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Transverse stress determination of composite plates
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Abstract. Analysis of transverse stresses at layer interfaces in a composite laminate has always been a
challenging task. Composite structures possess highly irregular material properties at layer interfaces,
which cause high shear stresses. Classical Plate Theory and First Order Shear Deformation Theory
(FSDT) use post computing to calculate transverse stresses. This paper presents Reissner Mixed
Variational Theorem (RMVT) based finite element model to carry out layer-wise analysis of composite
laminates. Selective integration scheme has been used. The formulation has been validated by solving
numerical examples and comparing the results with those published in the literature.

Keywords: laminated composites; layer-wise model; transverse stress; mixed formulation; Reissner
Mixed Variational Theorem; C. requirements.

1. Introduction

Over the last two decades composite materials has occupied a very significant position in the field
of engineering structures such as aircraft, ship, boat hulls, bridge decks and other industrial
applications. The ever increasing use of structural laminates has created considerable interest in their
analysis.

Due to the geometry of laminated composite structures, two dimensional approaches have been
extensively used to trace their response. Anisotropic multilayered structures often exhibit both
higher transverse shear and transverse normal flexibilities with respect to the in-plane deformability
than that of single layered traditional isotropic ones. Recently, considerable amount of research has
been conducted towards development of computational models which are capable of predicting local
effects of laminated and sandwich composites. Exact three dimensional solutions by Pagano (1969,
1970, 1972) have shown that the transverse stresses and displacements are C° continuous functions
in the thickness direction. Carrera (1996), Carrera and Demasi(2003) and Aitharaju (1999) referred
these facts as C. requirements.

Many equivalent single-layer models have been published in the literature which furnishes
interlaminar continuous transverse shear stresses. Some of them are Murakami (1986) and Toledano
(1987). Toledano and Murakami (1987) has considered interlaminar continuous transverse normal
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stresses also in the proposed mixed model. However, the accuracy of equivalent single-layer models
is problem dependent. Partial layer-wise models (zig-zag plate models) have been developed with
the purpose of considering the discrete layer effects of the transverse shear stresses. Some of them
can be found in the articles by Di Sciuva (1992), Bhaskar and Varadan (1989), Carrera (2004),
Demasi (2005), Lee and Lin (1993), Cho and Paramerter (1993), and Averill and Yip (1996). A
review of zig-zag theories based on Murakami’s zig-zag function can also be found in the article by
Demasi (2005). Since the transverse normal stress and strain effects are disregarded in zig-zag plate
models, they are not capable of accurately determining the interlaminar stresses near geometric and
material discontinuities, at the free edges, and when the layers have rather different mechanical
properties. Furthermore, they require integration of local differential equilibrium equations to
provide interlaminar stresses, while their finite element counterparts require C' interpolation
functions. In contrast to equivalent single-layer laminated models, the layer-wise models assume the
displacement fields as C°-continuous through the laminate thickness. Hence, continuity of
interlaminar stresses at the layer interfaces is met. The opportunity of refinement offered by
stacking sublayers makes layer-wise models able to accurately capture the local stresses directly
from constitutive equations (Reddy and Robbins 1994, Setoodeh and Karami 2004). Mixed layer-
wise models for predicting local effects of composite structures have been proposed by Carrera
(1997, 1998), Carrera and Parisch (1998), Carrera (2005), Carrera and Ciuffreda (2005) and Demasi
(2006).

This paper presents an implementation of finite element method presented by Carrera (2000)
based on RMVT (Reissner 1984, 1986). The analysis has been done for multilayered plates
subjected to different types of loadings under different boundary conditions. The zig-zag effects and
inter laminar continuity requirements (C. requirements) are met. A computer code has been
developed in C-language and the numerical results obtained have been compared with those
available in the literature.

2. Finite element formulation
2.1 Geometry and notations for multilayered plates

The geometry and co-ordinate system of the laminated plates having number of layers is shown in
Fig. 1. & =2z,/h; is the non-dimensional local layer co-ordinate. The compact notations used in
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Fig. 1 Geometry and co-ordinate system of laminated plates
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this work can be used for the finite element implementation of about 40 theories for the analysis of
multilayered composite plates loaded with transverse pressure (Carrera 2005).

