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Abstract. This study is concerned with the establishment of the characteristic equation of a combined
system consisting of a cantilever beam with a tip mass and an in-span visco-elastic helical spring-mass,
considering the mass of the helical spring. After obtaining the “exact” characteristic equation of the
combined system, by making use of a boundary value problem formulation, the characteristic equation is
established via a transfer matrix method, as well. Further, the characteristic equation of a reduced system
is obtained as a special case. Then, the characteristic equations are numerically solved for various
combinations of the physical parameters. Further, comparison of the results with the massless spring case
and the case in which the spring mass is partially considered, reveals the fact that neglecting or
considering the mass of the spring partially can cause considerable errors for some combinations of the
physical parameters of the system. 

Keywords: combined systems; axial vibrations; bending vibrations; visco-elastic continuum; spring-
mass attachment; effect of spring mass; free vibrations. 

1. Introduction

In the technical literature, many vibrational systems are modelled as Bernoulli-Euler beams to

which are attached an arbitray number of spring-mass systems. Gürgöze (1996a) has calculated

eigenfrequencies of a clamped-free Bernoulli-Euler beam with a tip mass and a spring-mass

system using the Lagrange’s multipliers method. Gürgöze (1996b) has also investigated the

eigencharacteristics of a beam with a tip mass and a spring-mass system in-span. Qiao et al. (2002)

have established an exact method for the analysis of free flexural vibrations of non-uniform multi-

step Bernoulli-Euler beams carrying an arbitrary number of single-degree-of-freedom and two-

degree-of-freedom spring–mass systems. Wu (2002) has conducted a study on determination of the

eigenfrequencies and mode shapes of beams carrying any number of two-degree of freedom spring-

mass systems by means of two finite element methods. Further, Chen and Wu (2002) have
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investigated a system consisting of non-uniform beams with multiple spring-mass systems. Some of

other recent publications on the subject of Bernoulli-Euler beams to which are attached several one

or two-degree of freedom spring-mass-(damper) systems can be cited as Wu and Chou (1999), Wu

and Chen (2000), Cha (2001), Wu (2004), and Gökda  and Kopmaz (2004).

The common aspect of all the above publications is that the mass of the helical springs of the

spring-mass systems attached is not taken into account. Although Rayleigh (1945) has revealed that

the mass of a linear spring can be taken into account approximately if one third of the spring mass

is added to the mass at the end of the spring, it has been observed that the degree of the effects of

the massless spring assumption on the numerical values of the eigenfrequencies, in more

complicated-combined systems, had not been investigated in the literature.

In the work of Gürgöze (2005), the frequency equation of a classical combined system is derived

consisting of a cantilevered beam to the tip of which is attached a helical spring-mass system, the

novelty being that the helical spring is modeled as a longitudinally vibrating elastic rod (James et al.

1994). The frequency equation obtained is solved numerically for various non-dimensional mass and

spring parameters. Comparison with massless spring case reveals that neglecting the mass can lead

to serious errors for some parameter combinations. Wu (2005) has taken into account the inertia

effects of the helical springs i.e., the masses of the springs, for free vibrations analyses of a

Bernoulli-Euler beam carrying multiple two degree-of freedom systems by using equivalent mass

method. In a further study, the work of Wu (2006) considered the mass of the helical spring of an

absorber system by lumping the corresponding distributed mass of the spring on to the main mass

and absorber mass based on finite element considerations. Gürgöze et al. (2006) deals with the

determination of the frequency equation of a Bernoulli-Euler beam simply supported at both ends,

to which is attached in-span a longitudinally vibrating elastic rod with a tip mass, representing a

helical spring-mass system with mass of the helical spring considered. Although, essentially, a

mechanical system similar to that in the study of Gürgöze (2005) is dealt with here, the present

work is an extension of the previous publications Gürgöze (2005) and Gürgöze et al. (2006) in that

here the boundary conditions are different and more importantly, it is assumed that the helical spring

is made of a visco-elastic material (Kelvin-Voigt model). Gürgöze and Zeren (2006) have given the

representation of this subsystem, i.e., axially vibrating visco-elastic rod with a tip mass, by a single-

degree of freedom spring-damper-mass system. 

The principal aim of the present study is the investigation of the effects of not or partially taking

into account the mass of the helical spring for some parameter combinations onto the characteristic

values. Another aim that the above investigations lead to is to supply the design engineers working

in this area with “exact” characteristic equation of the combined system under investigation which

can be thought of, for example, as a simple model of an engine or machine tool elastically mounted

on a structural element. Further, the characteristic equation of the reduced system is established in

which the free end of the longitudinally vibrating rod is fixed. Characteristic equations obtained are

solved for various non-dimensional damping, mass and spring parameters and the results are

compared with the massless spring case, as well as with the case in which one third of the own

mass of the helical spring is added to its end. The “errors” are given, to a great extent, in graphs. It

is seen that not taking or taking partially into account the mass of the helical spring can lead to

considerable errors for some combinations of the system parameters.

g
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2. Theory

2.1 Derivation of the characteristic equation of the system in Fig. 1

The problem to be investigated in the present work is the natural vibration problem of the

mechanical system shown in Fig. 1. It consists of a cantilevered Bernoulli-Euler beam with a tip

mass to which an axially vibrating visco-elastic rod with tip mass M is attached in-span. Axially

vibrating visco-elastic rod with tip mass corresponds to a conventional helical spring-mass system,

where the spring is subjected to internal damping. It is assumed that the features of the visco-elastic

rod fit the Kelvin-Voigt model and further, that the combined system vibrates only in the plane of

the paper. The physical properties of the system are as follows: The length, mass per unit length and

bending stiffness of the beam are L1, m1, E1I1 whereas the corresponding quantities and the axial

rigidity of the rod are L2, m2, E2A2, respectively.  denotes the mass of the tip mass on the beam.

It is to be noted that E2A2/L2 corresponds to the spring constant of the helical spring and α

represents its visco-elastic constant.

