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Stochastic analysis of external and parametric dynamical 
systems under sub-Gaussian Lévy white-noise
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Abstract. In this study stochastic analysis of non-linear dynamical systems under α-stable,
multiplicative white noise has been conducted. The analysis has dealt with a special class of α-stable
stochastic processes namely sub-Gaussian white noises. In this setting the governing equation either of the
probability density function or of the characteristic function of the dynamical response may be obtained
considering the dynamical system forced by a Gaussian white noise with an uncertain factor with α/2-
stable distribution. This consideration yields the probability density function or the characteristic function
of the response by means of a simple integral involving the probability density function of the system
under Gaussian white noise and the probability density function of the α/2-stable random parameter. Some
numerical applications have been reported assessing the reliability of the proposed formulation. Moreover
a proper way to perform digital simulation of the sub-Gaussian α-stable random process preventing
dynamical systems from numerical overflows has been reported and discussed in detail.

Keywords: Lévy white noise; stochastic differential calculus; Fokker-Planck equation; sub-Gaussian
white noise.

1. Introduction

Normal white noises are very popular stochastic processes and they have been used to model

several type of physical phenomena. The main feature of such processes is that they may be defined

as formal time derivative of Wiener processes. In this setting the powerful machinery established

with Itô stochastic differential calculus (Itô 1956) may be used to yield probabilistic characterization

of dynamical response of systems driven by normal white noises in terms of stochastic moments.

On the other hand an alternative probabilistic characterization may be provided solving the Fokker-

Planck-Kolmogorov (FPK) differential equation yielding the conditional probability density function

(PDF) of the response or the corresponding Fourier transform, namely the characteristic function of

the response (CF) (Stratonovich 1967, Lin 1976). However, several real phenomena observed in

physics, seismology, electrical engineering, economics and in some other research fields show

evident non-Gaussianity observed in heavy tail distributions or in the impulsive nature of the

recorded samples. The need for non-Gaussian models to describe the fluctuations exhibited by such

a phenomena has risen the interest in the so-called α-stable Lévy processes (Samorodnitsky et al.

1994, Griguriu 1995a,b). This kind of stochastic processes are characterized by the knowledge of
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the four parameters α, σ, β, μ, which are, respectively, the stability index, the scale factor, the

skewness and the shift. Variation of the stability index  yields a wide class of stochastic

processes including the Gaussian white noise obtained for α = 2. Some interesting applications of

α-stable Lévy processes may be also found in fractal models of materials at micro-scale (see e.g.

Carpinteri et al. 2003). 

On one hand linear and non-linear systems driven by external α-stable Lévy processes (formal

time derivative of the Lévy motion processes) have been treated in the past either in terms of PDF

via the fractional Einstein-Smoluchowsky (ES) equation obtained with the aid of fractional

differential calculus (see e.g. Hilfer 2000) or in terms of CF (Chechkin et al. 2002, Grigoriu 2004).

On the other hand closed-form expressions for the stationary CF have been obtained only for some

specific values of the stability index (α = 1, 1/2) and some numerical procedures have been

proposed in terms of equivalent linearization (Grigoriu 2000) or by means of numerical wavelet

approach (Di Paola et al. 2005). 

The main challenge in the analysis of dynamical systems in presence of α-stable Lévy white

noises is related to the divergence of statistical moments of the α-stable random variables Lα,

namely  if . Unbounded statistical moments are strictly related with the heavy-tails

distributions of the random variables Lα (Samorodnitsk et al. 2003) and some sharp jumps at the

onset of possible realization of α-stable Lévy noises must be expected. This feature makes Monte-

Carlo methods of non-linear dynamical systems highly unstable since numerical overflows in

numerical simulations. In order to overcome this major drawback some truncations of the PDF of

the α-stable random variables Lα have been recently proposed (Sokolov et al. 2004) in which a

power law with exponent  has been used to truncate the PDF of an α-stable distribution. In

this context a modified fractional FPK equation has been obtained and the probability density

function of the response converge towards a Gaussian density in the central part. 

