Use of moving substructure element for vibration analyses of a structure due to a moving trolley carrying a swinging mass

Jia-Jang Wu ${ }^{\dagger}$
Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Hai-Chuan Road, Nan-Tzu, Kaohsiung 811, Taiwan, Republic of China

(Received September 28, 2005, Accepted November 20, 2007)

1. Introduction

Moving-load-induced vibration of structures is an important problem in structural engineering. Therefore, many researchers have devoted themselves in this field. However, from the existing literature, it is found that, due to the complexity of the mathematical expressions, only Wu (2004) has investigated the vibration characteristics of a three-dimensional framework due to a moving mass carrying a swinging mass. Although the formulations of Wu (2004) are available for determining the dynamic responses of the three-dimensional structure induced by the moving mass carrying a swinging mass, they are not available for determining the dynamic responses of the swinging motion of the swinging mass. To solve this problem, this paper presents a technique to replace the "moving trolley carrying a swinging mass" by a moving substructure element, such that the dynamic responses of the structure and the swinging motion of the swinging mass can be determined simultaneously.

2. Property matrices of the moving substructure element

Fig. 1 shows the mathematical model for the overhead crane hoisting a swinging mass with magnitude $m_{s w}$, where the trolley (with mass m_{T}) may move on the top beam of the overhead crane. Fig. 2 shows the instantaneous position of the moving trolley $\left(m_{T}\right)$ located at the $s^{\text {th }}$ beam element of the top beam. The position vectors of the trolley m_{T} and the swinging mass $m_{s w}$ are given by

$$
\begin{equation*}
\vec{r}_{T}=\left(x_{T}+x_{A}\right) \vec{i}-y_{A} \vec{j}, \quad \vec{r}_{s w}=\left(x_{T}+x_{A}+\ell_{r} \sin \theta\right) \vec{i}-\left(y_{A}+\ell_{r} \cos \theta\right) \vec{j} \tag{1}
\end{equation*}
$$

where y_{A} and x_{A} respectively represent the vertical (y) and horizontal (x) displacements of the

[^0]

Fig. 1 Mathematical model for the overhead crane carrying a swinging mass $m_{s w}$

Fig. 2 A beam element subjected to a moving trolley carrying a swinging mass $m_{s w}$
contact point A given by

$$
\begin{equation*}
y_{A} \equiv w_{A y} \equiv w_{A y}\left(x_{T}, t\right), \quad x_{A} \equiv w_{A x} \equiv w_{A x}\left(x_{T}, t\right) \tag{2}
\end{equation*}
$$

Time derivatives of Eq. (1) give

$$
\begin{equation*}
\dot{\vec{r}}_{T}=\left(\dot{x}_{T}+\dot{x}_{A}\right) \vec{i}-\dot{y}_{A} \vec{j}, \quad \dot{\vec{r}}_{s w}=\left(\dot{x}_{T}+\dot{x}_{A}+\ell_{r} \cos \theta \dot{\theta}\right) \vec{i}-\left(\dot{y}_{A}-\ell_{r} \sin \theta \dot{\theta}\right) \vec{j} \tag{3}
\end{equation*}
$$

The total kinetic energy T and the total potential energy U of the moving trolley and the swinging mass are

$$
\begin{gather*}
T=\frac{1}{2} m_{T}\left[\left(\dot{x}_{T}+\dot{x}_{A}\right)^{2}+\dot{y}_{A}^{2}\right]+\frac{1}{2} m_{s w}\left[\left(\dot{x}_{T}+\dot{x}_{A}+\ell_{r} \cos \theta \dot{\theta}\right)^{2}+\left(\dot{y}_{A}-\ell_{r} \sin \theta \dot{\theta}\right)^{2}\right] \tag{4}\\
U=-\left(m_{T}+m_{s w}\right) g y_{A}-m_{s w} g \ell_{r} \cos \theta \tag{5}
\end{gather*}
$$

Substituting the last two equations into the following Lagrange's equations

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\partial T}{\partial \dot{\eta}}\right)-\frac{\partial T}{\partial \eta}+\frac{\partial U}{\partial \eta}=0 \quad\left(\eta=x_{A}, y_{A} \text { and } \theta\right) \tag{6}
\end{equation*}
$$

one obtains

$$
\begin{align*}
\left(m_{T}+m_{s w}\right) \ddot{x}_{A}+m_{s w} \ell_{r} \cos \theta \ddot{\theta} & =-\left(m_{T}+m_{s w}\right) \ddot{x}_{T}=f_{x} \tag{7}\\
\left(m_{T}+m_{s w}\right) \ddot{y}_{A}-m_{s w} \ell_{r} \sin \theta \ddot{\theta} & =\left(m_{T}+m_{s w}\right) g=f_{y} \tag{8}\\
m_{s w} \ell_{r} \cos \theta \ddot{x}_{A}-m_{s w} \ell_{r} \sin \theta \ddot{y}_{A}+m_{s w} \psi_{r}^{2} \ddot{\theta} & =-m_{s w} \ell_{r} \cos \theta \ddot{x}_{T}-m_{s w} \ell_{r} \sin \theta \tag{9}
\end{align*}
$$

