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Abstract. An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear
elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to
characterize the severity of stresses and deformation near crack tips. The domain integral technique, for
which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is
utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution
accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm
with a solution mapping scheme to resume the analysis at a particular load level after the adaptive
remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the
efficiency of the combined domain integral technique and the adaptive finite element method.
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1. Introduction

The J-integral is widely used and accepted as a fracture mechanics parameter for determining the

intensity of the crack tip fields in elastic solids. For two-dimensional analysis without body forces

and temperature gradients, this parameter is originally formulated as a path-independent line integral

in which remote contours can give exactly the same result as contours near the crack tip (Rice

1968). In general situation, the global path-independence is ceased and the integration must be

performed on the vanishingly small contour shrunk onto the crack tip (Moran and Shih 1987).

Because of this small contour and the extent of the HRR singularity fields at the crack tip then the

line integral is not suitable to implement numerically (Anderson 2005). Therefore many alternative

forms of expressions have been derived and proposed to circumvent the difficulties (Aoki et al.

1981, Atluri 1982). The finite element method became the preferred numerical tool for analyzing

the fracture problems, because the analysis of explicit cracks in finite element method is easily
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handled by introducing cracks in the mesh (Dechaumphai et al. 2003, Nishioka 1997, Nishioka et al.

2001, Nishioka and Stan 2003). In order to make the numerical solution more accurate and simple

to be determined by the finite element method, the divergence theorem is applied to convert the

original line integral into the domain integral form.

In this paper, the J-integral is calculated by the domain integral technique. The 6-node triangular

element is employed in the analysis as the non-crack-tip element. A layer of singular degenerated

elements is used to surround the crack tip as the crack tip elements. Each element is a 9-node

Lagrange rectangular element in which one edge is collapsed onto the crack tip where three crack

tip nodes can displace independently, while the mid-edge nodes and the interior node are placed at

their usual mid-positions (Li et al. 1985). An adaptive remeshing technique with a solution mapping

scheme is then implemented to enhance the solution accuracy at every load step. The efficiency of

the combined adaptive finite element and domain integral technique is evaluated by analyzing

several two-dimensional and axisymmetric problems.

2. J-integral & domain integral technique

Under the quasi-static analysis with crack lying on the x1 axis, the two dimensional J-integral is

defined by Shih et al. (1986)

(1)

where Γ is a limiting contour starting from the bottom crack face and ending at the top surface as

illustrated in Fig. 1, W is the strain energy density, σij are the stress tensors, ui are the displacement

vectors, δij is the Kronecker’s delta, and ni is the outward normal vector to the vanishing contour Γ.

In the absence of crack face tractions, Eq. (1) for the closed curve  as shown

in Fig. 1 can be written in the form

(2)
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Fig. 1 Conventions on the J-integral expression and closed contour  enclosing a simply
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where q1 is any sufficiently smooth function in the region enclosed by C provided that it is unity on

Γ and zero on C1, and mi is the outward normal vector to the domain surrounded by C. The

divergence theorem is applied to Eq. (2) to yield the domain integral form

(3)

where A is the area enclosed by C including the crack tip region because of . With the

presence of thermal strain, the total strain tensor εij could be presented as the sum of the mechanical

and the thermal strains

(4)

where  represents the mechanical strain, β is the coefficient of thermal expansion and T is the

temperature relative to the reference state. Under assumptions of the equilibrium equation without

body forces and the strain energy density being the only function of mechanical strain, Eq. (3) can

be expressed in the domain expression form

(5)

where  denotes the trace of σij. Eq. (5) is domain-independent in the sense that any domain

can be chosen for the purpose of calculating the J-integral. This characteristic of the domain integral

technique is used to evaluate the accuracy of the computed J-integral by checking its equality of the

results calculated from different integration domains.

For axisymmetric problems, the domain expression of the J-integral can be derived as a

specialization of the three-dimensional formulation

(6)

where r is the radius from the axis of symmetry to a point in the cross section, the indices ω and γ

range over the cylindrical coordinates r and z, respectively. The qr is a smooth function as in the

two-dimensional expression, and σφφ and ur/r are the hoop stress and strain, respectively. The ( ), r
represents the partial derivative with respect to r, and R is the radius from the axis of symmetry to

the crack tip.