Some remarkable contribution to the theory of stochastic differential equation (SDE) driven by

stable noises has recently been reported in scientific literature (Bass et al. 2006, Imkeller et al.

2006, Schertzer et al. 2001, Yanovsky et al. 2000).

In this paper analysis of dynamical systems under parametric α-stable excitation has been

reported in presence of a special class of symmetric α-stable excitation namely the sub-Gaussian

α-stable processes. Such processes are defined by the product of a zero mean normal process

 with prescribed second-order correlation and the square root of an α/2-stable random

variable  Aα/2, totally skewed to the right  and independent of . The Gaussian

factor  is dubbed underlying Gaussian process and the sub-Gaussian white noise may be

defined as the formal derivative of an α-stable sub-Gaussian Wiener process .

Analysis of dynamical systems under parametric-type excitation is performed by a 1-dimensional

integral involving the PDF of the α/2-stable variable and the PDF of the response of the

dynamical system subjected to Gaussian white noise . This latter consideration stems out

assuming that the dynamical system is forced by a Gaussian white noise  with uncertain

parameter . 

Some numerical applications involving non-linear parametric oscillator have been reported

contrasting the PDF obtained by the solution of the governing equation with the estimate obtained

via Monte-Carlo simulation suitably modified to deal with α-stable excitation. In more detail we

introduce a proper truncation of heavy tails of the forcing α-stable random process neglecting the

second-order probability of occurrence of outcomes of order  with  the integration step

of numerical integration and nα a real number smaller than . The proposed Monte-Carlo

α 0 2, ](∈

E Lα

p[ ] ∞= p α≥

5 α–

W2 t( )
α 2≤( ) β 1=( ) W2 t( )

W2 t( )
dBα t( ) Aα/2

1/2
B2d t( )=

W2 t( )
W2 t( )

Aα/2

1/2

nα/ t
1/2Δ tΔ

1/ tΔ( )1/2



Stochastic analysis of external and parametric dynamical systems 375

analysis yields accurate estimation of PDF and CF once opportune choices of nα have been selected

preventing numerical overflows of the dynamical system.

2. The case of α-stable white noise external excitation

Let us consider a scalar, non-linear dynamical system under parametric white noise with the

equation of motion written as

  (1)

with  and  deterministic non-linear functions of the random process Z and of time t.

The random process  in Eq. (1) is defined by the formal derivative of  ( = dBα(t)/dt)

which is a random process with the following properties

iii) It has independent, stationary increments following the α-stable distribution, that is

 (2a)

iii) The CF of an increment of , takes the form

  (2b)

where  represents the increment of the Wiener process and A is an α/2 stable random

variable totally skewed on the right  independent of  then

 is a sub-Gaussian random process. 

iii) For ,  that is  with probability 1 and then the non-normal α-stable

process reverts to normal white noise process, or in other words the Wiener process is a

particular case of the random process . 

It has to be emphasized that the Lévy motion process  whose formal derivative is the well-

known Lévy white noise  possesses the properties i) and iii) but the process  exhibits

a quite different CF, that is , that is the scales of  and  are

different. Only selecting  the two process have exactly the same scale (for ,

). 

Let us assume that the dynamical system reported in Eq. (1) written in Itô form is forced by an

increment  instead of . Let us also suppose that the excitation is external namely the

non-linear function . In this context the equation ruling the evolution of the PDF is

the so-called Einstein-Smoluchowsky (ES) equation involving Riesz-Weil fractional derivative in the

diffusion term, that is 

  (3)

in which  is the symmetric fractional space derivative which is defined for a “sufficiently

well-behaved” function through its Fourier transform  (Samko et al. 1987)
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   (4)

or in terms of the Riemann-Liouville derivatives as

  (5)

where  and if  then Riemann-Liouville derivatives reads

(6a,b)

else for 

 (7)

with . For   is the Hilbert transform of the probability density

function . The derivatives in Eqs. (6), (7) are characterized in the Fourier transform space as

  (8)

where

  (9)

and with some algebraic manipulations of Eq. (3) by means of Eq. (4) the spectral counterpart of

the ES equation is provided in the form

 (10)

Such an equation in the following termed as spectral ES has been derived in the scientific

literature (Dittlevsen 2005, Grigoriu et al. 2005). The ES equation holds for Lèvy white noise input

that is in presence of increments of Lèvy white noise  with scale dt. The question is how to

solve the case in which the input is the sub-Gaussian white noise with increment ? Answer

to this question will be provided in the next section.