where f_{y} and f_{x} represent the vertical (y) and horizontal (x) interaction forces at the contact point A, respectively, and \ddot{y}_{A} and \ddot{x}_{A} represent the associated accelerations. Besides, $\ddot{\theta}$ represent the angular acceleration of the swinging mass and \ddot{x}_{T} represent the acceleration of the moving trolley. For convenience, we set

$$
\begin{equation*}
\dot{x}_{T} \equiv V_{T}, \quad \ddot{x}_{T} \equiv a_{T} \tag{10}
\end{equation*}
$$

where \dot{x}_{T} represents the velocity of the moving trolley.
Time derivatives of Eq. (2) yield

$$
\begin{gather*}
\ddot{y}_{A}=\ddot{w}_{A y}+2 \dot{x}_{T} \dot{w}_{A y}^{\prime}+\dot{x}_{T}^{2} w_{A y}^{\prime \prime}=\ddot{w}_{A y}+2 V_{T} \dot{w}_{A y}^{\prime}+V_{T}^{2} w_{A y}^{\prime \prime} \tag{11}\\
\ddot{x}_{A}=\ddot{w}_{A x}+2 \dot{x}_{T} \dot{w}_{A x}^{\prime}+\dot{x}_{T}^{2} w_{A x}^{\prime \prime}=\ddot{w}_{A x}+2 V_{T} \dot{w}_{A x}^{\prime}+V_{T}^{2} w_{A x}^{\prime \prime} \approx \ddot{w}_{A x} \tag{12}
\end{gather*}
$$

Based on the principle of mode superposition and the definition of shape functions, one has

$$
\begin{gather*}
w_{A y}=N_{2} u_{s_{2}}+N_{3} u_{s_{3}}+N_{5} u_{s_{5}}+N_{6} u_{s_{6}}, \quad w_{A x}=N_{1} u_{s_{1}}+N_{4} u_{s_{4}} \tag{13}\\
f_{s_{2}}=N_{2} f_{y}, \quad f_{s_{3}}=N_{3} f_{y}, \quad f_{s_{5}}=N_{5} f_{y}, \quad f_{s_{6}}=N_{6} f_{y}, \quad f_{s_{1}}=N_{1} f_{x}, \quad f_{s_{4}}=N_{4} f_{x} \tag{14}
\end{gather*}
$$

In the last equations, $u_{s_{i}}$ and $f_{s_{i}}(i=1$ to 6$)$ are, respectively, the nodal displacements and forces of the $s^{\text {th }}$ beam element at which the moving trolley m_{T} is located (cf. Fig. 2), while $N_{k}(k=1$ to 6) are the shape functions of the beam element given by

$$
\begin{align*}
& N_{1}=1-\varsigma, \quad N_{2}=1-3 \varsigma^{2}+2 \varsigma^{3}, \quad N_{3}=\left[\varsigma-2 \varsigma^{2}+\varsigma^{3}\right] \ell_{b} \\
& N_{4}=\varsigma, \quad N_{5}=3 \varsigma^{2}-2 \varsigma^{3}, \quad N_{6}=\left[-\varsigma^{2}+\varsigma^{3}\right] \ell_{b}, \quad \varsigma=x_{T} / \ell_{b} \tag{15}
\end{align*}
$$

where ℓ_{b} is the length of the $s^{\text {th }}$ beam element and x_{T} is the distance between the location of the moving trolley m_{T} and the left end of the $s^{\text {th }}$ beam element, at time t.

