
Structural Engineering and Mechanics, Vol. 28, No. 1 (2008) 53-67 53

Free vibrations of anisotropic rectangular plates with 
holes and attached masses

C. A. Rossit
†

Dpto. de Ingeniería, Instituto de Mecánica Aplicada, Universidad Nacional del Sur, 8000, 

Bahía Blanca, Argentina

P. M. Ciancio
‡

Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7400, 

Olavarría, Argentina

(Received December 6, 2006, Accepted August 17, 2007) 

Abstract. Anisotropic materials are increasingly required in modern technological applications.
Certainly, civil, mechanical and naval engineers frequently deal with the situation of analyzing the
dynamical behaviour of structural elements being composed of such materials. For example, panels of
anisotropic materials must sometimes support electromechanical engines, and besides, holes are performed
in them for operational reasons e.g., conduits, ducts or electrical connections. This study is concerned with
the natural frequencies and normal modes of vibration of rectangular anisotropic plates supported by
different combinations of the classical boundary conditions: clamped, simply – supported and free, and
with additional complexities such holes of free boundaries and attached concentrated masses. A variational
approach (the well known Ritz method) is used, where the displacement amplitude is approximated by a
set of beam functions in each coordinate direction corresponding to the sides of the rectangular plate.
Consequently each coordinate function satisfies the essential boundary conditions at the outer edge of the
plate. The influence of the position and magnitude of both hole and mass, on the natural frequencies and
modal shapes of vibration are studied for a generic anisotropic material. The classical Ritz method with
beam functions as spatial approximation proved to be a suitable procedure to solve a problem of such
analytical complexity.

Keywords: vibration of plates; anisotropic plates; concentrated mass; holes of free edge; Ritz method.

1. Introduction

The present study deals with the analysis of transverse vibrations of thin rectangular plates of

anisotropic materials carrying concentrated masses rigidly attached and rectangular holes of free

edges.

The proposed mechanical system is of great interest in many technological situations since it is

quite common in a large variety of engineering fields: from plates supporting machinery with holes
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to printed circuit boards with electronic elements attached to them. A plate – like chassis or a

printed circuit can be approximated as flat rectangular plates carrying concentrated masses with

holes, subjected to vibration.

As it is known it does not appear possible to obtain an exact analytical solution for the mode

shapes and natural frequencies of transverse vibration of such a complex structural system.

It is important to point out that the thorough treatise due to Lekhnitskii (1968) does not solve any

problem of vibration of anisotropic plates. Nevertheless, there are several textbooks on anisotropic

plates where the vibration problems are included (Reddy 1997, Whitney 1987).

The variational Ritz method (pointed out by Leissa 2005, Mikhlin 1964 as being incorrectly called

the Rayleigh-Ritz method by some persons), is employed to perform the analysis.

The displacement amplitude is approximated by a set of beam functions in each principal

coordinate direction as it has been done by pioneering works on the vibration of solid anisotropic

plates (Ashton 1969, Ashton and Waddoups 1969, Ashton and Anderson 1969, Bert and Mayberry

1969, Mohan and Kingsbury 1971).

Unfortunately at least one of those “almost classical” works, the paper by Mohan and Kingsbury,

published thirty five years ago commits a mathematical error since the eigenvalues are determinated

by the Galerkin method. In view of the fact that the coordinate functions do not satisfy, generally,

the natural boundary conditions the methodology is not admissible and the eigenvalues are not, in

general, valid.

In the treatment of anisotropic vibrating rectangular plates with additional complexities, Avalos

et al. (1991) considered doubly connected domains for the simply – supported case and Ciancio

et al. (2006) studied the cantilever anisotropic plate with a rigidly attached mass.

The first five natural frequency coefficients are obtained for plates of different combinations of

the classical boundary conditions with a centered orifice, and varying the position and magnitude of

the concentrated mass. The considered structural systems are shown in Fig. 1. 

The corresponding modal shapes are also studied.

Due to the quantity and variability of the parameters involved in the description of the dynamical

behaviour of these kinds of structures, just a few representative cases will be considered to

demonstrate the convenience of the procedure.

2. Approximate analytical solution

According to the classical thin anisotropic plate theory, (Lekhnitskii 1968), the energy functional

corresponding to the vibrating described system is given by

(1)

where  is the deflection amplitude of the middle plane of the plate. Dij are the well

known flexural rigidities of the anisotropic plate.