3. The sub-Gaussian α-stable input process 

In this section the study of dynamical systems forced by sub-Gaussian Lèvy process will be

reported. In sec.3.1 the analysis will be reported for the case of external excitation exploiting the

proposed method. Analysis of parametric-type excitation will be reported in sec.3.2.
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without loss of generality in Itô form as

    (11)

with  representing a sub-Gaussian α-stable increment of Lèvy motion. In the

following this kind of α-stable increment denoted  will be obtained by the product

, namely by the product of the square root of an α/2-stable random variable

and a time increment of Brownian motion . Random process  is the normal

white noise characterized by the correlation  and  is a Dirac delta

function, q2 is the strength of the white noise. 

In this case the evolution in terms of CF or the equation ruling the PDF may be obtained in two

steps (Di Paola et al. 2008). In the first step the CF or PDF function of the dynamical system

excited by a normal white noise with deterministic amplitude 

    (12)

will be obtained. In this case the CF equation and the corresponding Fokker-Planck equations are

written as

(13)

more explicitely if  takes a polynomial form of the type  then Eq. (13) is

written as

   (14)

or in terms of the Fokker-Planck-Kolmogorov (FPK) equation

 (15)

As soon as the CF and PDF have been obtained Eqs. (13)-(15) may be considered as a stochastic

differential equation with random coefficient A1/2. In this perspective the PDF and CF of the

dynamical response will be provided solving the 1-dimensional integrals

 (16)

 (17)

If linear system is considered superposition principle holds and letting  in Eq. (11) the

response of the differential equation  is Gaussian then the response process

 is sub-Gaussian α-stable. 

Multi-degree of freedom linear dynamical systems under sub-Gaussian excitations may be studied

with similar arguments. In more detail introducing a n-dimensional vector  collecting the
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Lagrangian parameters of the system , the CF of the response is

provided as

  (18)

with   and  is the correlation matrix of the Gaussian vector process 

 evaluated with well-known methods (Falsone 1994).

3.2 The sub-Gaussian parametric excitation

In this section analysis of a parametric dynamical system driven by α-stable sub-Gaussian white

noise input will be considered. 

Let us consider the equation of motion of a scalar dynamical system in the form

 (19)

As a first step the coefficient  is considered a deterministic parameter and the differential

equation is rewritten in Itô form as

 (20)

In which the drift term  has been modified taking into account the Wong-Zakaj (WZ) or

Stratonovich (S) correction term (Stratonovich 1967) as

 (21)

Itô differential rule of functions  of the dynamic response reads

 (22)

The third term in the right-hand side of Eq. (22) is essential since  is of order of

magnitude  and term  is of the same order of the first term. By letting

 in Eq. (22), taking mathematical expectation and accounting for the non-

anticipative property of Itô calculus  the differential equation

ruling the evolution of the CF is readily written as

 (23)

The FPK equation ruling the evolution of the PDF of the response  may be obtained by

inverse Fourier transform of Eq. (23) yielding

  (24)

Solutions of Eqs. (23), (24) for the CF or the PDF of , respectively, will be used in Eq. (17) to
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R

Z̃
E Z̃Z̃

T
[ ]=( )

Z
·

f Z t,( ) g Z t,( )A1/2
W2 t( )+=

A
1/2

dZ̃ m Z̃ t,( ) td a
1/2

g Z̃ t,( ) B2 t( )d+=

m Z̃ t,( )

m Z̃ t,( ) f Z̃ t,( )
q2a

2
--------g′ Z̃ t,( )g Z̃ t,( )+=

ψ Z̃ t,( )

dψ Z̃ t,( ) ψd

∂ t
------- td

ψd

∂ Z̃
------- Z̃d

1

2
---
∂

2
ψ

∂ Z̃
2

---------- dZ̃( )
2

+ +=

dB2 t( )
td( )1/2 dZ̃( )

