and

higher-order derivatives of strains. These kinematic quantities are generally referred to as strain

gradients. The relations of displacements and strains to strain gradients are given, respectively, by 

 

 (8)

  (9)

where  and [Tsg] are the corresponding transformation matrices, and {εsg} is the strain gradients

vector. This vector contains the set of independent deformation modes that the model is capable of

representing. Matrix [φ] is comprised of linearly independent vectors, each associated to a strain

gradient component, describing a specific deformation pattern of the model. Eqs. (8) and (9) are

combined to eliminate vector {εsg}. The result is substituted into Eq. (7) to yield

 (10)

which is an expression of the strain energy in strain gradient notation. The quantity between

parentheses is called strain energy matrix and it is represented by [UM]. The elements of its

principal diagonal contain the quantities of strain energy associated with the pure strain modes of

the laminate. The other elements of the matrix contain the quantities of energy associated with the

coupling between the various strain modes. Matrix [UM] may be written as 

(11)

where the volume integral has been broken into an integral over the area of the middle surface of

the laminate and an integral over its thickness. This line integral is carried out as the sum of the

integrals over the thicknesses of the various laminae. The integration limits zk−1 e zk represent the

bottom and top coordinates of a typical lamina k respectively. The integration over the thickness of

the laminate yields its stiffness quantities

 (12)

 (13)

 (14)

 (15)

where A is the membrane stiffness, B is the membrane-bending coupling stiffness, D is the bending

stiffness, and A* is the membrane stiffness associated to the effects of transverse shear subjected to

the shear correction factor K. According to Reddy (2004), the determination of the shear correction
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factor for laminates is still an unresolved issue. It depends on lamination scheme, geometry, and

material properties. The most commonly used value for K is 5/6, which can be demonstrated to be

very accurate for homogeneous, isotropic plates. This value is employed by the analytical solutions

(Reddy 2004) which are used to validate the proposed element. Therefore, this same value is

adopted in the numerical solutions performed here for consistency. 

Finally, the general expression of the stiffness matrix in strain gradient notation is determined

recalling the definition of strain energy in terms of the stiffness matrix 

(16)

and comparing this equation to Eq. (10) after inserting Eq. (11) into the latter 

(17)

3. Finite element model

This section presents the development of the four-node rectangular plate finite element in strain

gradient notation. The element has five degrees of freedom at each node, namely; the in-plane

displacements u and v, the out-of-plane displacement w, and the rotations p and q around the x and

y axes, respectively, as shown in Fig. 1. The essential field variables of the problem are the in-plane

displacements u and v, and the out-of-plane displacement w. Polynomials for these variables must be

built to start the finite element formulation. Next, definitions in Eqs. (4) and (5) must be employed

to define the polynomials representing rotations q and p.

In strain gradient notation these polynomials are 

 
(18)

 (19)

(20)

U
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2
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=

u x y z, ,( ) u( )o εx( )ox γxy /2 r–( )o y εx y,( )oxy γxz /2 q+( )oz+ + + +=

 εx z,( )oxz εx yz,( )oxyz γxy z, γyz x,– γxz y,+( )/2( )o yz+ + +

v x y z, ,( ) v( )o γxy/2 r+( )ox εy( )oy εy x,( )oxy γyz/2 p–( )oz+ + + +=

 εy z,( )oyz εy xz,( )oxyz γxy z, γyz x, γxz y,–+( )/2( )o xz+ + +

w x y,( ) w( )o γxz /2 q–( )ox γyz/2 p+( )oy γxy z,– γyz x, γxz y,+ +( )/2( )o xy+ + +=

Fig. 1 Four-node rectangular plate finite element
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 (21)

(22)

These expressions have been originally developed in (Abdalla 1992). The procedure is performed

here in detail as it is unknown to most readers. The middle surface in-plane displacements, the out-

of-plane displacement and the rotations are initially written in terms of unknown coefficients.

(23)

(24)

(25)

(26)

(27)

These polynomials are evaluated at the origin of the element, defining the contents of the

independent terms of the expressions above 

(28)

(29)

(30)

(31)

(32)

Next, the in-plane normal strains εx and εy are written according to the definitions in Eq. (6) and

are evaluated at the origin of the element, yielding

(33)

(34)

Then the in-plane shear strain γxy is written according to the definition in Eq. (6) and the in-plane

rotation is written according to the definition below

(35)

and are evaluated at the origin of the element producing two equations that are solved

simultaneously to give

(36)

(37)
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Proceding on the transverse shear strains γxz and γyz are written according to the definitions in

Eq. (6) and produce the coefficients below after being evaluated at the origin of the element 

(38)

(39)

Next derivatives of normal strains or normal strain gradients εx, y, εy, x, εx, z and εy, z are written, and

are evaluated at the origin of the element, resulting in the following coefficients 

(40)

(41)

(42)

(43)

Also derivatives of shear strains or shear strain gradients γxy, z, γyz, x and γxz, y are written, and are

evaluated at the origin producing three equations which are solved simultaneously, providing the

following coefficients

(44)

(45)

(46)

Finally second derivatives of normal strains εx, yz and εy, xz are written and evaluated at the origin of

the finite element to define the last two coefficients

(47)

(48)

The coefficients are then backsubstituted into Eq. (23) through Eq. (27), which in turn are

employed along with the kinematic relations of the plate, Eq. (1) through Eq. (5), to provide the

finite element approximating functions in terms of strain gradients, Eq. (18) through Eq. (22).