Ap is the net area of the plate plan form: Ap = A − Ah where A is the area of the whole rectangle:

a × b and Ah is the area of the hole: a1 × b1.
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ρ, h are the density and the thickness of the plate, respectively, m is the magnitude of the

concentrated mass,  is the plate displacement amplitude at the mass position 

and ω is the natural circular frequency of the system.

The rotatory inertia of the concentrated mass is neglected in the present analysis.

As the length of the sides of the rectangular plate are a and b in the  and  directions

respectively, the coordinates can be written in the dimensionless form 

(2)

and the aspect ratio of the plate

For simplicity, holes of the same aspect ratio of the plate are just considered: .

The expression of the deflection of the plate is approximated in the form of a truncated series of

beam functions  and .

(3)

 and  are the characteristic functions for the normal modes of vibration of beams with

end conditions nominally similar to those of the opposite edges of the plate in each coordinate

direction.

When the configuration of the plate leads to beams with both ends free, for example in the case

of a cantilever plate, the first two characteristic functions correspond to rigid motions: translation

and rotation.

Obviously  and  do not satisfy the natural boundary conditions at outer and inner

edges, as previously stated but this is legitimate when using the Ritz method (Nallim and Grossi

2003).

Substituting Eq. (3) into Eq. (1) and, requiring that  be a minimum with respect to the

 coefficients

; (4)

one obtains a homogeneous linear system of equation in terms of the  parameters.

From the non – triviality conditions, one can get natural frequency coefficients: 

 as eigenvalues, and vibration modes as eigenvectors of the secular determinant.

The present study is concerned with the determination of the first five natural frequency

coefficients Ω1 to Ω5 in the case of anisotropic rectangular plate, and their respective modal shapes.

3. Numerical results

The natural frequencies and modal shapes of the described plates are analyzed.

The plates are simply supported, clamped or free at their external edges.

The results of previous investigations show that the plate modal shapes and natural frequency
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Table 1 Frequency coefficients values for a cantilever (CFFF) anisotropic, doubly connected plate with a
concentrated mass attached at (xm = 0.5, ym = 0.75)

λ = a/b a1/a M = m/mp Ω1 Ω2 Ω3 Ω4 Ω5

2/3

0 0 3.0663 4.8750 12.6397 18.8565 22.4569

0.1

0 3.0331 4.8073 12.6503 18.6547 22.3895

0.1 3.0289 4.5176 12.4955 18.1002 21.1687

0.5 2.9987 3.7125 11.9093 15.7691 19.7586

1 2.8595 3.2408 11.4299 14.9039 19.5961

0.2

0 2.6362 4.4472 12.3105 16.7700 21.7948

0.1 2.6356 4.1703 12.1403 16.2680 20.7922

0.5 2.6315 3.3914 11.4729 14.6065 18.8206

1 2.6096 2.8444 10.9450 14.1058 18.4814

1

0 0 2.8285 5.5269 18.9016 20.0922 27.5157

0.1

0 2.7539 5.3895 18.9804 20.0111 27.4192

0.1 2.7505 5.0583 18.4618 19.0017 26.1460

0.5 2.7322 4.1367 15.4203 18.9893 24.9564

1 2.6911 3.4958 14.1884 18.9887 24.6828

0.2

0 1.0822 4.5794 18.2573 19.4234 26.2727

0.1 1.0781 4.3012 17.6624 18.5167 24.9961

0.5 1.0614 3.5420 14.7672 18.3846 23.8515

1 1.0401 3.0096 13.5522 18.3756 23.5981

3/2

0 0 2.4493 6.1930 19.4740 24.7333 44.1457

0.1

0 2.2369 5.8656 19.4341 24.9712 43.8940

0.1 2.2357 5.4784 19.0262 22.7165 43.5189

0.5 2.2296 4.4233 17.0592 20.7932 43.0314

0.2

1 2.2196 3.6832 15.9173 20.5385 42.8685

0 2.3585 6.3847 19.3754 28.0044 44.7723

0.1 2.3563 5.9087 18.5621 26.0624 44.0196

0.5 2.3464 4.6692 16.6710 24.0524 43.1147

1 2.3299 3.8486 15.8055 23.5755 42.8383

Fig. 1 Vibrating systems under consideration: (a) Cantilever anisotropic plate and (b) C-C-C-SS anisotropic plate
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coefficients are strongly affected by the characteristic of anisotropic material and that such

structures do not exhibit easily predictable behavior.

Therefore, and in view of the fact that the principal aim of the present work is to show the

flexibility of the proposed procedure, just a generic arbitrary anisotropic material is considered

( , ), and two situations including the different

boundary conditions are analyzed (Fig. 1).