The planar bending displacements in the regions to the left and right of the in-span attachment of

the visco-elastic rod with tip mass M are denoted as w1(x1, t) and w3(x1, t) respectively, whereas, the

axial displacements of the visco-elastic rod are denoted as w2(x2, t) where x2 = 0 corresponds to the

attachment point of the rod to the beam. w2(x2, t) is actually a “relative” displacement of the rod,

with the matching condition . w1(x1, t), w2(x2, t) and w3(x1, t) are assumed to be small.

In order to obtain the equations of motion of the system, the extended Hamilton’s principle

(1)

will be applied, where T and V denote the kinetic and potential energies of the system respectively,

and δ'A represents the virtual work of the non-conservative active forces, i.e., here, the damping

M

w2 0 t,( ) 0=

δ T V–( ) δ ′A+[ ]dt
t
0

t
1

∫ 0=

Fig. 1 Vibrational system under study: A cantilevered beam with a tip mass and in-span an axially vibrating
visco-elastic rod with a tip mass
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forces. Although the expressions of T and V could be taken over to some extent from the study of

Gürgöze et al. (2006), they are given here, for the sake of completeness. The total kinetic energy 

(2)

consists of the following parts

(3-4)

(5-7)

where the meanings are evident.

The potential energy consists of three parts two of bending and the other due to axial

displacements

(8)

where 

  (9-11)

In the above formulations, dots and primes denote partial derivatives with respect to time t and

the position co-ordinate x1 or x2, respectively. 

The strain in the visco-elastic rod can be written as 

(12)

Hence, the stress at the section x2 of the rod associated with the internal damping can be

formulated as 

(13)

Now, δ'A in Eq. (1) can be formulated in the form 

(14)

which can be found for example in Tauchert (1974), in a general form. 

After putting expressions (2) to (11) and (14) into Eq. (1) and carrying out the necessary

variations, the following equations of motion of the two beam portions and the visco-elastic rod are

obtained

T T1 T2 T3 T4 T5+ + + +=

T1
1

2
---m1 w· 1

2
x1 t,( )dx1

0

ηL
1

∫= T2
1

2
---m2 w· 2 x2 t,( ) w· 1 ηL1 t,( )+[ ]2dx2

0

L
2

∫=,

T3
1

2
---m1 w· 3

2
x1 t,( )dx1

ηL
1

L
1

∫= T4
1

2
---M w· 1 ηL1 t,( ) w· 2 L2 t,( )+[ ]2, T5=, 1

2
---Mw· 3

2
L1 t,( )=

V V1 V2 V3+ +=

V1
1

2
---E1I1 w1″

2
x1 t,( )dx1

0

ηL
1

∫= , V2
1

2
---E2A2 w2′

2
x2 t,( )dx2

0

L
2

∫= , V3
1

2
---E1I1 w3″

2
x1 t,( )dx1

ηL
1

L
1

∫=

ε
∂w2 x2 t,( )

∂x2

---------------------- : w2
′ x2 t,( )= =

σdamp αε· αw2
′. x2 t,( )= =

δ ′A σdampδε A2dx2( )
0

L
2

∫ αw2′
.

x2 t,( )( )δ w2′ x2 t,( )( )A2dx2

0

L
2

∫= =
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(15)

(16)

(17)

The corresponding boundary and matching conditions are as follows

(18-21)

(22)

(23-25)

(26)

(27)

One assumes the solutions of the partial differential Eq. (15) to Eq. (17) to be of the form

(28)

where λ denotes the unknown characteristic value (eigenvalue) of the system which is a complex

number in general. In the expressions above, both the displacements w1, w2, w3 and amplitudes W1,

W2 and W3 represent complex-valued functions. The essential point here is to imagine the actual

displacements w1, w2 and w3 as the real parts of some complex valued functions, for which the same

notation is used.

By putting the expressions (28) into the partial differential Eqs. (15)-(17), the following ordinary

differential equations for the complex-valued amplitude functions  and  are

obtained

(29)

(30)

(31)

Here, the following abbreviations are introduced

(32)

E1I1w1

iv
x1 t,( ) m1w

··
1 x1 t,( )+ 0=

E2A2w2″ x2 t,( ) αA2w2″
.

x2 t,( ) m2w
··
2 x2 t,( )–+ m2w

··
1 ηL1 t,( )=

E1I1w3

iv
x1 t,( ) m1w

··
3 x1 t,( )+ 0=

w1 0 t,( ) 0= w1′ 0 t,( ) 0= w2 0 t,( ) 0, w3′′ L1 t,( ) 0==, ,

M w·· 3 L1 t,( ) E1I1w3″′ L1 t,( )– 0=

w1 ηL1 t,( ) w3 ηL1 t,( ), w1′ ηL1 t,( ) w3′ ηL1 t,( ), w1″ ηL1 t,( ) w3″ ηL1 t,( )===

m2 w·· 2 x2 t,( ) w·· 1 ηL1 t,( )+[ ]dx2

0

L
2

∫ M w·· 1 ηL1 t,( ) w·· 2 L2 t,( )+[ ]+  E1I1 w1″′ ηL1 t,( ) w3″′ ηL1 t,( )–[ ] 0=–

M w·· 1 ηL1 t,( ) w·· 2 L2 t,( )+[ ] E2A2w2′ L2 t,( ) αA2w2′
.

L2 t,( ) 0=+ +

w1 x1 t,( ) W1 x1( )eλt=

w2 x2 t,( ) W2 x2( )eλt=

w3 x1 t,( ) W3 x1( )eλt=

W1 x1( ) W2 x2( ), W3 x1( )

W1

IV
x1( ) β b

4
W1 x1( )– 0=

W2
″ x2( ) β r

2
W2 x2( )– β r

2
W1 ηL1( )=

W3

IV
x1( ) β b

4
W3 x1( )– 0=

β b

4 m1λ
2

E1I1
-----------– β r

2,
m2λ

2

E2A2 αA2λ+

------------------------------= =
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Now, the corresponding boundary and matching conditions are

 

(33-37)

(38-40)

  (41)

(42)

Here, primes over Wi denote derivatives with respect to the corresponding position coordinate x1

or x2.

The general solutions of the ordinary differential Eqs. (29)-(31) are

(43)

(44)

(45)

where C1-C10 represent ten integration constants yet to be determined and . Substitution of

the expressions in Eqs. (43)-(45) into boundary and matching conditions (33)-(42) yields a set of

linear, homogeneous equations consisting of ten equations for the determination of these constants.