2.2 Hooke’s law for orthotropic lamina
The material is assumed to be orthotropic. Accordingly cj4=cy=c33=ce =0 and c;5=c35=

ces=0. Thus o3 and o3 depends only on &3 and &;. In matrix notation, the constitutive equation
for a composite lamina may be expressed as

on cn ¢ ¢ 0 0 c5)|en
O Cia Cp G O 0 cxnl|én
Op| _ |€6 €% C6 O 0 c3|&2 . or o =Csg (1)
O3 0 0 0 c55 c4s O]l
O 0 0 0 cy5 cau 0]]&n
| O33] €13 €23 C36 0 0 C33] | €33

For the sake of convenience, Eq. (1) may be partitioned into in-plane and transverse components as
T, T
G, = [0 0% o1l c,=[0; 0y 03] ()

T T
€, = (&1 &n &l g, =65 &3 &5l 3)

Similarly the C matrix can be grouped as

Cit Ci2 Cye Css C45 O 0 0 ¢
<, = C,, = <, = =, 4)
pp Cip Cory Coq nn Cys Cyy 0 pn 0 0 Co3 np
Ci6 Ca Coo 0 0 cs5 0 0 c3

With the help of Egs. (2), (3), and (4), Hooke’s law can be rewritten as

c c c,.ll€,l.
Pl = _PF _/m 14 ; (sp = cppgp+cpncn, €, = cnpgp+cnn0-n (5)
Gy, Cop Cun| | &n
where
_ — — -1 — — -1 — -1— — -1
cpp = cpp_cpn(cnn) cnp’ cpn = cpn(cnn) ’ cnp = _(cnn) cnp’ Con = (cnn)

Eq. (5) represents the mixed form of Hooke’s law.
2.3 Strain-displacement relations
The strain-displacement relationship is

g, =D u; €, = Dnu = (DnQ+Dnz)u (6)
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The differential matrices are

J J - .
< 0 0 <2 0 0

Ox 0z 00 <

ox

D=0 <2 o D.=|lo0 2 o D, = P (7)

dy oz 0 0 =<

. oy

< 29 0 < 00 0

oy Ox | L oz - -

2.4 Finite element formulation and shape functions
The field displacements and nodal displacements are connected by
u=Ngw  0,,=Ngw  (i=1,2,.,N,) ®

The addition of constraint equation for the transverse stress to the Principle of Virtual
Displacement (PVD) leads to RMVT.
RMVT therefore states

[ (88,66, + 1680+ 66,1806~ Ea))dV = L, ©)

The variation of the internal work has been split into in-plane and out-of-plane parts and involves
stress from Hooke’s law and strain from geometrical relations. JL,. is the virtual variation of the
work done by the external force.

2.5 Displacement and transverse stress assumptions for RMVT

The displacement and transverse stress fields along thickness direction are assumed as follows

ut = Fu,+Fu,+Fu, = Fu,;, t=¢tbr
(10)

k k k k
G, Fto-nt+Fbo-nb+Fro-nr

2

where
Fy,=(Py+P)2=00+g)2; F,=(P,-P)2=(1-¢)2; F,=(P,—P,_,)2

It may to be noted that the layer-wise description does not require any zig-zag function for the

simulation of zig-zag effects. The continuity of the displacement at each interface can be linked
using Eq. (11).

k+1

uf,“l), k=1,N-1 and O'f,tzo-nb an

k
u, =
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2.6 Finite element matrices for the k™ layer
Combining Egs. (5), (6), (8), and (9), one gets
SL. = 8q" K, g0+ K51+ 6 '[KG g + Koo g (12)
where

uu oo

kzsij T s kzsij ks
Ko = J'Dp(NiI)Z;p D,(NI); Koo' = I—N.Znnzvj
Q

uoc

K/(TSU _ J-(D (NI)ZkTSN +D,,Q(NI)E N +E, NIMI)

K/(TSI] — -[(NET\D}’IQ(NI) +E N,NI NZkTsD (MI))

i“np

kts kts kts kts k k
(pr ’ an » an » Znn ) = ( pp° pm cnp: nn)E

(E

82 78 2 7.5

E . E, ,E )= I(FTFS,F,FS_:,F,_:FS,FT_:FS_Z)dZ
A

By imposing the definition of virtual variations, the RMVT leads to the equilibrium and
compatibility equations as given in Egs. (13) and (14).