3. Adaptive remeshing technique

The mesh generation implemented in this paper follows the Delaunay triangulation and the

automatic point creation procedure which step-by-step explanation of these algorithms was

presented in detail by Dechaumphai et al. (2003). The adaptive remeshing technique generates an

entirely new mesh based on the solution obtained from a previous mesh. The second derivatives of

any key variable such as von Mises stresses is used to determine the proper element sizes; that is,

small elements are placed in the region where changes in the variable gradients are large especially
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around crack tip. Practical experience found that this type of error indicator for the fracture

mechanics problems, where regions such as crack tip has different strength, may cause inaccurate

solution due to the inadequate refinement because the point spacing is scaled according to the

maximum value of the second derivatives. This problem also found in the transient high-speed

compressible flow problems which the adaptive remeshing algorithm previously proposed by

Dechaumphai et al. (2003) provided deteriorate solutions.

To achieve higher solution accuracy, element sizes of two most inner layers around crack tip

should not vary too rapidly. In order to overcome this problem, an element size scaling function,

which scales the point spacing of point pi within the range of χmin and χmax, has been used

(7)

The coefficient χi controls the point insertion in the regions of high solution gradient and

eliminates excessive distortion of the regularity of the triangulation. The value of χmin limits the

number of points insertion in the high gradient region, while the value of upper limit χmax allows to

insert more points into the region with smaller solution gradient. When the adapted elements

generated by this function are distorted in shape, the Alpha and Beta coefficients are incorporated to

control the point density and the regularity of triangulation.

The adaptive mesh regeneration above has been developed and implemented as the Algorithm III

presented by Dechaumphai et al. (2003) to provide better element shapes. The new mesh is

constructed using the information from the previous or background mesh. Such mesh composes of

small elements in the regions with large changes of the solution gradients, and large elements in the

remaining regions where the changes of the solution gradients are small. Detailed process of

adaptive remeshing technique is described as follows.

Algorithm AdaptiveRemeshing (P, T, P0, alpha, beta, hmin, hmax, Ximin, Ximax, threshold)

1. Let P0, k = 1, …, n be the set of points of the background mesh.

2. Let P be the set of points and T be the set of triangles.

3. Read next interior point pi of the background mesh from P0.

4. If hi > hmax then go to step 3.

5. Search triangle ti in T which contains the point pi. Then calculate the centroid of the triangle ti
and define it as point pq, and compute the point distribution function of point pq by Eq. (8).

(8)

where M is number of surrounding nodes to node q.

6. Compute the distance dm, m = 1, 2, 3 from point pq to all vertices of the triangle ti.

7. Compute the Xi coefficient, χi, for point pi by using Eq. (7), and the average distance, si = (d1

+ d2 + d3)/3.

8. Perform the Xi-Alpha test for point pq. If (χi * alpha * hi) >= si, then reject the point pq and

return to step 3.

9. Perform the Xi-Beta test for point pq. If two out of three of dm < (xi * hmin/beta) for any m = 1,

2, 3, then reject the point pq and return to step 3.
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10.Accept the point pq for insertion by the Delaunay triangulation algorithm and add point pq into

P.

11.Repeat steps 3 to 10 until all points in P are considered.

12.Perform the Delaunay triangulation of the inserted points in P.

13.If number of accepted points greater than threshold, then go to step 3; otherwise stop the

algorithm.

Since the proposed algorithm above does not guarantee the good mesh topology, the mesh

relaxation (Frey 1991) based on an edge-swapping technique is included for well-shaped mesh

improvement. The objective of this method is to make the topology of elements closer to equilateral

triangles by swapping edges to equalize the vertex degrees (number of edges linked to each point)

toward the value of six. Finally, the Laplacian smoothing is applied to smooth the meshes. The

proposed algorithm is smart and robust enough for applying to hyperbolic, parabolic and elliptic

problems (Phongthanapanich and Dechaumphai 2004, Phongthanapanich et al. 2006).

To evaluate the performance of the adaptive remeshing technique with the Delaunay triangulation,

the specification of element size, hi, is given as an analytic function defined for two-dimensional

domain. The adaptive mesh generation process starts from an initial mesh generated in the domain,

then the values of the element sizes at all points are computed by the given function. The mesh

generation coupled with the adaptive remeshing procedure is iterated until the resulting mesh

becomes globally stable. The iteration process is terminated if the total node increment is fewer than

the specified number. The two examples of adaptive mesh generation with the analytical function

for specifying element sizes presented herein are: (1) adaptive meshes along the centerline of a

rectangular domain, and (2) an alpha-shape adaptive meshes in a square domain.