A non-trivial solution of this set is possible if the determinant of the coefficients equals to zero.

After some simple column operations on the determinant, the characteristic equation can be brought

into the following form

W1 0( ) 0, W1
′ 0( ) 0, W2 0( ) 0, W3

″ L1( ) 0====

Mλ
2
W3 L1( ) E1I1W3″′ L1( )– 0=

W1 ηL1( ) W3 ηL1( ), W1′ ηL1( ) W3′ ηL1( ), W1″ ηL1( ) W3″ ηL1( )===

m2λ
2

W2 x2( ) W1 ηL1( )+[ ]dx2

0

L
2

∫ Mλ
2

W1 ηL1( ) W2 L2( )+[ ] E1I1 W1″′ ηL1( ) W3″′ ηL1( )–[ ]– 0=+

Mλ
2

W1 ηL1( ) W2 L2( )+[ ] E2A2W2′ L2( ) αA2λW2′ L2( ) 0=+ +

W1 x1( ) C1e
β
b
x
1

C2e
β
b
x
1

–

C3e
iβ

b
x
1

C4e
iβ

b
x
1

–

+ + +=

W3 x1( ) C5e
β
b
x
1

C6e
β
b
x
1

–

C7e
iβ

b
x
1

C8e
iβ

b
x
1

–

+ + +=

W2 x2( ) C9e
β
r
x
2

C10e
β
r
x
2

–

W1 ηL1( )–+=

i 1–=

e
ηβ–

  e
ηβ

  e
iηβ–

  e
iηβ

  0

e
ηβ–

  e
ηβ

  – ie
iηβ–

  ie
iηβ

  – 0

1  1  1  1  0

1  1  1  1  1–

1  1  – i  i  – 1–

1  1  1  – 1  – 1–

α22  – α22  iα22  iα22  – α22

0  0  0  0  0  

0  0  0  0  e
1 η–( )β

0  0  0  0  1 α44–( )e 1 η–( )β
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(46)

Here, the following non-dimensional parameters are introduced

(47)

The roots of the characteristic Eq. (46) give us the dimensionless characteristic values  and

therefore by considering Eq. (32), the characteristic values, i.e., eigenvalues -λ- of the system in Fig. 1.

The size of the determinant in the characteristic equation of the system in Fig. 1 in which only

one longitudinally vibrating visco-elastic rod with a tip mass (i.e., one spring-damper-mass system)

is attached to the bending beam, is 10 × 10, as it is seen from Eq. (46). Any additional visco-elastic

rod with a tip mass to be attached to the system would increase the size of the characteristic

determinant by 6. Therefore, it is reasonable to expect encountering numerical difficulties in case of

a system with several longitudinally vibrating rods with tip masses. Hence, in the following section,

an alternative form of the characteristic equation will be derived which essentially is based on the

transfer matrix method which has been succesfully applied by Li and his co-authors (2000a, 2000b,

2002) to various vibrational systems. This would first of all, enable one to check the numerical

results obtained via the boundary value problem approach, as the corresponding numerical results

are not available in the technical literature.

On the other side, the characteristic equation of the system in case of the attachment of additional

0 0 0 0 0

0 0 0 0 0

0 0 0 e
β
r
L
2

–

– e
β
r
L
2

–

1– 1– 1– 0 0

1 i– i 0 0

1– 1 1 0 0

α22– iα22– iα22 α11 1 e
β
r
L
2

–

–+ α11 1– e
β
r
L
2

+

0 0 0 1 α33 α55
*

+ + 1 α33– α55
*

–

e
1 η–( )β–

e
i 1 η–( )β

– e
i 1 η–( )β–

– 0 0

1 α44+( )e 1 η–( )β–

1 iα44+( )ei 1 η–( )β
1 iα44–( )e i 1 η–( )β–

0 0

0=

β βbL1, αk

E2A2/L2

E1I1/L1

3
-------------------, αM

M

m1L1

-----------= = =

m21

m2L2

m1L1

-----------, α
M

M

m1L1

-----------, d
αA2

m1L1L2ω0

-----------------------= = =

ω0

2 E1I1

m1L1

4
-----------, βrL2

i m21β
2

αk ± idβ
2

----------------------------, λ± iω0β
2

±= = =

α11

αM

m21

--------βrL2, α22
1

m21β
------------– βrL2, α33

αk

αMβ
4

-------------βrL2–= = =

α44
1

α
Mβ

-----------, α55
*

–
idβrL2

αMβ
2

----------------–= =

β
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rod-tip mass systems, could easily be established and then solved numerically with less difficulties,

as the attachment of any additional rod-tip mass systems would lead to the multiplication of the

actual 4 × 4 overall transfer matrix by an additional 4 × 4 transfer matrix.

2.2 Alternative form of the characteristic equation via the transfer matrix method

As a first step to derive the alternative form, rewriting the amplitude functions for the different

portions of the system given in Eqs. (43)-(45) as

(48)

(49)

(50)

where non-dimensional position coordinates are introduced as

(51)

The relationship between the parameters W10 (bending displacement),  (slope), M10 (bending

moment) and Q10 (shear force) at the left end, to W11, , M11, Q11 at the right end of the beam

region 1 can be expressed in matrix notations as

(52)

where k1 = E1I1 and the transfer matrix  reads as

(53)

It is to be noted that the coefficients of slope, bending moment and shear force assure that the

elements of the transfer matrix are dimensionless.