Now that the procedure to obtain the approximating functions in terms of strain gradients has

been detailed, these expressions are inspected showing that the displacements are comprised of

terms which are functions of rigid body modes, constant normal and shear strains, and first and

second-order derivatives of normal and shear strains. These quantities comprise the set of twenty

strain gradients that form the deformation basis of the four-noded plate model, and they are listed

below 

 - rigid body modes
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c3

1

2
--- γxy z,– γxz y, γyz x,+ +( )o=

d2

1

2
--- γxy z, γxz y, γyz x,–+( )o=

e2

1

2
--- γxy z,– γxz y, γyz x,–+( )o=
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 - constant strain modes

 - first-order normal strain gradients

 - first-order shear strain gradients

 - second-order normal strain gradients

Applying the definitions of the theory of elasticity, the strain polynomial expansions result:

 (49)

(50)

 (51)

 (52)

 (53)

Strain gradient notation, which is physically interpretable, allows for an a-priori evaluation of the

modeling capabilities of the finite element. Eq. (49) and Eq. (50) show that the normal strain

expansions contain only strain states which are associated to the corresponding normal strains. All

the coefficients are terms of the corresponding Taylor series expansions. However, the expansions

for shear strains, Eq. (51), Eq. (52) and Eq. (53), contain terms which do not belong to their

expansions in Taylor series; namely, the first and second-order derivatives of normal strains. That is,

the following six strain states: . These spurious terms

may be called parasitic shear because they increase the shear strain energy of the element unduly

when they are activated during the element’s deformation. That is, they are the cause of shear

locking. The reason for the presence of spurious terms is the use of inconsistent polynomials for

displacement w and rotations p and q. For consistency, the polynomial for w must be one order

higher than the polynomials for p and q because the transverse shear strains are defined as the sum

of rotations and first derivatives of the out-of-plane displacement. In the present case, all three

polynomials are of the same order. In order to correct the element, these spurious terms are

removed from the shear strain polynomial expansions, resulting in the following expressions 

 (54)

  (55)

  (56)

Computationally, the presence or the elimination of the spurious terms is accounted for in matrix

[Tsg] (see Eq. (9)), which in turn affects the values of stiffness components as shown in the

expression of the stiffness matrix in strain gradient notation defined by Eq. (17) and repeated below 

 

  (57)

It will be shown in the next section that the activation of some or all of these spurious terms
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causes severe locking of the model, requiring refinement effort for the model to attain convergence.

On the other hand, it will be shown that by simply removing those terms from the shear strain

expansions locking is eliminated.

The authors would like to make the observation that the element is not formulated using the

isoparametric formulation. Therefore, the element is not designed to assume arbitrary shapes.

Although this may be viewed as limiting, numerical examples presented below demonstrate that the

element behaves quite well for regular geometries after elimination of the spurious terms, which is a

main purpose of this paper. Further, stresses are always calculated at the nodes in both versions of

the element, with and without spurious terms. Gauss points are not used in the present analyses.

4. Numerical applications

In this section, three different problems are solved using the model described above. The plates

analyzed are all rectangular and their sides are nominated a and b if parallel to the x and the y-axis,

respectively. Different lamination schemes, loading and boundary conditions are employed. Also,

the thicknesses h of the plates change. Lower and higher thickness laminates are analyzed. All

layers are of graphite-epoxy with the following mechanical properties: Ex = 175 GPa, Ey = 175 GPa,

Gxy = 3.5 GPa, Gxz = 3.5 GPa, Gyz = 1.4 GPa, νxy = 0.25. All problems are solved using five uniform

meshes; namely, 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32, both with elements containing the

spurious terms (parasitic shear terms), and with corrected elements. Numerical solutions are

compared among themselves to show the deleterious effects (locking) of the spurious terms. Further,

these solutions are compared with analytical solutions whenever such solutions are available to

show the effectiveness of the proposed model. Analytical solutions are constructed using solutions

derived by Reddy (2004). Stresses results are made non-dimensional through the following relations

(Reddy 2004)

(58)

Furthermore, in the plots that depict the various solutions that follow, FSDT is the analytical

solution for the first-order shear deformation theory to which the numerical solutions are being

compared. The numerical solutions containing spurious terms (parasitic shear) are referred to as

with PS while those not containing spurious terms are referred to as wout PS. The plots also show

the side length-to-thickness relation a/h, and the lamination scheme of the laminate. Percent errors

in the highest values of stresses provided by the numerical analyses are calculated with respect to

the analytical values and tabulated (Table 1, Table 2, and Table 3). Those percent errors help in

quantifying the accuracies of the numerical solutions.