Adaptive Meshes along Centerline of a Rectangular Domain: The first example presents an

adaptive mesh generation in a 3.0 × 5.0 rectangular domain. The element sizes at points in the

domain are given by the distribution function 

(9)

where y is the variable and the values of μ and σ are constants equal to zero and one, respectively.

Fig. 2 shows the series of adaptive meshes generated by three iterations based on a coarse initial

mesh. The value of mesh generation coefficients, α, β, χmin, χmax are 0.5, 0.6, 0.75, and 1.10,

respectively. Due to the prescribed distribution function in Eq. (9), small element sizes are specified

around the centerline of the domain. The figure shows that size similarity of the adaptive meshes is

generated along the narrow band around the centerline of the domain. The value of χmin limits the

number of point insertion along the centerline of the domain, while the value of χmax allows more

nodes to be inserted into the other regions.

The specification of scale range and χmin, χmax have strong effects on the resulting meshes as

shown in Fig. 2. Without the scale range, the mesh is composed of small elements concentrated

around line a (see Fig. 3) with progressively larger elements outwards as ha < hb, hc. Hence, a mesh

consisting of relatively uniform elements in a wider centerline band of the domain may be

generated. This mesh has better physical correlation with the behaviors of shocks. The scale range

function sorts the nodal spacing values into prescribed intervals according to χmin and χmax. In each

interval, the generated element sizes are relatively uniform.

An Alpha-Shape Adaptive Meshes in a Square Domain: The third example presents an alpha-
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shape adaptive mesh generation in a square domain. The alpha shape function (Borouchaki et al.

1997) is used to calculate element sizes in an 8 × 8 square domain

(10)h x y,( )
min 0.2 λ 1–( )3 0.005 1.0,+( ) if λ 1≥

min 0.2 λ 1–( )2 0.01 1.0,+( )  if λ 1<⎩
⎨
⎧

=

Fig. 2 Adaptive meshes along centerline of a rectangular domain

Fig. 3 Distribution of element sizes along the y direction
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where the value of parameter λ is determined from . Fig. 4 shows the

sequence of four adaptive meshes generated from a coarse initial mesh. The value of mesh

generation coefficients, α, β, χmin, χmax are 0.5, 0.6, 0.5, and 0.85, respectively. The smaller

elements are generated along the alpha-shape in the domain while larger elements are generated in

the other regions.

For practical problems, the preferred values of α and β are 0.5 and 0.6, respectively. In general,

the acceptable ranges of these α and β values are 0.3~0.8, and 0.7~1.3, respectively. In addition, the

values of 0.4 and 0.75 are chosen for χmin and χmax, respectively, for all test cases presented later in

this paper.

4. Mapping of solution fields

In order to continue the analysis without restarting from the initial load level after a new mesh has

been generated, the mapping of the displacement fields in the previous mesh onto the new adaptive

mesh is needed. The 6-node triangular elements and the 9-node collapsed elements are used to form

up the mesh. A layer of rosette singular degenerated elements which were originally the 9-node

rectangular elements, with one edge on each element collapsed onto the crack tip location, is used

to form up crack tip elements. This singular element improves the accuracy of the computed J-

integral because its displacement gradients contain terms of order (1/r), which is consistent with the

continuum crack tip fields for elastic-perfectly plastic bodies (Li et al. 1985). In this paper, two

x
3

y
2

– 2 3λx–+ 0=

Fig. 4 An alpha-shape adaptive meshes in a square domain
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types of nodes are classified according to the mapping methods and elements used, the nodes that

are not on the crack tip location and the collapsed crack tip nodes. The non crack tip nodes can also

be separated into the nodes lying on quadratic triangular elements and those on collapsed singular

crack tip elements. The mapping scheme can be achieved by the two procedures as follows

(Nishioka et al. 2001).

4.1 Searching an element in the previous mesh for a new nodal point

If the newly created node p of the new adaptive mesh is not the crack tip node, one can search

the triangular-shaped element (6-node triangular or 9-node collapsed element) in the previous mesh

that includes the node p by determining the signed area of sum of triangles or by the cross vector

product. If node p is the crack tip node, the preceding procedure cannot be used because more than

one node is placed at the same crack tip location. Fig. 5(a) shows a new generated mesh

superimposed on the previous crack tip elements. If all the collapsed crack tip nodes from both

mesh elements are radially placed at a distance ro from the crack tip, now one can determine the

previous mesh crack tip element containing the crack tip node p by measuring the angles with

respect to the crack plane as shown in Fig. 5(b). It should be noted that the shaded element in the

figure is the desired crack tip element in the previous mesh containing the crack tip node p.