K, 'q' +K,;'g" = p (13)
Ko'a' +K;"g" = 0 (14)

The relationship between nodal displacement vector, ' and nodal load vector, p* may be obtained
by eliminating nodal transverse stress vector, g* from Egs. (13) and (14). The resulting equation will
be

Kmixequ = pk (15)

where

K — [K](TSU kz'stj(KkrsU) Kkrszj

mixed

The elimination of transverse stress unknowns at element level using static condensation
technique distorts the continuity of transverse stresses at layer interfaces to a certain extend. This
defect can be rectified by solving the full mixed problem without the elimination of transverse stress
parameters from the equilibrium and compatibility equations. However, in engineering applications,
it was found that the difference between the out-of-plane stresses calculated with and without
elimination of transverse stress unknowns at element level is very small. Elimination of transverse
stress parameters at element level results significant reduction in CPU time and hence it has to be
preferred in the application of RMVT (Demasi 2006). Therefore, in the present work, transverse
stress parameters are eliminated at the element level.
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Fig. 2 Two dimensional Tiers in an element over one Fig. 3. A laminate element extended over 2 layers
layer

2.7 Assembly of element stiffness matrix from layer to multilayer

For the analysis of composite plates based on RMVT each lamina in a laminate is first divided
into n+1 2D-tiers. Tiers are taken as planes parallel to the surface of the lamina. The number of
divisions of plate along x-direction and y-direction can vary independently of each other.

Stiffness matrices are calculated separately for each tier combination. Each tier has its own unique
value of the stiffness matrices depending upon their interpolation function values along the
thickness direction. Fig. 2 shows placing of tiers in an element for one-layer with second order
variation of displacements and transverse stresses along thickness. Several such elements are
stacked one above the other for getting the element extended over the entire plate thickness. Fig. 3
shows assembling of elements from layer to multi-layer level. After obtaining the stiffness matrix,
K,.iwa and load vector for an element extended over the full thickness of the plate it has to be
assembled along the in-plane direction to form the overall stiffness matrix and load vector of the
whole system. Thus the governing equation of the system is obtained which is similar to the
Eq. (15). Next the boundary conditions are implemented. Finally, the governing equations are solved
to yield the nodal parameters of the whole system.

3. Numerical examples

Analysis has been done for orthotropic multilayered thin, moderately thick, thick and very thick
plates under different loadings with simply supported boundary condition. The order of variation of
displacement and transverse stress fields along the thickness direction are taken as four, if not
specified. Analysis of thin plates with present plate element using full integration scheme reduces
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Fig. 4 Finite Element Model of quarter plate

accuracy in results due to shear locking. To avoid shear locking in thin plates, the reduced and
selective reduced integration techniques were proposed in (Zienkiewicz et al. 1971, Pawsey and
Clough 1971, Briassoulis 1989). The reduced integration procedure is the reduction in the order of
integration in computing the stiffness matrix of the finite element. Similarly, the selective integration
procedure is also a kind of reduced integration rule which is used to evaluate the stiffness matrix
associated with the troublesome shear strain energy. Therefore, in order to avoid shear locking in
the present analysis reduced integration (2 x 2) has been done for terms which are related to the
transverse shear strain energy as suggested in (Carrera and Demasi 2002). The stresses and
displacements are non-dimensionalized according to the following formulas. Finite element model
of quarter plate used for the analysis is shown in Fig. 4. It also indicates the locations at which
stresses and displacements are calculated.

— 100E,° _  _ 3 _ z
0. = v 0B (5 5, = G 5 _ % g o by
P.a P_(alh) P. p.h
’ ’ ’ (0' ,O0,,0 _ _ _ (0— ,0,,0
(6/,,0,,,0),) = 22202 (5.5, 5,,) = 2w _u
v P: o P.(alhy