After lengthy calculations, it can be shown that the transfer matrix  relating the parameters to

the left of the attachment point of the rod to the beam to those to the right is of the form

W1 x1( ) C1e
β x1

C2e
β x1–

C3e
iβ x1

C4e
iβ x1–

+ + +=

W3 x1( ) C5e
β x1

C6e
β x1–

C7e
iβ x1

C8e
iβ x1–

+ + +=

W2 x2( ) C9e
β
r
L
2
x
2

C10e
β
r
L
2
x
2

–

W1 η( )–+=

x1 x1/L1= , x2 x2/L2=

W10
′

W11
′

W11

L1

β
-----W11

′

L1

2

β
2
k1

----------M11

L1

3

β
3
k1

----------Q11

T 1[ ]

W10

L1

β
-----W10

′

L1

2

β
2
k1

----------M10

L1

3

β
3
k1

----------Q10

=

T1[ ]

T1[ ]

e
ηβ

  e
ηβ–

  e
iηβ

  e
iηβ–

e
ηβ

  e
ηβ–

  – ie
iηβ

  ie
iηβ–

–

e
ηβ

  e
ηβ–

  e
iηβ

– e
iηβ–

–

e
ηβ

  – e
ηβ–

  ie
iηβ

  ie
iηβ–

–

1  1  1  1

1  1–   i  i–

1  1  1–   1–

1–   1  i  i–

1–

=

T2[ ]
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(54)

where the following abbreviations are introduced

(55)

Further, the transfer matrix  interrelating the parameters at the left end of the beam portion 3

to those at the right end is 

(56)

Finally, the transfer matrix between the parameters at the left and right ends of the tip mass 

can be shown to be

(57)

Combining the results obtained so far, the overall transfer matrix  of the vibrational system in

Fig. 1, the matrix relating the quantities W10,  and Q10 at the left end of the system and

those at the right end, i.e.,  can be shown to be

(58) 

T2[ ]

1  0  0  0

0  1  0  0

0  0  1  0

A910  0  0  1

=

A910 β
m21

βrL2

---------- e
β
r
L
2

1–( ) αMe
β
r
L
2

+ α9

m21

βrL2

---------- 1 e
β
r
L
2

–

–( ) αMe
β
r

– L
2

+ α10+

⎩ ⎭
⎨ ⎬
⎧ ⎫

–=

α9

1 α33– α55
*

–( )e
β
r

– L
2

1 α33– α55
*

–( )e
β
r

– L
2

1 α33 α55
*

+ +( )e
β
r
L
2

–

--------------------------------------------------------------------------------------------=

α10

1 α33 α55
*

+ +( )e
β
r
L
2

1 α33– α55
*

–( )e
β
r

– L
2

1 α33 α55
*

+ +( )e
β
r
L
2

–

--------------------------------------------------------------------------------------------–=

α33

αk

αMβ
4

-------------βrL2–=

T3[ ]

T3[ ]

e
β
  e

β–
  e

iβ
  e

iβ–

e
β
  e

β–
–   ie

iβ
  ie

iβ–

–

e
β
  e

β–
  e

iβ
  – e

iβ–

–

e
β

–   e
β–
  ie

iβ
  ie

iβ–

–

e
ηβ

  e
ηβ–

  e
iηβ

  e
iηβ–

e
ηβ

  e
ηβ–

  – ie
iηβ

  ie
iηβ–

–

e
ηβ

  e
ηβ–

  e
iηβ

– e
iηβ–

–

e
ηβ

  – e
ηβ–

  ie
iηβ

  ie
iηβ–

–

1–

=

M

TM[ ]

1  0  0  0

0  1  0  0

0  0  1  0

α
M
β–   0  0  1

=

T[ ]
W10

′ M10,
W31 W31′ M31 Q31, , ,

T[ ] TM[ ] T3[ ] T2[ ] T1[ ]

T11  T12  T13  T14

T21  T22  T23  T24

T31  T32  T33  T34

T41  T42  T43  T44

= =
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In the case of the vibrational system in Fig. 1, the boundary conditions are such that the bending

displacement and slope at the left end, the bending moment and shear force at the right end of the

system vanish: . These lead to the characteristic equation 

(59)

If there is no tip mass on the bending beam, i.e., , the matrix  reduces to the 4 × 4

unit matrix. Hence, the overall transfer matrix  reduces to

(60)

The characteristic Eq. (59) holds in form where  and  denote in this case, the

corresponding elements of the matrix  given in Eq. (60).

2.3 Derivation of the characteristic equation of the system in Fig. 2 

Unfortunately, it is not possible to obtain the characteristic equation of this system from that in

Fig. 1 simply by letting  (i.e., ) in the characteristic Eq. (46). It can be shown that

in the previous boundary conditions (18)-(27), the conditions (26) and (27) have to be replaced by

the following two expressions respectively

 (61)

(62)

whereas the remaining eight conditions are unchanged.

Exponential solutions of the form Eq. (28) lead for the amplitude functions to

W10 W10
′ M31 Q31 0= = = =

T33  T34

T43  T44

0=

M 0= TM[ ]
T[ ]

T[ ] T3[ ] T2[ ] T1[ ]=

T33 T34 T43, , T44

T[ ]

M ∞→ αM ∞→

m2 w·· 2 x2 t,( ) w·· 1 ηL1 t,( )+[ ]dx2

0

L
2

∫ E2A2w2′ L2 t,( )– E1I1 w1″′ ηL1 t,( ) w3″′ ηL1 t,( )–[ ] αA2w2′
.

L2 t,( )–– 0=

w1 ηL1 t,( ) w2 L2 t,( )+ 0=

Fig. 2 Vibrational system in Fig. 1 for the limit  (i.e., )M ∞→ αM ∞→
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(63)

(64)

which correspond to Eqs. (41) and (42).

Substitution of Eqs. (43)-(45) into the boundary and matching conditions yields a set of ten

homogeneous equations for the determination of the ten coefficients C1-C10. Setting the

corresponding determinant of coefficients to zero, and applying some elemantary column operations

on the corresponding determinant, results in the following characteristic equation for the vibrational

system in Fig. 2

    

(65)

where two additional definitions are introduced as 

 (66)

m2λ
2

W2 x2( ) W1 ηL1( )+[ ]dx2 E2A2W2′ L2( )–

0

L
2

∫ E1I1 W1″′ ηL1( ) W3″′ ηL1( )–[ ]– αA2λW2′ L2( )– 0=

W1 ηL1( ) W2 L2( )+ 0=
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Based on the same argumentation as for the system in Fig. 1, in the next section, an alternative

formulation of the characteristic equation of the system in Fig. 2 will be given.

2.4 Alternative formulation of the characteristic equation of the system in Fig. 2 via the

transfer matrix method.