4.1 Problem #1

The first problem is a square simply supported cross-ply laminated composite plate subjected to a

uniform load of value qo = 10 N/m2. The laminate is symmetric with lamination scheme 0º/90º/90º/

σ xx σxx
h
2

a
2
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----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

= σ yy σyy
h
2

a
2
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----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

= τ xy τxy
h
2

a
2
qo

----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

τ xz τxz
h
2

aqo

--------⎝ ⎠
⎛ ⎞ τ yz τyz

h
2

aqo

--------⎝ ⎠
⎛ ⎞

==
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0º, and the sides of the laminate are 1.0 m in length (a = b = 1.0 m). The plate is solved both with

side-to-thickness ratios a/h = 10 and a/h = 100. In-plane normal stresses σxx and σyy are calculated

at the center point of the plate, while transverse shear stresses τxz and τyz are calculated at the

borders middle points.

First, solutions for the higher thickness plate (a/h = 10) are presented. Fig. 2(a) through Fig. 2(l)

show the results of those analyses. Fig. 2(a) and Fig. 2(b) show the σxx solutions with and without

the spurious terms, respectively, while Fig. 2(c) and Fig. 2(d) show the σyy solutions with and

without the spurious terms, respectively. These figures show that the effects of the spurious terms

are not very important in the in-plane stresses solutions. Such effects are only evident in the coarse

meshes solutions and are rapidly eliminated by refinement. All four models converge to the

Fig. 2(a) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Normal stresses
σxx computed through the thickness of the
laminate with spurious terms

Fig. 2(b) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Normal stresses
σxx computed through the thickness of the
laminate without spurious terms

Fig. 2(c) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Normal stresses
σyy computed through the thickness of the
laminate with spurious terms

Fig. 2(d) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Normal stresses
σyy computed through the thickness of the
laminate without spurious terms
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analytical solutions with mesh refinement. Table 1 shows that percent errors in σxx range from

61.85% to 0.04%, and percent errors in σyy range from 55.77% to 0.31% when the spurious terms

are present. After elimination of the spurious terms, the percent errors in σxx range from 39.78% to

0.26%, and in σyy the percent errors range from 23.24% to 0.50%.

Further, Fig. 2(e) and Fig. 2(f) show the τxz solutions with and without the spurious terms,

respectively, while Fig. 2(g) and Fig. 2(h) show the τyz solutions with and without the spurious

terms, respectively. Again, the effects of the spurious terms are more pronounced in the coarse mesh

solutions, being quite evident in the 2 × 2 mesh solutions. Table 1 shows that the percent errors are

85.61% and 155.70% in the coarser mesh solutions with the spurious terms for τxz and τyz,

respectively. After elimination of the spurious terms, these percent errors fall to 40.03% and

Fig. 2(e) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Transverse shear
stresses τxz computed through the thickness
of the laminate with spurious terms 

Fig. 2(f) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Transverse shear
stresses τxz computed through the thickness
of the laminate without spurious terms 

Fig. 2(g) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Transverse shear
stresses τyz computed through the thickness
of the laminate with spurious terms 

Fig. 2(h) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Transverse shear
stresses computed through the thickness of
the laminate τyz without spurious terms 
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53.02%, respectively. All four models converge to the analytical solutions with mesh refinement,

being the solutions provided by the models without the spurious terms slightly better. Percent errors

for the corrected models are 0.63% and 1.88% for τxz and τyz, respectively.

Finally, Fig. 2(i) through Fig. 2(l) present convergence plots of the in-plane normal stresses and

transverse shear stresses solutions, which aid in demonstrating their behaviors. The curves show that

both solutions with and without the spurious terms converge to the analytical solution for all

stresses. They also show the locking effect as the coarser meshes solutions provided by the model

containing the spurious terms are always less accurate. 

Next, solutions for the lower thickness plate (a/h = 100) are presented. Fig. 3(a) through Fig. 3(l)

Fig. 2(i) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Convergence of
normal stresses σxx solutions with and
without parasitic shear 

Fig. 2(j) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Convergence of
normal stresses σyy solutions with and
without parasitic shear 

Fig. 2(k) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Convergence of
transverse shear stresses τxz solutions with
and without parasitic shear 

Fig. 2(l) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 10. Convergence of
transverse shear stresses τyz solutions with
and without parasitic shear 
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show the results of these analyses. In general, the results depicted by these figures show that the

model containing the spurious terms presents poor convergence rates whereas the model without the

spurious terms converges rather quickly. Fig. 3(a) and Fig. 3(c) show that the spurious terms delay

convergence of the normal stresses σxx and σyy, and that even the finer meshes (32 × 32) present

results which are far way from the analytical ones. Table 1 shows that percent errors in σxx range

from 98.84% to 16.03%, and percent errors in σyy range from 98.65% to 11.18%. On the other

hand, Fig. 3(b) and Fig. 3(d) show that when the spurious terms have been removed coarser meshes

(8 × 8, for instance) already present acceptable results (errors equal to 1.24% and 2.06%,

respectively), and that the finer meshes (32 × 32) provides solutions which agree well with the

analytical solutions (errors equal to 0.28% and 0.52%, respectively).