Example-1

The problem of simply supported symmetric and anti-symmetric cross ply laminate is studied for
different span to thickness ratios (a/4) of 2 to 100 under bi-sinusoidal loading (P = P, sin(m/a)sin(7zy/
b)). Even though the individual layers possess different orientation, they have equal thickness and
material properties. (Ei/E, = 25; G, = Gi3 = 0.5 * Ey; Goz = 0.2 * Ey; vip = 03 = 0.25; v3 = 0.01).
The results obtained are compared in Tables 1, 2 and in Figs. 5(a)-(c) along with the three
dimensional solution presented by Pagano (1969) and those presented by Carrera and Demasi
(2002). In-plane stresses calculated with 2™ order and 4™ order variation of displacement and
transverse stresses along thickness direction are plotted in Fig. 5.
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Table 1 Comparison of results for an anti-symmetric laminate (0/90/0/90)

a/h Method G..(z=0) ©.,(z=0 o.@E=0 U (z=0)
3D (Pagano1969) 0.1625 0.1947 0.4512 5.2632
2 FEM (LM4)" (Carrera and Demasi 2002)  0.1727 0.2058 0.4512 5.2642
Present FEM (LM4) 0.1680 0.2014 0.4629 5.2622
3D (Pagano1969) 0.2713 0.2719 0.4996 0.7623
10 FEM (LM4) (Carrera and Demasi 2002)  0.2638 0.2645 0.5015 0.7629
Present FEM (LM4) 0.2781 0.2788 0.5121 0.7623
3D (Pagano1969) 0.2803 0.2803 0.5000 0.5092
100 FEM (LM4) (Carrera and Demasi 2002)  0.3032 0.3033 0.5302 0.5094
Present FEM (LM4) 0.2871 0.2871 0.5083 0.5091

"Layer-wise model with 4™ order variation of displacement and transverse stresses

Table 2 Comparison of results for a symmetric laminate (0/90/90/0)

a/h Method 6., (z=0) G,(:z=0 o0.(=0 U.(z=0)
3D (Pagano1969) 0.1530 0.2950 - 5.075
2 FEM (LM4)" (Carrera and Demasi 2002)  0.1601 0.3105 0.4576 5.0800
Present FEM (LM4) 0.1584 0.3024 0.4695 5.0734
3D (Pagano1969) 0.2190 0.2920 - 1.9370
4 FEM (LM4) (Carrera and Demasi 2002)  0.2294 0.3148 0.4964 1.9374
Present FEM (LM4) 0.2251 0.2990 0.5083 1.9365
3D (Pagano1969) 0.3010 0.1960 - 0.7370
10 FEM (LM4) (Carrera and Demasi 2002)  0.3073 0.1607 0.5018 0.7376
Present FEM (LM4) 0.3090 0.2010 0.5124 0.7370
3D (Pagano1969) 0.3280 0.1560 - 0.5123
20 FEM (LM4) (Carrera and Demasi 2002)  0.3592 0.1697 0.5342 0.5133
Present FEM (LM4) 0.3365 0.1560 0.5122 0.5123
3D (Pagano1969) 0.3370 0.1410 - 0.4460
50  FEM (LM4) (Carrera and Demasi 2002) (2;26/5) 0.1533 0.5305 0.4449
Present FEM (LM4) 0.3450 0.1440 0.5100 0.4445
3D (Pagano1969) 0.3390 0.1390 - 0.4350
100  FEM (LM4) (Carrera and Demasi 2002)  0.3665 (?32570/5) 0.5302 0.4348
Present FEM (LM4) 0.3470 0.1426 0.5083 0.4343

3D (Pagano1969) - - - -

1000 FEM (LM4) (Carrera and Demasi 2002)  0.3663 0.1496 0.5301 0.4315
Present FEM (LM4) 0.3639 0.1871 0.5076 0.4154

*. . . . . .
Layer-wise model with 4™ order variation of displacement and transverse stresses
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Fig. 5 Variation of in-plane stress along the thickness direction for a symmetric plate under bi-sinusoidal

loading
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Example-2

A three ply simply supported laminate (0/90/0) with span to thickness ratios (a/4) of 4 and 100
under sinusoidal loading (P = P, sin(/x/a)) and under bi-sinusoidal loading (P = P.sin(/mx/a)
sin(7y/b)) has been analyzed. Due to geometric, material and loading symmetry, only one quarter
of the plate was considered. The analysis has been done with an eight-noded isoparametric
element with 2™ order and 4™ order variation of displacement and transverse stress fields along
thickness direction. The results are compared in Figs. 6(a)-(n) with the exact solution of Pagano
(1969) and with the solution obtained from Carrera (2002). The material properties are:
EI/EZ :25, Gl?_ = G13 =05* Ep_, G23 =02* Ez, Vip = U3 = 025, U3 = 0.01 and hl = h3 = l’lz =
h/3.