Fortunately, all transfer matrices in section 2.2 remain the same, except the transfer matrix 

which transforms the parameters to the left of the attachment point of the vertical rod to the bending

beam, to those to the right. It reads now

(67)

where, the following abbreviations are introduced

 (68)

Having obtained the characteristic equation of the vibrational systems in Figs. 1 and 2, it is

reasonable to obtain numerical results and make comparisons with those systems which correspond

to limit cases of both systems. Recognizing that  denotes the ratio of the mass of the

longitudinally vibrating rod to that of the bending beam, it is clear that the limit 

corresponds to the simplified systems in which the visco-elastic rod is discretized by a spring-

damper-mass system, in Figs. 3 and 4 for  and . Unfortunately, it is

T2[ ]

T2[ ]

1  0  0  0

0  1  0  0

0  0  1  0

A910  0  0  1

=

A910 α66 e
β
r
L
2

1–( )– α77 α88+( )e
β
r
L
2

–[ ]α9 α66 1 e
β
r
L
2

–

–( )–( ) α77 α88+( )e
β
r

– L
2

+[ ]α10+=

α9
1

Δ
---e

β
r
L
2

–

= , α10
1

Δ
---e

β
r
L
2

, Δ–= e
β
r
L
2

–

e
β
r
L
2

–=

α66

m21

βrL2

----------β– , α77

αk

β
3

-----βrL2, α88
id

β
-----βrL2= = =

m21

m21 0→

δ 0= k E2A2/L2=, d αA2/L2=

Fig. 3 Simplified representation of the vibrational
system in Fig. 1

Fig. 4 Simplified representation of the vibrational
system in Fig. 2
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not possible to obtain their characteristic equations simply by taking the limit  in the

previous Eqs. (46) and (65), as expected. Hence, the need arises to derive the characteristic

equations of these systems. Although the characteristic equations especially of the system in Fig. 3

might be found in the technical literature, for the sake of completeness, characteristic equations of

both systems are given in the appendix in the notations of the present study, without any derivation:

(A1), (A2).

A look at Figs. 3 and 4 reveals that a point mass  is attached to the tip mass M and to the

attachment point of the spring-damper to the bending beam, respectively. It is clear that 

represents a factor which indicates to which extent the own mass of the spring is accounted for.

 corresponds to the limit case where the spring mass is fully neglected, i.e., . This is

the case which is encountered in practice in general. A more realistic application would be that a

design engineer adds one third of the spring mass to the mass at the end of the spring, which in turn

would mean .

In the next section, numerical values of characteristic values obtained from equations established

in the present study, will be compared with those obtained via the simplified systems in Figs. 3 and

4 by taking  and 1/3, respectively. The comparison of the numerical results obtained will put

forward the fact that neglecting or not fully taking into account the distributed mass of the visco-

elastic spring can lead, for some combinations of the system parameters, to significant errors in the

numerical values of the characteristic values of the actual vibrational system.

3. Numerical results

This section is devoted to the numerical evaluation of the formulas established in the preceding

section. Recognizing that  corresponds to the case of the mass of the axially vibrating

visco-elastic rod in Fig. 1, i.e., the helical spring, being zero, it is reasonable to make a comparison

with the numerical values resulting from the system in Fig. 3 for .

 in Fig. 3 represents a non-dimensional factor which indicates to which extent the own mass of

the helical spring is accounted for. Further,  corresponds to the case in which one third of

the mass of the helical spring is added to the mass at the tip in order to consider the mass of the

spring somewhat more realistically. 

The characteristic values (in short, the eigenvalues) λ of the system in Fig. 1 are given in Table 1

in the form of  for various values of the non-dimensional mass and stiffness parameters αM,

 and αk, where  and  are taken. The bold complex numbers in the

first sub-cell in each  cell represent the eigenvalues for the massless spring case which

corresponds to , for the assumption: . The complex numbers in the second, third and

fourth sub-cells represent the eigenvalues for the cases , 0.1 and 0.5, respectively. The

first number in each of these sub-cells corresponds to the system in Fig. 3 for  and they are

obtained from (A1). The second numbers which are indicated by “P” are the values obtained from

the numerical solution of the present characteristic Eq. (46) considering the definitions given in

Eqs. (32) and (47). The roots of the characteristic Eq. (59) based on the transfer matrix method are

also numerically obtained. But they are exactly the same as from Eq. (46), so they are not repeated

in Table 1. All numerical calculations were carried out with MATLAB. 

Before proceeding further, it is quite instructive to report in the beginning on the experience

gained during the solution of the complex Eq. (46) with respect to . In case of “+” sign in the

m21 0→

δ m2L2

δ

δ 0= m21 0→

δ 1/3=

δ 0=

m21 0=

δ 0=

δ

δ 1/3=

λ/ω0

m21 d 0.1 η, 0.5= = α
M

0.5=

αM αk–

δ 0= m21 0→
m21 0.01=

δ 1/3=

β



1
8
0

M
. G
ürgöze, S. Zeren and M
. M
. A
. B
icak

Table 1 The characteristic values of the system in Fig. 1 in the form of λ/ω0 for various values of the stiffness and mass parameter αk, αM and 

  αk

αM  0.5 1 2 5 10

0.5

0 =0 −0.094476±0.983359i −0.083426±1.366236i −0.035189±1.759166i −0.002039±1.912021i −0.000344±1.933800i

0.01
=1/3

P
−0.093863±0.980140i
−0.093827±0.980059i

−0.082983±1.361891i
−0.082885±1.361598i

−0.035524±1.755655i
−0.035430±1.754661i

−0.002072±1.911045i
−0.002077±1.910034i

−0.000349±1.933165i
−0.000350±1.932231i

0.1
=1/3

P
−0.088685±0.952522i
−0.088297±0.951431i

−0.079145±1.324520i
−0.078252±1.321407i

−0.038137±1.723809i
−0.037156±1.714291i

−0.002383±1.902076i
−0.002433±1.891927i

−0.000394±1.927406i
−0.000407±1.918086i

0.5
=1/3

P
−0.071201±0.853006i
−0.069290±0.844838i

−0.065160±1.188701i
−0.062020±1.172272i

−0.042441±1.586632i
−0.038222±1.548105i

−0.004022±1.858178i
−0.004177±1.807895i

−0.000629±1.900760i
−0.000702±1.854960i

1

0 =0 −0.047664±0.697612i −0.044624±0.974221i −0.035890±1.327209i −0.008660±1.726351i −0.001411±1.827549i