Table 1 Percent errors in nondimensionalized stress components of symmetric cross-ply simply-supported
square laminate (0°/90°/90°/0°)

Errors (%)

(0°/90°/90°/0°) ⎯σxx ⎯σyy ⎯τyz ⎯τxz

a/h Meshes with/PS wout/PS with/PS wout/PS with/PS wout/PS with/PS wout/PS

10

2 × 2 61.85 39.78 55.77 23.24 155.70 53.02 85.61 40.03

4 × 4 18.63 6.80 10.25 4.08 87.36 38.81 40.72 19.83

8 × 8 4.97 1.52 1.79 1.45 39.79 20.92 16.26 9.93

16 × 16 1.16 0.27 0.25 0.51 14.82 8.93 5.72 4.02

32 × 32 0.04 0.26 0.31 0.50 3.51 1.88 1.07 0.63

100

2 × 2 98.84 27.92 98.65 27.92 300.94 63.50 173.55 37.20

4 × 4 93.20 5.67 92.10 7.17 355.30 44.26 189.54 17.63

8 × 8 76.45 1.24 72.98 2.06 342.71 23.79 167.42 9.25

16 × 16 44.22 0.20 38.06 0.63 243.00 10.16 99.48 3.76

32 × 32 16.03 0.28 11.18 0.52 115.12 2.25 36.56 0.56

Fig. 3(a) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Normal stresses
σxx computed through the thickness of the
laminate with spurious terms 

Fig. 3(b) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Normal stresses
σxx computed through the thickness of the
laminate without spurious terms 
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Fig. 3(e) through Fig. 3(h) show the solutions for the transverse shear stresses τxz and τyz. Fig. 3(e)

and Fig. 3(g) contain the solutions when the spurious terms are present in the model. Observing

those plots, it is seen that the solutions provided by coarser meshes diverge from the FSDT

solutions, leading to completely erroneous results. Only the solution of the finer mesh (32 × 32)

approaches the analytical solution throughout the thickness of the laminate. Table 1 shows that the

smallest percent errors are 36.56% and 115.12%, respectively. The enlarged details of the plots

allow for the reader to see more easily the convergence delays caused by the spurious (parasitic

shear) terms. Fig. 3(f) and Fig. 3(h) show the solutions for τxz and τyz computed after the spurious

terms have been removed. It can be seen that those solutions converge well within the analytical

ones. The enlarged details of the plots help to demonstrate that there is very good agreement

Fig. 3(c) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Normal stresses
σyy computed through the thickness of the
laminate with spurious terms 

Fig. 3(d) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Normal stresses
σyy computed through the thickness of the
laminate without spurious terms

Fig. 3(e) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Transverse shear
stresses τxz computed through the thickness
of the laminate with spurious terms 

Fig. 3(f) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Transverse shear
stresses τxz computed through the thickness
of the laminate without spurious terms
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between the 32 × 32 meshes solutions and the analytical solutions. For these meshes, the largest

percent errors are 0.56% and 2.25%, respectively.

Fig. 3(i) through Fig. 3(l) present convergence plots of the normal stresses and transverse shear

stresses solutions, which aid in demonstrating their behaviors. The reader can observe that the

solutions without the spurious terms approach the analytical solutions asymptotically with mesh

refinement for both normal and transverse shear stresses. Fig. 3(i) and Fig. 3(j) also show that the

solutions for the normal stresses σxx and σyy containing the spurious terms tend to converge to the

analytical solutions slowly, indicating that more computational effort would be required. Further,

Fig. 3(k) and Fig. 3(l) show that the solutions for transverse shear stresses containing the spurious

terms tend to converge, however very slowly and not monotonically. 

Fig. 3(g) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Transverse shear
stresses τyz computed through the thickness
of the laminate with spurious terms 

Fig. 3(h) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Transverse shear
stresses computed through the thickness of
the laminate τyz without spurious terms 

Fig. 3(i) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Convergence of
normal stresses σxx solutions with and
without parasitic shear 

Fig. 3(j) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Convergence of
normal stresses σyy solutions with and
without parasitic shear 
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4.2 Problem #2

The second problem is an angle-ply antisymmetric laminate with lamination scheme −45º/+45º.

The plate is square (a = b = 1.0 m) and simply supported, and it is subjected to a sinusoidal load

given by the following expression

(59)

where qo = 10 N/m2. The plate is solved both with side-to-thickness ratios a/h = 10 and a/h = 100.

In-plane normal stresses σxx are calculated at the center point of the plate, while transverse shear

q x y,( ) qosin
πx

a
------sin

πy

b
------=

Fig. 3(k) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Convergence of
transverse shear stresses τxz solutions with
and without parasitic shear 

Fig. 3(l) Symmetric cross-ply laminate with side-to-
thickness ratio a/h = 100. Convergence of
transverse shear stresses τyz solutions with
and without parasitic shear 

Fig. 4(a) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. Normal
stresses σxx computed through the thickness
of the laminate with spurious terms.