2

ψ Z̃ t,( ) exp iθZ̃[ ]=

E ψ Z̃ t,( ) B2

k
d[ ] E ψ Z̃ t,( )[ ]E B2

k
d[ ]=

∂

∂ t
----φ

Z˜
θ ;a t,( ) iθE exp iθZ̃( )m Z̃ t,( )[ ]

θ
2
q2a

2
---------------E exp iθZ̃( )g Z̃ t,( )[ ]–=

Z̃ t( )

∂

∂ t
----p

Z˜
z̃;a t,( ) ∂

∂ z̃
----- p

Z˜
z̃;a t,( )m z̃ t,( )[ ]–

q2

2
-----a

∂
2

p
Z˜

z̃;a t,( )g2
z t,( )[ ]

∂ z̃
2

--------------------------------------------------+=

Z̃ t( )



Stochastic analysis of external and parametric dynamical systems 379

The proposed method to deal with parametrically excited scalar dynamical systems may be

extended straightforwardly to analysis of multi-degree of freedom systems. In this context let us

suppose to consider a nonlinear, parametrically excited multi degree of freedom system ruled by the

differential equation system as

    (25)

with  an  vector collecting the dynamic response  is an n-vector collecting linear

and nonlinear function of the response and  is a  vector of parametric functions of

the response. 

The PDF or the CF of the system in Eq. (25) is provided by method already described

considering the dynamical system , excited by a parametric normal white noise with

deterministic amplitude a1/2. The corresponding Itô equation reads

  (26)

The FPK equation associated to the dynamical system in Eq. (26) reads

 (27)

where  is the gradient operator,  is the Kronecker product

and  is the Kronecker power. The drift term in Eq. (27)  is represented by

  (28)

in which the WZ correction term has been incorporated. 

Solution of the FPK equation associated to vector  yields the multidimensional PDF

 and the PDF of the vector  may be obtained solving the one-dimensional integral

  (29)

Probabilistic characterization in terms of CF is similar and it has not been reported for brevity’s

sake.

4. Order of the increments of sub-Gaussian Lévy white noise

The proposed method of analysis has been assessed via Monte-Carlo simulation. Monte-Carlo

analysis of dynamical systems in presence of stable Lèvy white noises deserves some considerations

about the order of increments of the excitation process. In more detail let us recast Eq. (11) in

discrete form as
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 (30b)

where  is the realization of an α-stable sub-Gaussian random variable obtained by product of

a Gaussian random variable  and an α/2-stable random variable . At first glance the

increments  in Eq. (30a) seems of order  as for normal white noise and then all the

rules of the Itô calculus may be used for. However the order of  is quite different from

  as it may be noticed by the CF of  which reads

  (31)

where  and  is the standard deviation of the Gaussian random variable . 

From Eq. (31) we may observe that statistical moments of  do not exists since 

exhibits a discontinuity in zero which is related to the presence of heavy tails of the PDF of

. 

On the other hand probability that  is larger than  is provided by the expression

 (32)

where  is a real number dependent of the stability index α ranging from zero

 and one  and the real coefficient nα in Eq. (32) is selected with requirement

. This latter condition is necessary to maintain the order of probability in Eq. (32)

always of order , neglecting probabilities of occurrence of  with higher order (Di Paola

et al. 2007). 

This latter assumption lead us to argue that very small probability of occurrence of  are

excluded from the analysis introducing a truncation of the tails of the PDF  for

. In this context the statistical moments of increments  may be evaluated

with the expression
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 as in the case of the Wiener process in which area is of order  with B2 a Gaussian

random variable. 