0.01
=1/3

P
−0.047507±0.696459i
−0.047499±0.696433i

−0.044482±0.972623i
−0.044465±0.972540i

−0.035808±1.325163i
−0.035770±1.324892i

−0.008699±1.724946i
−0.008685±1.724150i

−0.001420±1.826778i
−0.001420±1.825923i

0.1
=1/3

P
−0.046138±0.686339i
−0.046055±0.686019i

−0.043246±0.958587i
−0.043074±0.957706i

−0.035081±1.307143i
−0.034720±1.304441i

−0.009047±1.712281i
−0.008898±1.704469i

−0.001499±1.819810i
−0.001495±1.811341i

0.5
=1/3

P
−0.040898±0.646162i
−0.040437±0.643741i

−0.038480±0.902805i
−0.037693±0.897635i

−0.032046±1.234741i
−0.030608±1.221810i

−0.010330±1.656068i
−0.009513±1.620566i

−0.001859±1.788323i
−0.001809±1.747893i

1.5

0 =0 −0.031853±0.570212i −0.030143±0.797141i −0.026016±1.094924i −0.011795±1.523593i −0.002719±1.707653i

0.01
=1/3

P
−0.031783±0.569582i
−0.031779±0.569568i

−0.029880±0.796755i
−0.030070±0.796222i

−0.025966±1.093751i
−0.025951±1.093622i

−0.011800±1.522357i
−0.011781±1.521868i

−0.002727±1.706843i
−0.002724±1.706133i

0.1
=1/3

P
−0.031164±0.564006i
−0.031129±0.563845i

−0.029502±0.788497i
−0.029433±0.788055i

−0.025522±1.083365i
−0.025379±1.082062i

−0.011838±1.511324i
−0.011655±1.506534i

−0.002797±1.699566i
−0.002761±1.692557i

0.5
=1/3

P
−0.028681±0.541067i
−0.028487±0.539908i

−0.027190±0.756533i
−0.026852±0.753950i

−0.023709±1.040494i
−0.023080±1.033933i

−0.011883±1.464249i
−0.011074±1.442336i

−0.003087±1.667401i
−0.002892±1.634490i

2

0 =0 −0.023917±0.494083i −0.022732±0.691015i −0.020092±0.952068i −0.011461±1.360173i −0.003645±1.589401i

0.01
=1/3

P
−0.023877±0.493673i
−0.023875±0.493664i

−0.022695±0.690443i
−0.022691±0.690417i

−0.020061±0.951294i
−0.020053±0.951215i

−0.011455±1.359225i
−0.011442±1.358914i

−0.003644±1.588084i
−0.003644±1.588084i

0.1
=1/3

P
−0.023526±0.490029i
−0.023507±0.489929i

−0.022365±0.685359i
-0.022328±0.685084i

−0.019788±0.944405i
−0.019713±0.943609i

−0.011395±1.350763i
−0.011268±1.347703i

−0.003688±1.581860i
−0.003635±1.576352i

0.5
=1/3

P
−0.022082±0.474758i
−0.021978±0.474070i

−0.021009±0.664049i
−0.020823±0.662466i

−0.018656±0.915493i
−0.018310±0.911427i

−0.011111±1.314764i
−0.010545±1.300419i

−0.003837±1.552255i
−0.003579±1.526439i

m21

m21

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ
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Table 1 Continued

  αk

αM  0.5 1 2 5 10

2.5

0 =0 −0.019146±0.442063i −0.018241±0.618407i −0.016312±0.853382i −0.010333±1.235035i −0.004072±1.482454i

0.01
=1/3

P
−0.019120±0.441769i
−0.019119±0.441763i

−0.018217±0.617997i
−0.018215±0.617978i

−0.016291±0.852823i
−0.016287±0.852769i

−0.010326±1.234303i
−0.010317±1.234089i

−0.004074±1.481788i 
−0.004068±1.481353i

0.1
=1/3

P
−0.018894±0.439152i
−0.018883±0.439083i

−0.018004±0.614343i
−0.017981±0.614151i

−0.016109±0.847841i
−0.016063±0.847292i

−0.010255±1.227778i
−0.010168±1.225654i

−0.004087±1.475818i
−0.004033±1.471523i

0.5
=1/3

P
−0.017952±0.428060i
−0.017887±0.427598i

−0.017113±0.598851i
−0.016997±0.597764i

−0.015344±0.826703i
−0.015127±0.823886i

−0.009943±1.199903i
−0.009553±1.189775i

−0.004131±1.449897i
−0.003878±1.429659i

3

0 =0 −0.015961±0.403633i −0.015230±0.564729i −0.013714±0.780062i −0.009202±1.137392i −0.004165±1.389391i

0.01
=1/3

P
−0.015944±0.403409i
−0.015943±0.403404i

−0.015213±0.564417i
−0.015212±0.564403i

−0.013699±0.779635i
−0.013696±0.779594i

−0.009195±1.136813i
−0.009189±1.136655i

−0.004165±1.388816i
−0.004160±1.388473i

0.1
=1/3

P
−0.015786±0.401413i
−0.015778±0.401361i

−0.015064±0.561629i
−0.015048±0.561485i

−0.013569±0.775819i
−0.013538±0.775412i

−0.009132±1.131642i
−0.009071±1.130070i

−0.004164±1.383667i
−0.004116±1.380271i

0.5
=1/3

P
−0.015123±0.392889i
−0.015079±0.392555i

−0.014436±0.549719i
−0.014356±0.548917i

−0.013020±0.759512i
−0.012872±0.757420i

−0.008858±1.109452i
−0.008578±1.101867i

−0.004151±1.361337i
−0.003927±1.345218i

5

0 =0 −0.009585±0.312786i −0.009171±0.437743i −0.008358±0.605708i −0.006140±0.894300i −0.003532±1.127644i