Fig. 4(b) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. Normal
stresses σxx computed through the thickness
of the laminate without spurious terms 
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stresses τxz are calculated at the middle point of the xz-plane border, and the in-plane shear stresses

τxy are calculated at a corner point.

First, solutions for the higher thickness plate (a/h = 10) are presented. Fig. 4(a) through Fig. 4(i)

show the results of these analyses. Fig. 4(a) and Fig. 4(b) depict the results of the normal stresses

σxx through the thickness of the laminate for the models with and without the spurious terms,

respectively. It can be seen that effects of spurious terms are apparent only in the coarse model

solution, and that both models converge to the analytical solution. Table 2 shows that percent errors

in σxx range from 70.31% to 2.30% when the spurious terms are present. After elimination of the

Fig. 4(c) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. In-plane
shear stresses τxy computed through the
thickness of the laminate with spurious
terms

Fig. 4(d) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. In-plane
shear stresses τxy computed through the
thickness of the laminate without spurious
terms

Fig. 4(e) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. Transverse
shear stresses τxz computed through the
thickness of the laminate with spurious
terms 

Fig. 4(f) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. Transverse
shear stresses τxz computed through the
thickness of the laminate without spurious
terms  
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spurious terms, the percent errors in σxx range from 38.89% to 0.53%. Fig. 4(c) and Fig. 4(d) show

the results of the in-plane shear stress τxy through the thickness of the laminate for the models with

and without the spurious terms, respectively. Here effects of spurious terms are significant. The

plots show that the numerical solution gets farther away from the analytical solution with mesh

refinement. Percent errors results displayed in Table 2, although they decrease slightly with

refinement, are very high. Their values range between 69.45% and 44.28%. On the other hand,

solutions provided by the model without the spurious terms converge to the analytical one with

mesh refinement as depicted by the plots in Fig. 4(d). It is observed, however, that the best solution

is provided by the second finer mesh (16 × 16), and that the finer mesh (32 × 32) solution actually

diverges from the analytical solution. The percent errors range from 78.36% to only 2.17% when

Fig. 4(g) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. Conver-
gence of normal stresses σxx solutions with
and without parasitic shear 

Fig. 4(h) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 10. Conver-
gence of in-plane shear stresses τxy

solutions with and without parasitic shear

Fig. 4(i) Anti-Symmetric angle-ply laminate with side-to-thickness ratio a/h = 10. Convergence of transverse
shear stresses τxz solutions with and without parasitic shear.
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the model is refined up to the 16 × 16 mesh, showing that good results are obtained. However, the

finer mesh (32 × 32) is associated to an error of 10.36%.

Further, Fig. 4(e) and Fig. 4(f) depict the solutions of transverse shear stress τxz with and without

the spurious terms, respectively. Effects of spurious terms can be noticed in the solutions of

Fig. 4(e). Although the 8 × 8 mesh solution approaches the analytical solution, further refinement

provides poorer solutions. The percent errors for the first three meshes range from 86.33% to

2.56%, but they increase to 8.01% and to 12.49%, respectively, in the further refinements. After

elimination of the spurious terms, solutions improve and present monotonic convergence towards

the analytical solution as shown in Fig. 4(f), and in Table 2 where the percent errors range from

50.51% to only 1.66%. Finally, convergence plots for solutions with and without the spurious terms

are presented in Fig. 4(g) through Fig. 4(i). These plots reinforce the stresses behaviors described

above. In general, solutions without the spurious terms converge to the analytical solution and

present good accuracy. The locking effect in the solutions with the spurious terms is emphasized by

the plots, being more pronounced in the shear stresses solutions. That is, the spurious terms prevent

the shear stresses solutions to converge to the analytical solutions. Further, as already noted above,

the corrected solution for the in-plane shear stress τxy does not present monotonic convergence

either. The corresponding convergence plot (Fig. 4(h)) shows that the result from the 32 × 32 mesh

analysis deviates significantly from the analytical solution value.

Next, solutions for the lower thickness plate (a/h = 100) are presented. Fig. 5(a) through Fig. 5(i)

show the results of these analyses. Fig. 5(a) and Fig. 5(b) depict the results of the normal stresses

σxx through the thickness of the laminate for the models with and without the spurious terms,

respectively. Solution provided by the corrected model converges well to the analytical solution.

Although refinement attenuates locking and the solution of the model containing the spurious terms

tends to converge to the analytical solution, accuracy provided by its finer mesh is not acceptable

for most points. Table 2 shows that the percent errors for the model containing the spurious terms

range from 98.81% to 25.86%, whereas the percent errors for the corrected model range from

38.89% to only 1.16%. 