The proposed model to evaluate the stochastic moments of the increments of the sub-Gaussian

may be used to represent the characteristic function of the increments as

 (35)

which yields, introducing Eqs. (33a,b) into the latter Eq. (35) and performing manipulation the

expression of  as

 (36)

specifying values of  Eq. (36) yields
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convergence of Eq. (37) become more and more accurate. 

The proposed representation of sub-Gaussian Levy process has been applied to perform Monte-
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It is worth noticing that in the framework of Monte Carlo simulation, the heavy tails of the PDF

may yield some very large deviates of  leading to a numerical overflow. Monte-Carlo

analysis will be conducted, preventing numerical instabilities, with the proposed clip of the tails of

the PDF assuming convenient value of the coefficient nα
. In more detail the coefficient nα will be

selected such that the truncation of the series in Eq. (36) yields accurate results in terms of the 

function and we may disregard all values of . 

 

5. Numerical application

Non-linear dynamical systems under external and parametric sub-Gaussian white noises have been

examined in this section. Monte-Carlo simulation has been performed with the proposed truncation

of the tails of the PDF of the random variable .

Let us consider the nonlinear cubic oscillator ruled by the differential equation

 (38)

with selected parameters . Under the assumption that  is a normal

white noise the FPK equation is written as

  (39)

The steady-state solution of this equation is

 (40)

where constant C may be obtained from normalization condition  with

 the well-known Gamma function. On the other hand Fourier transform of Eq. (39) the CF

equation is provided as (see Eq. (18) with )

  (41)

the steady-state response is readily obtained using the appropriate boundary conditions which for

this case reads

   (42a)

   (42b)

which yields a CF that coincides with the Fourier transform of the PDF reported in Eq. (40).

In the framework of  Lévy white noise the Einstein-Smoluchowsky equation is written as

 (43)
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where Q is the strength of the Lèvy noise in the following set  for sake of simplicity. Fourier

transform of Eq. (43) maps the PDF in the Fourier domain yielding the differential equation for the

CF in the form

  (44)

with the steady-state solution in the form

  (45)

whose inverse Fourier transform is the PDF of the oscillator in Eq. (38) as

  (46)

In the case of sub-Gaussian oscillator  where  is a realization of a

Gaussian random process. The PDF corresponding of to the generic realization of the random

variable A is (Di Paola et al. 2003)

   (47)

where the normalization condition is  and then

  (48)

Now let us suppose that a new state variable is introduced as a nonlinear transformation as

. In this case the equation of motion of the nonlinear dynamical system reported in Eq. (35)

is transformed in the parametric-type differential equation
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  (49)

which is formally similar to the parametric differential equation reported in Eq. (19). Probabilistic

characterization of dynamical system reported in Eq. (49) is obtained, according to sect.4, solving

the FPK equation ruling the evolution of the dynamical system driven by the underlying Gaussian

process 

   (50)

The FPK equation for the PDF of Eq. (50) is of the form

  (51)

with the stationary solution provided, under the assumption of zero probability flow (Cai et al.

1995), by the PDF in the form

  (52)

with constant  obtained via normalization condition. The probabilistic characterization of the

dynamical response  of dynamical system in Eq. (48) is obtained via Monte-Carlo estimation

  (53)

with  represents the pdf obtained for the jth realization of the α/2-stable variable A.

Observation of Figs. (4a,b) shows the coincidence of the benchmark solution via simulation and the

proposed approach in the exploited range of occurrence of the random process . 

Y
·

2ρY
2

– A
1/2

YW2 t( )+=

W2 t( )

Ỹ
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6. Conclusions

In this paper the analysis of parametrically excited non-linear dynamical systems excited by α-

stable processes has been carried out. The governing equation of the probability density function of

parametrically excited dynamical systems has been never formulated for α-stable excitation and in

this paper the α-stable process considered belongs to the special class of sub-Gaussian process. Sub-

Gaussian stochastic processes are provided by the product of an α/2-stable variable 

 totally skewed to the right and a white noise with Gaussian distribution. In

this framework the differential equation governing the evolution of the probability density function,

or its Fourier transform counterpart, namely the characteristic function, may be obtained considering

that α/2-stable variable A is an uncertain parameter multiplying a normal white noise. The

governing equation of the probability density function is the well-known Fokker-Planck-

Kolmogorov equation, for parametric-type excitation in which the uncertain parameter A is

involved.