0.01
=1/3

P
−0.009578±0.312681i
−0.009578±0.312679i

−0.009165±0.437597i
−0.009164±0.437591i

−0.008352±0.605507i
−0.008351±0.605489i

−0.006136±0.894014i
−0.006134±0.893945i

−0.003531±1.127316i
−0.003528±1.127153i

0.1
=1/3

P
−0.009521±0.311749i
−0.009519±0.311726i

−0.009111±0.436294i
−0.009105±0.436230i

−0.008304±0.603713i
−0.008293±0.603532i

−0.006104±0.891452i
−0.006083±0.890767i

−0.003519±1.124373i
−0.003495±1.122754i

0.5
=1/3

P
−0.009276±0.307706i
−0.009261±0.307567i

−0.008877±0.430639i
−0.008849±0.430291i

−0.008094±0.595924i
−0.008042±0.595002i

−0.005967±0.880324i
−0.005865±0.876955i

−0.003467±1.111554i
−0.003353±1.103705i

10

0 =0 −0.004795±0.221243i −0.004597±0.309687i −0.004222±0.429011i −0.003262±0.638237i −0.002150±0.820656i

0.01
=1/3

P
−0.004794±0.221206i
−0.004794±0.221206i

−0.004596±0.309636i
−0.004595±0.309633i

−0.004220±0.428940i
−0.004220±0.428934i

−0.003261±0.638133i
−0.003261±0.638110i

−0.002149±0.820526i
−0.002148±0.820470i

0.1
=1/3

P
−0.004779±0.220876i
−0.004779±0.220868i

−0.004582±0.309173i
−0.004581±0.309151i

−0.004208±0.428300i
−0.004205±0.428239i

−0.003252±0.637194i
−0.003247±0.636965i

−0.002144±0.819362i
−0.002137±0.818803i

0.5
=1/3

P
−0.004717±0.219423i
−0.004713±0.219379i

−0.004522±0.307141i
−0.004515±0.307025i

−0.004153±0.425491i
−0.004141±0.425179i

−0.003212±0.633072i
−0.003186±0.631932i

−0.002120±0.814248i
−0.002087±0.811489i

m21
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definitions given in Eq. (47), if some root  is found as , then, it is observed that

 and  are roots also. In case of “−” sign, ,  and 

also represent roots of the equation. However, fortunately, all of these complex numbers lead at the

end, to the same pair of complex conjugate number  which is physically meaningful (i.e.,

negative real parts).

Various observations can be made from examination of the complex numbers in Table 1 in which

 are taken, as stated previously.

The imaginary parts of the “P”-values, i.e., the “exact” non-dimensional “eigenfrequencies” within

a  cell get smaller if  gets larger, as expected. Hence, the corresponding values for

 are always smaller than those for . The same trend holds for -values,

as well. Table 1 reveals the fact that if αM gets larger by holding αk constant, then, the

corresponding “eigenfrequencies” get smaller, as expected. On the other hand, it is seen that the

corresponding “eigenfrequencies” get larger if αk gets larger by keeping αM constant, which can be

expected, as the system becomes more stiff. 

The absolute values of the relative “errors” of the “eigenfrequencies” in the first sub-cells

corresponding to , with respect to the imaginary parts of the “P”-values in each sub-cell of

Table 1, which represent “exact” values of the “eigenfrequencies”, are shown in Fig. 5 in the form

of “error” surfaces, from bottom to top for , 0.1 and 0.5, respectively. Where

 and  are taken, the relative “errors” surfaces are drawn for various values

of the stiffness and mass parameters: αk and αM. 

 It is clearly seen from this figure that the “errors” coming from not taking into account the own

mass of the helical spring become more pronounced in the parameter region αM up to 2 and αk up

to 4. On the other side, the errors decrease if αM increases, by keeping αk constant.

β β a ib+=

a– ib– b ia+, b– ia– a ib+– a ib b ia–,– b ia+–

λ1 2, /ω0

d 0.1 η, α
M

0.5= = =

αM αk– m21

m21 0.5= m21 0.01= δ 1/3=

m21 0=

m21 0.01=

η 0.5 d, 0.1= = α
M

0.5=

Fig. 5 The relative “errors” of -case with respect to “P”-values in each sub-cell of Table 1m21 δ 0= =
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Based on the fact that a design engineer would most probably tend to add one third of the spring

mass to the tip mass, it is reasonable also to examine the relative “errors” of the “eigenfrequencies”

in case of  with respect to the “exact” values, i.e., “P”-values in each sub-cell of Table 1.

The corresponding “error” surfaces are shown in Fig. 6, from bottom to top for , 0.1 and

0.5, respectively. The relative “error” surfaces are drawn for various combinations of stiffness and

mass parameters αk, and αM, where  and  are taken. It is clearly seen that

the “errors” decrease continuously if αM increases by keeping αk fixed. This figure indicates that the

errors from applying the -approach become significant in the parameter region of αM up to

2. Increasing αk in this region up to 4 leads to more significant “errors”, whereas increasing beyond

4 leads to approximately constant “error” levels. Another fact which should be stated is that these

“errors” increase approximately linearly with .

As a second numerical application, the -values of the system in Fig. 2 are collected in

Table 2 for various values of the non-dimensional stiffness parameter αk where  is taken as

0.01, 0.1 and 0.5. The complex numbers in the second column written in bold represent the

eigenvalues of the system in Fig. 2 for the massless spring case, i.e., , hence . The

other system parameters are chosen as:  and . The explanations regarding

the factor  are the same as for Table 1, the difference being that now  corresponds to the

case where one third of the spring mass is added to the attachment point of the spring-mass to the

bending beam, as depicted in Fig. 4.

The first values in each  cell are obtained from the numerical solutions of characteristic

Eq. (A.2) for .

The second complex numbers in the same cell indicated by “P” are obtained from the numerical

solution of the characteristic Eq. (65), considering the definitions in Eqs. (32) and (47). Finally, it is

δ 1/3=

m21 0.01=

η 0.5 d, 0.1= = α
M

0.5=

δ 1/3=

m21

λ/ω0

m21

m21 0= δ 0=

d 0.1 η, 0.5= = α
M

0.5=

δ δ 1/3=

αk m21–

δ 1/3=

Fig. 6 The relative “errors” of -case with respect to “P”-values in each sub-cell of Table 1δ 1/3=
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worth to noting that these numbers are exactly the same as those obtained from the numerical

solution of the characteristic Eq. (59), where the matrix  in the matrix product Eq. (58) is to be

taken now as the matrix given in Eq. (67).