Fig. 5(c) and Fig. 5(d) show the results of the in-plane shear stresses τxy through the thickness of

Table 2 Percent errors in nondimensionalized stress components of anti-symmetric angle-ply simply-supported
square laminate (−45°/+45°)

Errors (%)

(−45°/+45°) ⎯σxx ⎯τxz ⎯τxy

a/h Meshes with/PS wout/PS with/PS wout/PS with/PS wout/PS

10

2 × 2 70.31 38.89 86.33 50.51 69.45 78.36

4 × 4 39.57 9.83 32.50 36.81 50.44 20.72

8 × 8 15.77 4.45 2.56 23.07 46.86 0.70

16 × 16 0.36 3.56 8.01 10.67 43.40 2.17

32 × 32 2.30 0.53 12.49 1.66 44.28 10.36

100

2 × 2 98.81 38.89 194.45 50.51 98.77 78.36

4 × 4 95.16 6.96 195.97 30.02 94.36 23.69

8 × 8 82.23 5.28 117.67 20.67 81.55 12.01

16 × 16 52.49 2.84 196.62 5.97 62.89 18.10

32 × 32 25.86 1.16 500.51 5.14 58.62 34.47
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the laminate for the models with and without the spurious terms, respectively. The model with the

spurious terms provides solutions which do not converge to the analytical solution. The percent

errors in Table 2 range from 98.77% to 58.62%, which are unacceptable. Solutions provided by the

model without the spurious terms are better, although results do not present monotonic convergence.

Examining Fig. 5(d) closely, it is seen that results provided by the coarser meshes approach the

analytical solution better than the results provided by the finer meshes at some points in the top

lamina, which is unexpected. In the bottom lamina, however, the best results correspond to the finer

meshes although the 16 × 16 mesh provides better results than the 32 × 32 mesh at the points closer

Fig. 5(a) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. Normal
stresses σxx computed through the thick-
ness of the laminate with spurious terms 

Fig. 5(b) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. Normal
stresses σxx computed through the
thickness of the laminate without spurious
terms 

Fig. 5(c) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. In-plane
shear stresses τxy computed through the
thickness of the laminate with spurious
terms 

Fig. 5(d) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. In-plane
shear stresses τxy computed through the
thickness of the laminate without spurious
terms 
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to the middle surface. The percent errors shown in Table 2 correspond to stress values in the top

lamina. The errors associated to the first three meshes decrease from 78.36% to 12.01%, but they

increase to 18.10% and to 34.47%, respectively, in the further refinements.

Further, Fig. 5(e) and Fig. 5(f) depict the solutions of transverse shear stresses τxz with and

without the spurious terms, respectively. Effects of spurious terms are significant in these solutions.

Coarse meshes solutions are much smaller than the analytical one whereas further refinement

provides solutions that greatly diverge from the analytical solution. As shown in Table 2, the

percent error corresponding to the coarser mesh is 194.45% whereas its value for the finer mesh is

Fig. 5(e) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. Transverse
shear stresses τxz computed through the
thickness of the laminate with spurious
terms 

Fig. 5(f) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. Transverse
shear stresses τxz computed through the
thickness of the laminate without spurious
terms  

Fig. 5(g) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. Conver-
gence of normal stresses σxx solutions with
and without parasitic shear 

Fig. 5(h) Anti-Symmetric angle-ply laminate with
side-to-thickness ratio a/h = 100. Conver-
gence of in-plane shear stresses τxy

solutions with and without parasitic shear 
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500.51%. However, solutions provided by the model corrected for the spurious terms present

monotonic convergence and good accuracy when compared to the analytical solution, as shown in

Fig. 5(f). Percent errors in Table 2 range from 50.51% to 5.14%. Finally, convergence plots for

solutions with and without the spurious terms are presented in Fig. 5(g) through Fig. 5(i). The

reader can observe that the solutions without the spurious terms approach the analytical solutions

gradually with mesh refinement for both normal and transverse shear stresses. Fig. 5(g) also shows

that the spurious terms lock the model such that convergence of σxx appears to occur, but very

slowly. Fig. 5(h) and Fig. 5(i), however, show that the spurious terms do not allow shear stresses to

converge. The erratic behavior of the transverse shear stresses is emphasized.

4.3 Problem #3

The third problem is a square non-symmetric cross-ply laminated composite plate with two

opposite edges simply supported and the other two opposite edges free subjected to a sinusoidal

load defined by Eq. (59). The laminate is composed of two laminae with lamination scheme 0º/90º,

and the sides of the laminate are 1.0 m in length (a = b = 1.0 m). The plate is solved both with

Fig. 5(i) Anti-Symmetric angle-ply laminate with side-to-thickness ratio a/h = 100. Convergence of transverse
shear stresses τxz solutions with and without parasitic shear 

Table 3 Percent errors in nondimensionalized stress components of non-symmetric cross-ply square laminate
(0°/90°) with two opposite free edges and two opposite simply supported edges

Errors (%)

(0°/90°) ⎯σxx ⎯σyy ⎯τyz

a/h Meshes with/PS wout/PS with/PS wout/PS with/PS wout/PS

10

2 × 2 24.78 50.06 67.03 45.59 109.23 19.33

4 × 4 8.06 15.93 39.45 24.93 12.83 13.51

8 × 8 4.87 11.78 10.38 4.75 22.40 2.64

16 × 16 1.15 2.77 3.40 1.84 18.87 1.85

32 × 32 1.14 0.79 1.06 0.64 11.14 1.28
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side-to-thickness ratios a/h = 10 and a/h = 100. In-plane normal stresses σxx and σyy are calculated

at the center point of the plate, while transverse shear stresses τyz are calculated at borders middle

points. Analytical solutions are not available, except for the maximum stresses values for the case

where a/h = 10 (Reddy 2004). Percent errors contained in Table 3 are referred to those maximum

stresses values.