Therefore one can easily judge whether the node p is in the element by using the relation

 where θp is the angle formed by the crack plane and a line radially extended from the

node p, θa and θb are the angles of each radial edge of the old mesh crack tip element containing

the node p with respect to the crack plane.

θa θp θb≤ ≤

Fig. 5 (a) Crack tip elements in the new and old meshes and (b) crack tip elements as crack tip nodes placed
a distance r

o
 from the crack tip
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4.2 Creating nodal quantities for the new nodal point

For the crack tip element, the normalized coordinates of this element corresponding to the node p

must be obtained as shown in Fig. 6. In this figure, the relations between the node p normalized

coordinates  and its cylindrical coordinates with respect to the crack tip element orientation

 can be derived from the full shape functions and the Cartesian coordinates of the nodes as 

(11)

where h and b are the height and half base of the crack tip element respectively. In case of the node

p is the crack tip node at which , the normalized coordinates can be computed from Eq. (11)

using the three relative angles defined in Fig. 6(b) as

(12)

After obtaining the normalized coordinates or the area coordinates corresponding to the location

of the node p on the old mesh element, then the shape functions and nodal displacements of this old

mesh element are used to interpolate the displacements of the node p. After all the nodal

displacements of the new adaptive mesh has been interpolated from the previous mesh fields, good
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Fig. 6 A new node p in 9-node collapsed crack tip element of (a) physical coordinates and (b) normalized
coordinates
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initial displacement fields are then provided in the new refined mesh to continue the analysis from

the previous mesh model.

5. Algorithm evaluation

Several examples have been used to evaluate the performance of the combined domain integral

technique and the adaptive finite element method. These examples are used to determine the J-

integral in the opening mode by employing the deformation theory of plasticity and the uniaxial

Ramberg-Osgood stress-strain law

(13)

where σo is the yield stress, E is the Young’s modulus,  is the yield strain, α is a material

constant and n is the strain hardening exponent.

Three square or rectangular integration domains are used to estimate the J-integral by the domain

integral technique. The first domain consists of crack tip elements and adjoining elements within the

domain. The second domain includes the first domain and adjoining elements between the two

domains. The third domain also follows in the same fashion. The “pyramid” q1 functions with a

square and rectangular base corresponding to the integration domains are employed (Shih et al.

1986). The functions vary linearly between zero on the edge of the domain and unity at the crack

tip. The average of the J-integral computed from the three integration domains is used. The

accuracy of the results is evaluated by the extent of the domain dependence defined as a maximum

percentage error of the J-integral computed from the three different integration domains compared

with their mean value

(14)

where Javg is the average of the J-integral computed from the three integration domains and Jith is

the J-integral computed from the ith integration domain. These J-integrals are compared with those

obtained from other researchers to confirm the agreements.

5.1 Compact Tension specimen - CT

The problem statement of the CT specimen as shown in Fig. 7 is analyzed under the plane strain

condition. The specimen characteristic width and crack length per characteristic width ratio are

taken to be W = 51 mm and a/W = 0.75, respectively. The following values of material properties

are employed: E = 202 GPa, the Poisson’s ratio ν = 0.3, σo = 414 MPa, α = 0.05 and n = 10.

Because of symmetry, only half of the specimen is used for modeling. Fig. 8 shows the final

adaptive mesh consisting of 1,610 elements with the three integration domains employed in the

domain dependence calculations. Fig. 9 shows good agreement of the computed J-integrals as

compared to those from the EPRI J estimation scheme (Kumar et al. 1981). Good agreements are

achieved with the maximum domain dependence of the computed J-integral for the entire load

levels of 0.064%.
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Fig. 7 The compact tension specimen

Fig. 8 The final adaptive mesh of the CT specimen with three integration domains

Fig. 9 Comparison of J-integral from adaptive finite element and estimation method for the CT specimen
under the plane strain condition
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5.2 Double Edge Notched Tension specimen - DENT

Fig. 10 shows the geometry of the DENT specimen analyzed under the plane stress condition with

Fig. 10 The double edge notched tension specimen Fig. 11 The final adaptive mesh of the DENT
specimen with three integration domains

Fig. 12 Comparison of J-integral from adaptive finite element and estimation method for the DENT specimen
under the plane stress condition
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the same material properties as in the previous example. The half specimen width, crack length per

half specimen width and half specimen length per width ratio are W = 500 mm, a/W = 0.5 and

L/W = 5, respectively. Fig. 11 shows the final adaptive mesh of the upper right quarter of the

specimen consisting of 1,268 elements and the three integration domains used in the domain

dependence calculations. Fig. 12 shows good comparison of the computed J-integrals with those

from the EPRI J estimation scheme with the maximum domain dependence for the entire load

levels of 0.082%.