The imaginary parts of the “P”-values, i.e., the “exact” non-dimensional “eigenfrequencies”

relating to constant -values get larger if αk increases. This can be expected, as the system

becomes stiffer, hence, the “eigenfrequencies” will be higher. On the other side, the corresponding

“eigenfrequencies” decrease if  increases for a certain αk-value. It is an expected effect, that

increasing masses in a system lead to decreasing “eigenfrequencies”.

The absolute values of the relative “errors” of the “eigenfrequencies” in the first-column,

corresponding to , with respect to the corresponding “exact eigenfrequencies” in the

“P”-rows, are shown in Fig. 7 in the form of “error"“-curves for various values of stiffness and

mass parameters, αk and , where  and  are taken. The “error” curves

are drawn from bottom to top for , 0.1 and 0.5, respectively. It is seen, that the “errors”

grow approximately linearly with , which is understandable. 

Another fact which can be seen from Fig. 7 is that the “errors” are practically not affected by αk
if  takes relatively small values. However, the -curve descends faster in the region of

αk-values up to 2 and then the descend occurs more softly.

Finally, the “errors” of the “eigenfrequencies” arising in case of not considering the own mass of

the helical spring, and adding one third of its mass to the attachment point to the horizontal beam,

i.e.,  and , with respect to the “exact” values in the “P”-rows, are shown in Fig. 8 in

the form of “error”-curves,for various values of the stiffness parameter αk, where ,

 and  are taken. The upper curve corresponds to , i.e., massless spring

T2[ ]

m21

m21

m21 δ 0= =

m21 η 0.5 d, 0.1= = α
M

0.5=

m21 0.01=

m21

m21 m21 0.5=

δ 0= δ 1/3=

η 0.5 d, 0.1= =

α
M

0.5= m21 0.5= δ 0=

Table 2 The characteristic values of the system in Fig. 2 in the form of λ/ω0, for various values of the
stiffness and mass parameter αk and 

αk =0 0.01 0.1 0.5

0.5 −0.006911±2.033428i
=1/3

P
−0.006910±2.032960i
−0.006911±2.032957i

−0.006894±2.028755i
−0.006994±2.028521i

−0.006823±2.010287i
−0.011289±2.003208i

1 −0.006860±2.050289i
=1/3

P
−0.006858±2.049821i
−0.006858±2.049819i

−0.006843±2.045612i
−0.006869±2.045482i

−0.006774±2.027126i
−0.007648±2.023459i

1.5 −0.006809±2.066889i
=1/3

P
−0.006807±2.066420i
−0.006807±2.066419i

−0.006792±2.062209i
−0.006804±2.062120i

−0.006726±2.043707i
−0.007073±2.041316i

2 −0.006758±2.083235i
=1/3

P
−0.006757±2.082766i
−0.006757±2.082765i

−0.006743±2.078552i
−0.006749±2.078484i

−0.006678±2.060038i
−0.006862±2.058258i

2.5 −0.006709±2.099334i
=1/3

P
−0.006707±2.098864i
−0.006707±2.098864i

−0.006693±2.094650i
−0.006697±2.094595i

−0.006631±2.076126i
−0.006744±2.074702i

3 −0.006659±2.115193i
=1/3

P
-0.006658±2.114724i
−0.006658±2.114723i

−0.006644±2.110508i
−0.006647±2.110461i

−0.006584±2.091978i
−0.006661±2.090785i

5 −0.006467±2.176358i
=1/3

P
−0.006465±2.175889i
−0.006465±2.175889i

−0.006454±2.171676i
−0.006455±2.171647i

−0.006401±2.153145i
−0.006427±2.152404i

10 −0.006019±2.315258i
=1/3

P
−0.006018±2.314793i
−0.006018±2.314793i

−0.006010±2.310621i
−0.006010±2.310604i

−0.005972±2.292236i
−0.005979±2.291827i

m21

m21

δ

δ

δ

δ

δ

δ

δ

δ

δ
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case, whereas the lower curve corresponds to . It can be stated that both curves differ by an

approximately constant amount from each other. That the lower curve remains over a wide range of

the stiffness parameter beginning approximately with αk = 1.5, less than 0.001 indicates clearly that

the -approach is a quite good approximation which can be applied in a wide range of αk.

On the other side, it is seen that not taking into account the own mass of the helical spring leads to

δ 1/3=

δ 1/3=

Fig. 7 The relative “errors” of -case with respect to “P”-values in each cell of Table 2m21 δ 0= =

Fig. 8 The relative “errors” of  and -cases with respect to “P”-values in each cell of Table 2δ 0= δ 1/3=
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an average error of approximately 1.2 percent in the “eigenfrequencies”, which could be significant

for some applications. 

4. Conclusions

Many actual vibrational systems encountered in the real life are modeled in the technical literature

as Bernoulli-Euler beams subject to various supporting conditions with helical spring-mass

attachments. However, in these applications the helical springs are frequently assumed to be

massless. The system investigated in the present study consists of a cantilever beam with a tip mass

to which a visco-elastic (Kelvin-Voigt model) helical spring-mass is attached in-span. In order to

account for the own mass of the helical spring, it is modeled as a longitudinally vibrating visco-

elastic rod. The characteristic equation of the combined system above is derived on the basis of two

different methods, i.e., via a boundary value problem formulation and the transfer matrix method.

Further, the characteristic equation of the reduced system resulting for the tip mass on the rod going

to infinity is established as well. 

The characteristic equations obtained are then numerically solved for various combinations of the

physical parameters. Comparison of the numerical results with the massless spring case and with the

engineering approach in which one third of the spring mass would be attached to its end, reveals

clearly the fact that both approaches could cause significant errors in the numerical values of

especially the complex “eigenfrequencies” of the combined system, for some parameter

combinations. Therefore, it is quite reasonable to supply a design engineer working in this area with

the “exact” characteristic equations of the systems investigated in the present study in order to

enable him to obtain “exact” eigenvalues of these systems.
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