First, solutions for the higher thickness plate (a/h = 10) are presented. Fig. 6(a) through Fig. 6(i)

show the results of these analyses. Fig. 6(a) and Fig. 6(b) show the σxx solutions with and without

the spurious terms, respectively. According to the plots in Fig. 6(a), the spurious terms prevent

convergence to be monotonic. This is easily seen at the middle surface and on the middle of the top

Fig. 6(a) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Normal
stresses σxx computed through the thickness
of the laminate with spurious terms 

Fig. 6(b) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Normal
stresses σxx computed through the thickness
of the laminate without spurious terms 

Fig. 6(c) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Normal
stresses σyy computed through the thickness
of the laminate with spurious terms 

Fig. 6(d) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Normal
stresses σyy computed through the thickness
of the laminate without spurious terms 
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lamina where the values provided by the 32 × 32 mesh are not the extreme ones. This erroneous

behavior is corrected by the removal of the spurious terms as shown by Fig. 6(b). It can be seen

that convergence is monotonic as the solution provided by the 32 × 32 mesh contains the extreme

values. Table 3 shows that percent errors are larger in the corrected model, except in the last

solution (32 × 32 mesh). These error values range from 50.06% to 0.79%. Percent errors in the

model containing the spurious terms range from 24.78% to 1.14%.

Fig. 6(c) and Fig. 6(d) show the σyy solutions with and without the spurious terms, respectively.

The plots show that the spurious terms have a more significant effect on the coarse meshes

Fig. 6(e) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Transverse
shear stresses τyz computed through the
thickness of the laminate with spurious
terms 

Fig. 6(f) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Transverse
shear stresses τyz computed through the
thickness of the laminate without spurious
terms 

Fig. 6(g) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Conver-
gence of normal stresses σxx solutions with
and without parasitic shear. 

Fig. 6(h) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 10. Conver-
gence of normal stresses σyy solutions with
and without parasitic shear 
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solutions. As refinement is proceeded on, the locking effect is attenuated. Both models converge to

the same solution, maintaining a small numerical difference between their final solutions. Table 3

shows that the percent errors of the model containing the spurious terms range from 67.03% to

1.06%, while the percent errors of the corrected model range from 45.59% to 0.64%.

Further, Fig. 6(e) and Fig. 6(f) show the τyz solutions with and without the spurious terms,

respectively. It is seen that the spurious terms prevent convergence of the transverse shear stresses

to occur. Results are oscillatory as values provided by the 8 × 8 mesh are higher than the ones

provided by the 16 × 16 mesh, which in turn are higher than the ones provided by the 32 × 32

mesh. Removal of the spurious terms corrects this behavior. Fig. 6(f) shows monotonic convergence

of transverse shear stresses.

Finally, Fig. 6(g) through Fig. 6(i) present convergence plots of the normal stresses and transverse

shear stresses solutions, which aid in demonstrating their behaviors. Fig. 6(g) shows that both

models converge to the analytical solution value of σxx. Convergence of the corrected model occurs

from above, while the values of the model containing the spurious terms oscillates around the

analytical solution value. These plots also clearly demonstrate that errors in the corrected model are

initially larger, and that are only considerably reduced in the last solution. Fig. 6(h) show that both

models provide convergent solutions to σyy. Locking is significant in the coarse meshes, being

attenuated with refinement. Fig. 6(i) shows the strong effect of the spurious terms on the solution of

τyz. The corrected model converges monotonically to the analytical solution. 

Next, solutions for the lower thickness plate (a/h = 100) are presented. Fig. 7(a) through Fig. 7(i)

show the results of these analyses. In general, the results depicted by these figures show that the

model containing the spurious terms presents poor convergence rates whereas the model without the

spurious terms converges rather quickly. In the absence of an analytical solution, percent errors have

not been produced. Fig. 7(a) and Fig. 7(b) show the σxx solutions with and without the spurious

terms, respectively. It can be seen that the locking effect caused by the spurious terms are very

significant even for the last refinement. Results are severely underestimated by the model containing

the spurious terms. Further it is shown by Fig. 7(b) that convergence of the solution provided by the

corrected model occurs from above.

Fig. 6(i) Non-Symmetric cross-ply laminate with side-to-thickness ratio a/h = 10. Convergence of transverse
shear stresses τyz solutions with and without parasitic shear
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Fig. 7(c) and Fig. 7(d) show the σyy solutions with and without the spurious terms, respectively.