The probability density function of the dynamic response is then obtained in two steps:

ii. Evaluation of the probability density function of the parametrically excited dynamical system

under normal white noise treating α/2-stable variable A as a parameter.

ii. Evaluation of a simple integral involving the probability density function of the α/2-stable

variable A and the probability density function of the system under the normal white noise.

The proposed methodology has been used to evaluate the dynamical response of a non-linear

system under parametric-type excitation contrasting the response with an estimate via Monte-Carlo

simulation suitable modified to prevent numerical instabilities due to large deviates of α-stable

excitation.

References
 

Cai, G.Q. and Lin, Y.K. (1995), Probabilistic Structural Dynamics: Advanced Theory and Applications,
McGraw-Hill, NY.

Carpinteri, A., Chiaia, B. and Cornetti, P. (2003), “On the mechanics of quasi brittle-materials with a fractal
microstructure”, Eng. Frac. Mech., 70, 2321-2349.

Chechkin, A., Gonchar, V., Klafter, J., Metzler, R. and Tanatarov, L. (2002), “Stationary states of nonlinear
oscillators driven by Lévy noise”, Chem. Phys., 284, 233-251.

Di Paola, M. and Failla, G. (2005), “Stochastic response of linear and nonlinear systems to α-stable Lèvy white
noises”, Prob. Eng. Mech., 20(2), 128-135.

Di Paola, M. and Sofi, A. (2008), “Linear and nonlinear systems under sub-Gaussian (α-stable) input”, Prob.
Eng. Mech. (submitted).

Di Paola, M., Pirrotta, A. and Zingales, M. (2007), “Ito calculus extended to systems driven by alpha-stable
Lévy white noises (A novel clip on the tails of Lévy motion)”, Int. J. Nln. Mech., 42, 1046-1054.

Falsone, G. (1994), “Cumulants and correlations for linear systems under non-stationary delta-correlated
processes”, Prob. Eng. Mech., 9, 157-165. 

Grigoriu, M. (1995a), “Linear systems subject to non-Gaussian α-stable processes”, Prob. Eng. Mech., 10, 23-34.
Grigoriu, M. (1995b), “Linear and nonlinear systems with non-Gaussian white noise input”, Prob. Eng. Mech.,

10, 171-179.
Grigoriu, M. (2000), “Equivalent linearization for systems driven by Lèvy white noise”, Prob. Eng. Mech., 15,

285-190.
Grigoriu, M. (2004), “Characteristic function equations for the state of dynamic systems with Gaussian, poisson

and Lévy white noise”, Prob. Eng. Mech., 449-461. 

A~Sα/2

cos πα/4[ ]( )2/α 1 0 ), ,(



386 Mario Di Paola, Antonina Pirrotta and Massimiliano Zingales

Hilfer, R. (ed.) (2000), Fractional Calculus in Phyisics, World Scientific, Singapore. 
Lin, Y.K. (1976), Probabilistic Theory of Structural Dynamics, Kriegher, FL.
Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993), Fractional Integrals and Derivatives: Theory and

Applications, Gordon & Breach Science Publishers, Amsterdam, NL. 
Samorodnitsky, G. and Grigoriu, M. (2003), “Tails of solutions of certain nonlinear stochastic differential

equations driven by heavy tailed Lèvy motions”, Stoch. Proc. Appl., 105, 69-97. 
Samorodnitsky, G. and Taqqu, M.S. (1994), Stable non-Gaussian Random Processes, Stochastic Models with

Infinite Variance, Chapman and Hall, UK.
Sokolov, I.M., Chechkin, A.V. and Klafter, J. (2004), “Fractional diffusion equation for a power-law-truncated

Lèvy process”, Phys. A, 336, 245-251.
Stratonovich, R.L. (1967), Topics in the Theory of Random Noise, Gordon & Breach, NY.