5.3 Axially cracked cylinder

The plane strain problem statement of an internally pressurized cylinder containing an axial crack

is shown in Fig. 13. Here, b denotes the wall thickness,  the uncracked ligament, p the

internal pressure, and Ri and Ro the inner and outer radii, respectively. The geometry dimension for

this problem is given by , , and b being 2 in. The cylinder wall is subjected to

the temperature variation in the form

(15)

where r is the radial distance from the center of the cylinder. The material properties for this

problem are given as follows:  and β = 7.3×10−6

in/in/oF.

The final adaptive mesh of the upper half cylinder consisting of 1,810 elements and its integration

domains are presented in Fig. 14. Good comparison between computed J-integrals and those from

the thermal-elastic-plastic estimation scheme (Kumar et al. 1991) is shown in Fig. 15 with the

maximum domain dependence of 0.027%.

c b a–=

a/b 0.25= Ri/b 10=

T r( ) 0.25 250 800 r Ri–( ) 200 r Ri–( )2–+[ ]=

E 30 103 ksi ν 0.3 σo 60 ksi, α 0.5 n 5=,==,=,×=

Fig. 13 The axially cracked cylinder with internal pressure and temperature gradient
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5.4 Circumferentially cracked cylinder

The last example is a cylinder containing an axisymmetric crack as shown in Fig. 16. The

cylinder is loaded by a uniformly applied tensile stress  at both ends. The geometry dimensions

are given by , and . The cylinder wall is subjected to the

temperature variation in the form

(16)

σ
∞

Ri/b 10 a/b 0.25= b, , 8 in= = L/b 15=

T r( ) 125 100 r Ri–( ) 6.25 r Ri–( )2–+[ ]=

Fig. 14 The final adaptive mesh of the internally pressurized cylindr containing an axial crack depicted in (a)
full specimen and (b) crack region with integration domains

Fig. 15 Comparison of J-integral from adaptive finite element and estimation method for the plane strain
axially cracked cylinder under internal pressure and thermal gradient
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Fig. 16 The circumferentially cracked cylinder Fig. 17 The adaptive mesh of the circumferentially
cracked cylinder depicted in (a) full
specimen and (b) crack region with three
integration domains

Fig. 18 Comparison of J-integral from adaptive finite element and estimation method for the
circumferentially cracked cylinder under internal pressure and thermal gradient
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where r is the radial distance from the axis of symmetry and Ri is the inner radius of the cylinder.

The material properties are identical to those employed in the axially cracked cylinder problem. The

final adaptive mesh consisting of 1,426 elements and its three integration domains are shown in

Fig. 17. The results are compared with those from the thermal-elastic-plastic estimation scheme as

shown in Fig. 18. The figure shows good agreement with the maximum domain dependence of

0.092%.

6. Conclusions

The combined adaptive finite element and domain integral technique with a solution mapping for

analyzing non-linear elastic fracture mechanics problems was presented. The concept of the domain

integral technique for two-dimensional and axisymmetric geometry was described. The finite

element method using the combined 6-node triangular elements and the singular degenerated

elements was explained. These singular elements were employed to form up a circular zone

surrounding the crack tip to provide high solution accuracy. The solution accuracy was further

enhanced by incorporating an adaptive remeshing technique together with a solution mapping

scheme. The adaptive remeshing technique places small elements around the crack tips and in the

regions with large change of stress gradients for solution accuracy. At the same time, larger

elements are generated in the other regions to minimize the total number of unknowns and the

computational time. The solution mapping scheme interpolated the displacement solutions computed

at a particular load level from a previous mesh onto a new adaptive mesh to provide good initial

fields. The efficiency of the combined procedure was evaluated by determining the J-integrals for

several benchmark problems. These problems demonstrated the capability of the combined domain

integral technique and adaptive finite element method for the analysis of fracture mechanics

problems effectively.
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