Again, the locking effect is very significant, causing the results to be underestimated. Similar

observations can be made regarding the τyz solutions with and without the spurious terms depicted

in Fig. 7(e) and Fig. 7(f), respectively. The spurious terms prevent convergence. The coarse meshes

provide solutions which are very different than the solutions provided by the finer meshes. Solutions

provided by the model corrected for the spurious terms seem to converge, although convergence is

not monotonic as oscillations occur.

Finally, Fig. 7(g) through Fig. 7(i) present convergence plots of the normal stresses and transverse

shear stresses solutions, which aid in interpreting their behaviors. Fig. 7(g) and Fig. 7(h) clearly

Fig. 7(a) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Normal
stresses σxx computed through the thickness
of the laminate with spurious terms.

Fig. 7(b) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Normal
stresses σxx computed through the thickness
of the laminate without spurious terms 

Fig. 7(c) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Normal
stresses σyy computed through the thickness
of the laminate with spurious terms 

Fig. 7(d) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Normal
stresses σyy computed through the thickness
of the laminate without spurious terms 
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show the locking caused by the spurious terms in the solutions of σxx and σyy. Fig. 7(i) shows that

the solution for τyz provided by the corrected model change very little from mesh to mesh. Also, the

coarser meshes solutions with the spurious terms are closer to the corrected solution than the ones

provided by the finer meshes. Results of the latter are very much in error with respect to the

solution provided by the corrected model.

Fig. 7(e) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Transverse
shear stresses τyz computed through the
thickness of the laminate with spurious
terms  

Fig. 7(f) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Transverse
shear stresses τyz computed through the
thickness of the laminate without spurious
terms 

Fig. 7(g) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Conver-
gence of normal stresses σxx solutions with
and without parasitic shear

Fig. 7(h) Non-Symmetric cross-ply laminate with
side-to-thickness ratio a/h = 100. Conver-
gence of normal stresses σyy solutions with
and without parasitic shear  
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5. Conclusions

This work is concerned with the modeling of laminated composite plates employing the finite

element method. It focuses on the locking of the bilinear plate element and how it affects numerical

solutions. Further, it is concerned with identifying and eliminating the sources of locking employing

a procedure which is alternative to classical ones (reduced-order integration, for instance). 

A four-node plate element formulated using strain gradient notation has been presented. Strain

gradient notation is a physically interpretable notation which allows for the a-priori determination

of the element’s modeling capabilities and deficiencies. The shear strain polynomial expansions of

the element were inspected and showed to possess spurious terms. Specifically, those terms are first-

and second-order normal strain terms, which do not contribute physically to the shear deformation

of the plate. They cause shear locking by increasing the shear strain energy of the element unduly

when activated during deformation. For this reason, these spurious terms are referred to as parasitic

shear terms (Dow 1999). This terminology is employed in this paper. Using the transparency of the

notation, the element was corrected by simply removing the parasitic shear terms from the shear

strain expressions. 

Higher thickness and lower thickness plates have been analyzed here for different lamination

schemes, boundary and loading conditions. In each case, stresses solutions provided by the model

containing the spurious terms have been compared to stresses solutions provided by the corrected

model. Those numerical analyses have demonstrated that the identified spurious terms are the cause

of the model’s locking, which delays convergence. Those analyses have also demonstrated the

effectiveness of the procedure employed to eliminate the spurious terms. 

In general, solutions provided by the corrected model converged monotonically and faster.

Exceptions to this have been observed in the solutions of the in-plane shear stress τxy for both

thicknesses of the angle-ply laminate, and in the solution of the transverse shear stress τyz for the

lower thickness non-symmetric cross-ply laminate. In those solutions, convergence was not

monotonic after removal of the parasitic shear terms. 

Numerical solutions have shown that locking effects are stronger in the lower thickness plates’

Fig. 7(i) Non-Symmetric cross-ply laminate with side-to-thickness ratio a/h = 100. Convergence of transverse
shear stresses τyz solutions with and without parasitic shear 
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solutions than in the higher thickness plates’ solutions. This was expected because as shear strains

are negligible in thin plates parasitic shear should be very pronounced. Further, numerical solutions

have shown that the corrected model provides correct results as stresses results converge well within

analytical solutions. Finally, numerical solutions have shown that mostly shear stresses solutions

provided by the model containing the spurious terms might not converge adequately to the correct

solutions as the results oscillate or might be completely erroneous in the qualitative sense. Thus, it

can be concluded that it is advantageous to use strain gradient notation as spurious terms can be

identified precisely a-priori and then eliminated definitely from the element’s matrices. Also, results

obtained here strongly indicate that refinement alone might not guarantee the elimination of locking,

enforcing the need to apply a technique to remove spurious terms from finite elements. The simple

procedure made available through the use of strain gradient notation is appealing, and might be used

as an alternative to employing well-known procedures such as reduced-order integration techniques. 
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