In the first place, a cantilever anisotropic plate is studied.

Table 1 to Table 3 contain the first five frequency coefficients for a cantilever plate with a

centered free edge hole and different locations and magnitudes of the concentrated mass. The

variation of the aspect ratio of the plate and the magnitude of hole and mass are also taken into

account.

D22 D12 D66 D11 2⁄= = = D16 D26 D11 3⁄= =

Table 2 Frequency coefficients values for a cantilever (CFFF) anisotropic, doubly connected plate with a
concentrated mass attached at (xm = 0.75, ym = 0.5) 

λ = a/b a1/a M = m/mp Ω1 Ω2 Ω3 Ω4 Ω5

2/3

0 0 3.0663 4.8750 12.6397 18.8565 22.4569

0.1

0 3.0331 4.8073 12.6503 18.6547 22.3895

0.1 2.8516 4.6959 11.4026 18.6263 22.3887

0.5 2.3075 4.4910 9.6593 18.5904 22.3828

1 1.9075 4.4055 9.0745 18.5784 32.1185

0.2

0 2.6362 4.4472 12.3105 16.7700 21.7948

0.1 2.5278 4.2678 10.8575 16.6717 21.7074

0.5 2.1416 3.8984 8.9721 16.5860 21.3488

1 1.8069 3.7386 8.3851 16.5639 21.1958

1

0 0 2.8285 5.5269 18.9016 20.0922 27.5157

0.1

0 2.7539 5.3895 18.9804 20.0111 27.4192

0.1 2.6012 5.2302 17.7760 19.7613 26.7249

0.5 2.1488 4.9191 15.4208 19.6812 25.9909

1 1.8049 4.7761 14.4980 19.6689 25.7901

0.2

0 1.0822 4.5794 18.2573 19.4234 26.2727

0.1 1.0590 4.2847 17.0637 18.8364 25.5745

0.5 0.9764 3.5964 14.4855 18.7110 24.9838

1 0.8928 3.1995 13.5450 18.6960 24.8417

3/2

0 0 2.4493 6.1930 19.4740 24.7333 44.1457

0.1

0 2.2369 5.8656 19.4341 24.9712 43.8940

0.1 2.1264 5.6379 19.2929 24.2895 41.4174

0.5 1.7942 5.1715 18.8761 22.9645 37.3624

0.2

1 1.5308 4.9407 18.5845 22.4117 36.0353

0 2.3585 6.3847 19.3754 28.0044 44.7723

0.1 2.2352 6.1529 19.2357 26.6257 42.4859

0.5 1.8726 5.6765 18.8161 24.1201 39.356

1 1.5913 5.4396 18.5145 23.1757 38.4687
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All the values are determined taking M = N = 10 in Eq. (3).

Fig. 2 to Fig. 8 show the modal shapes for the cantilever anisotropic plate with the free edge hole

and the concentrated mass.

Then an anisotropic rectangular plate with three outer edges clamped and the remaining simply

supported, is analyzed.

Table 4 and Table 5 show values for similar features of this situation, as those considered for the

cantilever plate.

As well Fig. 9 to Fig. 13 show the modal shapes of some particular cases of this plate.

In order to evaluate the accuracy of the expounded procedure, in Table 6 a comparison is made

with the results obtained by Cupial (1997) for a highly anisotropic simply supported plate, by means

of the Ritz method using orthogonal polynomials.

Table 3 Frequency coefficients values for a cantilever (CFFF) anisotropic, doubly connected plate with a
concentrated mass attached at (xm = 0.75, ym = 0.75) 