Substituting Eqs. (10)-(15) into Eqs. (7)-(9), one obtains

$$
\begin{align*}
& {[m]\{\ddot{u}\}+[c]\{\dot{u}\}+[k]\{u\}=\{f\}} \tag{16}\\
& \{\ddot{u}\}=\left[\begin{array}{llllllllll}
\ddot{u}_{s_{1}} & \ddot{u}_{s_{2}} & \ddot{u}_{s_{3}} & \ddot{u}_{s_{4}} & \ddot{u}_{s_{5}} & \ddot{u}_{s_{6}} & \ddot{\theta}
\end{array}\right]^{T}, \quad\{\dot{u}\}=\left[\begin{array}{llllll}
\dot{u}_{s_{1}} & \dot{u}_{s_{2}} & \dot{u}_{s_{3}} & \dot{u}_{s_{4}} & \dot{u}_{s_{5}} & \dot{u}_{s_{6}}
\end{array}\right]^{T} \\
& \{u\}=\left[\begin{array}{lllllll}
u_{s_{1}} & u_{s_{2}} & u_{s_{3}} & u_{s_{4}} & u_{s_{5}} & u_{s_{6}} & \theta
\end{array}\right]^{T} \tag{17}\\
& {[m]=\left[\begin{array}{ccccccc}
\alpha N_{1} N_{1} & 0 & 0 & \alpha N_{1} N_{4} & 0 & 0 & N_{1} m_{s w} \ell_{r} \cos \theta \\
& \alpha N_{2} N_{2} & \alpha N_{2} N_{3} & 0 & \alpha N_{2} N_{5} & \alpha N_{2} N_{6} & -N_{2} m_{s w} \ell_{r} \sin \theta \\
& & \alpha N_{3} N_{3} & 0 & \alpha N_{3} N_{5} & \alpha N_{3} N_{6} & -N_{3} m_{s w} \ell_{r} \sin \theta \\
& & & \alpha N_{4} N_{4} & 0 & 0 & N_{4} m_{s w} \ell_{r} \cos \theta \\
& & & & & \alpha N_{5} N_{5} & \alpha N_{5} N_{6} \\
& & -N_{5} m_{s w} \ell_{r} \sin \theta \\
& s y m & & & & \alpha N_{6} N_{6} & -N_{6} m_{s w} \ell_{r} \sin \theta \\
& & & & & & m_{s w} \ell_{r}^{2}
\end{array}\right]} \tag{18}
\end{align*}
$$

$$
\begin{align*}
& {[c]=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& \beta N_{2} N_{2}^{\prime} & \beta N_{2} N_{3}^{\prime} & 0 & \beta N_{2} N_{5}^{\prime} & \beta N_{2} N_{6}^{\prime} & 0 \\
& & \beta N_{3} N_{3}^{\prime} & 0 & \beta N_{3} N_{5}^{\prime} & \beta N_{3} N_{6}^{\prime} & 0 \\
& & & 0 & 0 & 0 & 0 \\
& & & & \beta N_{5} N_{5}^{\prime} & \beta N_{5} N_{6}^{\prime} & 0 \\
& \text { sym } & & & & \beta N_{6} N_{6}^{\prime} & 0 \\
& & & & & & 0
\end{array}\right]} \tag{19}\\
& {[k]=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& \gamma N_{2} N_{2}^{\prime \prime} & \gamma N_{2} N_{3}^{\prime \prime} & 0 & \gamma N_{2} N_{5}^{\prime \prime} & \gamma N_{2} N_{6}^{\prime \prime} & 0 \\
& & \gamma N_{3} N_{3}^{\prime \prime} & 0 & \gamma N_{3} N_{5}^{\prime \prime} & \gamma N_{3} N_{6}^{\prime \prime} & 0 \\
& & & 0 & 0 & 0 & 0 \\
& & & & \gamma N_{5} N_{5}^{\prime \prime} & \gamma N_{5} N_{6}^{\prime \prime} & 0 \\
& s y m & & & & \gamma N_{6} N_{6}^{\prime \prime} & 0 \\
& & & & & & 0
\end{array}\right]} \tag{20}\\
& \{f\}=\left\{\begin{array}{l}
f_{s} \\
f_{s} \\
f_{s} \\
f_{s} \\
f_{s} \\
f_{s} \\
f_{\theta}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1}\left(m_{T}+m_{s w}\right) a_{T} \\
N_{2}\left(m_{T}+m_{s w}\right) g \\
N_{3}\left(m_{T}+m_{s w}\right) g \\
-N_{4}\left(m_{T}+m_{s w}\right) a_{T} \\
N_{5}\left(m_{T}+m_{s w}\right) g \\
N_{6}\left(m_{T}+m_{s w}\right) g \\
-m_{s w} \ell_{r} \cos \theta a_{T}-m_{s w} g \ell_{r} \sin \theta
\end{array}\right\} \tag{21}\\
& \alpha=m_{T}+m_{s w}, \quad \beta=2\left(m_{T}+m_{s w}\right) V_{T}, \quad \gamma=\left(m_{T}+m_{s w}\right) V_{T}^{2} \tag{22}
\end{align*}
$$

Eqs. (18), (19) and (20) are, respectively, the mass, damping and stiffness matrices of the moving substructure element. In addition, Eq. (21) is the equivalent nodal force vector induced by the moving trolley together with the swinging mass.

References

Wu, J.J. (2004), "Dynamic responses of a three-dimensional framework due to a moving carriage hoisting a swinging object", Inte. J. Numer. Meth. Eng., 59(13), 1679-1702.

[^0]: \dagger Ph.D., E-mail: jjangwu@mail.nkmu.edu.tw