λ = a/b a1/a M = m/mp Ω1 Ω2 Ω3 Ω4 Ω5

2/3

0 0 3.0663 4.8750 12.6397 18.8565 22.4569

0.1

0 3.0331 4.8073 12.6503 18.6547 22.3895

0.1 2.9938 4.0409 12.2414 17.9541 18.2756

0.5 2.3474 3.4122 12.0826 13.8717 17.7570

1 1.9228 2.9447 11.2692 11.9367 16.7336

0.2

0 2.6362 4.4472 12.3105 16.7700 21.7948

0.1 2.6349 3.7253 12.2740 15.8876 21.6851

0.5 2.4753 2.6610 12.2110 14.9249 21.5809

1 1.9157 2.6436 12.1840 14.6491 21.5528

1

0 0 2.8285 5.5269 18.9016 20.0922 27.5157

0.1

0 2.7539 5.3895 18.9804 20.0111 27.4192

0.1 2.7501 4.2228 15.1750 17.6949 23.1222

0.5 2.1519 3.6119 14.9921 17.4857 22.7534

1 1.7593 3.1616 14.7835 17.2516 19.9787

0.2

0 1.0822 4.5794 18.2573 19.4234 26.2727

0.1 1.0795 3.8509 18.0962 19.3740 25.9693

0.5 1.0677 2.6277 17.8462 19.3196 25.4568

1 1.0497 2.0603 17.7509 19.3034 25.2551

3/2

0 0 2.4493 6.1930 19.4740 24.7333 44.1457

0.1

0 2.2369 5.8656 19.4341 24.9712 43.8940

0.1 2.2069 5.0441 19.4287 24.8912 43.1459

0.5 2.0641 3.6974 19.4211 24.7707 41.6088

1 1.8642 3.1739 19.4183 24.7244 40.9251

0.2

0 2.3585 6.3847 19.3754 28.0044 44.7723

0.1 2.31768 5.4787 19.3575 27.8792 43.9428

0.5 2.1358 4.0422 19.3333 27.6864 42.1260

1 1.9065 3.5002 19.3247 27.6113 41.3487
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Fig. 2 First four modal shapes of vibration of a cantilever anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
without attached mass 

Fig. 3 First four modal shapes of vibration of a cantilever anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
a concentrated mass (M = 0.1) attached at (xm = 0.5, ym = 0.75) 
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Fig. 4 First four modal shapes of vibration of a cantilever anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
a concentrated mass (M = 0.5) attached at (xm = 0.5, ym = 0.75) 

Fig. 5 First four modal shapes of vibration of a cantilever anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
a concentrated mass (M = 0.1) attached at (xm = 0.75, ym = 0.5) 
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Fig. 6 First four modal shapes of vibration of a cantilever anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
a concentrated mass (M = 0.5) attached at (xm = 0.75, ym = 0.5) 

Fig. 7 First four modal shapes of vibration of a cantilever anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
a concentrated mass (M = 0.1) attached at (xm = 0.75, ym = 0.75) 



62 C. A. Rossit and P. M. Ciancio

Fig. 8 First four modal shapes of vibration of a cantilever anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
a concentrated mass (M = 0.5) attached at (xm = 0.75, ym = 0.75) 

Table 4 Frequency coefficients values for a CCCS anisotropic, doubly connected plate with a concentrated
mass attached at (xm = 0.75, ym = 0.75) 

λ = a/b a1/a M = m/mp Ω1 Ω2 Ω3 Ω4 Ω5

2/3

0 0 25.7724 35.2778 49.9407 65.525 70.1787

0.1

0 24.8513 32.0440 45.7753 62.6881 65.6947

0.1 23.1764 29.9772 43.9352 50.9795 62.8010

0.5 15.9805 27.7657 39.1383 46.0149 62.7838

1 12.0293 27.4321 39.9398 45.9639 62.7820

0.2

0 26.8278 35.2345 52.3965 66.5107 72.0796

0.1 24.3510 33.4069 51.6343 52.6782 71.3595

0.5 16.2107 31.2550 43.2288 52.4258 70.8826

1 12.1436 30.8584 42.1582 52.4228 70.8141

1

0 0 30.5162 51.7154 72.4358 81.633 102.175

0.1

0 28.0672 43.7729 68.6633 70.8784 100.769

0.1 26.0828 42.3615 56.8117 68.7228 92.5347

0.5 19.0186 37.4857 47.9728 68.7166 88.0908

1 14.6184 36.0325 47.1737 68.7159 87.4502

0.2

0 31.5729 51.1067 73.8302 81.3427 101.600

0.1 28.6852 49.1300 60.2238 79.7175 96.5330

0.5 19.8401 42.6949 54.1184 79.3450 93.9024

1 15.0443 41.1919 53.6819 79.2907 93.4821
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Table 4 Contined

λ = a/b a1/a M = m/mp Ω1 Ω2 Ω3 Ω4 Ω5

3/2

0 0 42.1101 78.4318 99.5379 124.335 150.353

0.1

0 35.6861 56.8301 93.4766 102.985 148.993

0.1 32.5645 56.1075 78.3357 97.6760 131.609

0.5 23.5599 53.0553 62.9248 96.9603 125.301

1 18.2394 51.3574 61.0942 96.8765 124.417

0.2

0 42.9540 76.2962 101.445 120.163 150.184

0.1 38.6180 72.2201 82.2312 116.612 137.545

0.5 26.5340 61.0356 79.8809 115.118 133.292

1 20.1489 58.7002 79.4949 114.878 132.702

Table 5 Frequency coefficients values for a CCCS anisotropic, doubly connected plate with a concentrated
mass attached at (xm = 0.75, ym = 0.5) 

λ = a/b a1/a M = m/mp Ω1 Ω2 Ω3 Ω4 Ω5

2/3

0 0 25.7724 35.2778 49.9407 65.525 70.1787

0.1

0 24.8513 32.0440 45.7753 62.6881 65.6947

0.1 22.1185 30.9576 43.9352 51.2905 64.6980

0.5 14.6141 29.6753 39.1383 47.7237 64.6016

1 10.9771 29.3880 38.2088 47.8887 64.5890

0.2

0 26.8278 35.2345 52.3965 66.5107 72.0796

0.1 24.0822 34.3506 46.2095 57.4780 69.9709

0.5 15.9229 32.6360 39.5466 55.5072 69.6295

1 11.9210 32.1790 38.7735 55.3244 69.5856

                                                        
1

0 0 30.5162 51.7154 72.4358 81.633 102.175

0.1

0 28.0672 43.7729 68.6633 70.8784 100.769

0.1 25.3999 40.4442 61.1848 69.4842 88.8229

0.5 17.5011 36.1917 54.6164 69.3986 83.9458

1 13.2953 35.3238 53.5916 69.3885 83.2865

0.2

0 31.5729 51.1067 73.8302 81.3427 101.600

0.1 28.3847 47.2353 64.4369 81.0546 89.3167

0.5 19.2178 41.5076 58.6972 80.8308 85.5898

1 14.5130 40.3806 57.9792 80.7803 85.1403

3/2

0 0 42.1101 78.4318 99.5379 124.335 150.353

0.1

0 35.6861 56.8301 93.4766 102.985 148.993

0.1 32.4520 50.8013 83.3812 101.480 136.766

0.5 22.4512 44.8990 76.3090 101.026 129.671

1 17.0762 43.8567 75.0657 100.954 128.459

0.2

0 42.9540 76.2962 101.445 120.163 150.184

0.1 38.6887 64.2182 99.8588 111.626 139.620

0.5 26.0067 54.8097 97.8596 107.335 135.749

1 19.5929 53.3858 97.3649 106.754 135.185
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Fig. 9 First four modal shapes of vibration of a CCCS anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and
without attached mass 

Fig. 10 First four modal shapes of vibration of a CCCS anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and a
concentrated mass (M = 0.1)  attached at (xm = 0.75, ym = 0.75) 



Free vibrations of anisotropic rectangular plates with holes and attached masses 65

Fig. 11 First four modal shapes of vibration of a CCCS anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and a
concentrated mass (M = 0.5) attached at (xm = 0.75, ym = 0.75) 

Fig. 12 First four modal shapes of vibration of a CCCS anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and a
concentrated mass (M = 0.1)  attached at (xm = 0.75, ym = 0.5) 
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The analysis is done for the composite material properties: E1 = 138 [GPa], E2 = 8.96 [GPa], G12 =

7.1 [GPa], and ν12 = 0.30.

This case is chosen because, as Cupial (1997) himself and Whitney (1972) stated, the convergence

of the Ritz method using beam functions may be slow for the free vibration frequencies of highly

anisotropic plates with simply supported edges.

Present computing facilities and a convenient and straightforward algorithm (Felix et al. 2004)

make possible to increase the number in terms in Eq. (3) without difficulty.

For this particular case M = N = 30 is taken and the obtained values show good accuracy from an

engineering viewpoint.

4. Conclusions

As a general conclusion, one may say that the Ritz method, using beam function provides an

accurate and convenient procedure to attack a difficult elastodynamics problem: the vibration of thin

rectangular plates with structural and mechanical complexities like for the present situation where

Fig. 13 First four modal shapes of vibration of a CCCS anisotropic plate of λ = 3/2, hole of a1/a = 0.1 and a
concentrated mass (M = 0.5) attached at xm = 0.75, ym = 0.5 

Table 6 The non-dimensional frequency  of a single-layer (30°) simply sup-
ported square plate

Mode Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Cupial, 1997 11.233 20.282 32.995 34.866 47.133 48.283

Present approach 11.372 20.485 33.234 35.085 47.592 48.659

ωa2 12 1 ν12ν21–( )ρ E1h
3⁄[ ]1 2/
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anisotropic material characteristics, doubly connected domain and attached masses are present.

The obtained values are the outcome of an algorithm, relatively simple to implement, (Felix et al.

2004) which allows studying those situations where the plates possess additional complexities, with

the only assistance of a P.C.
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