Example-3

Analysis for symmetric and anti-symmetric cross ply laminate is studied for different span to
thickness ratios (a/k) of 2 to 100 under uniformly distributed load as well as sinusoidal loading (P =
P, sin(/x/a)) has been done and the results are tabulated in Table 3 and Table 4. The material
properties are: E\/E, = 25; Gio = G13 = 0.5 * Ey; Gz = 02 * Ey; U = U3 = 0.25; vz = 0.01 and
hy=hy = hy = hy = h/4.
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Fig. 6 Variation of stresses and displacement along the thickness direction for a laminated plate (0/90/0) under
simply supported boundary conditions
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Table 3 Non-dimensional stresses and deflection values for symmetric laminate calculated using LM4

6.\'.\' Eyy Exy 6:,\' E:y Ez: UZ

Eh2)  (Ehid) @2 (z=0) (z=0) (z=0) (z=0)
1.1375 09772 —0.0899 .

2 i 0% 0477 01927 -0.4593 04962 62200

0.6947 0.4422  -0.0387

Model Loading a’h

0 sl 03789 04374 05056 09126
Sinusoidal 06758 03265 —0.0322

090900 Sl 20 GEES Gaan opsal 04128 04089 05115 06365

so 06715 0.2858 - =0.0301 o 00 04020 05104 05524

-0.6716 —0.2859  0.0301

0.6709 02796  —0.0298
100 ~0.8709 —02796  0.0298 0.4257  -0.4032  0.5058 0.5400

1.6327 09771  —0.0899
2 ~1.1375 -09502  0.1478 0.1927  —0.4593  0.4065 6.2210

0.8306 0.5596  —0.0549
10 08287 —05618  0.0561 0.5721  -0.5109  0.4979 1.1410

Uniformly
o 0.8248  0.4160  —0.0442
0/90/90/0 dlstlr(;zélted 20 _0.8244  —04160  0.0441 0.6294 -0.4788  0.5083 0.8029

0.8258 03643  —0.0401
50 _0.8257 —03644  0.0401 0.6530 —-0.4742 05121 0.6998

0.8260 03563  —0.0395
100 _0.8260 —03563  0.0395 0.6569 —-0.4742  0.5038 0.6847

Example-4

A sandwich plate (f/c/f) subjected to localized uniformly distributed load of 1.0 MPa at the centre
as shown in Fig. 7 is considered in this example. Analysis has been done with simply supported and
clamped boundary conditions. The material properties for the face and core are E; = 70000 MPa;
E2 = 71000 MPa, E3 = 69000 MPa, E12: E13 = E23 = 26000 MPa, Dip = Uy = 0.3 and E1 = E2 =
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Table 4 Non-dimensional stresses and deflection values for anti-symmetric laminate calculated using LM4

c c c c c U.

: Oy 6)‘)‘ O,y zx zy 2z z
Model  Loading ah  ( Gny  whiay =h2) =0) (=00 (=0) (z=0)
02306 0.0320 —0.0923 ﬁ .
2 B e 02079 03476 03365 64839
0.1050  0.0177 —0.0631 o
o SN OO Dl 02919 03943 05207 241531
0.0556 00145 —04030 . A
Sinusoidal 10 —0.6628 —-0.5798 04030 03431 -04676 0.5453  0.9486
0/90/0/50 loading 0.0476  0.0139 —0.0351
. .013 —0. A\
20 G076 001 DAL 03554 04995 05616 0.7175
so 00453 00138 -0.0333 350, 5185 05650  0.6521

-0.6181 -0.5521 0.0333

0.0450 0.0138 -0.0329 n n
100 Z0.6168 —-0.5512  0.0330 03617 -0.5230 0.5600  0.6427

02364 0.0283 —0.1233
2 _14182 -1.1786 02518 0.3009 -0.3685 0.5300 7.9506

0.1135  0.0177 -0.0891 n A
4 ~1.0044 —-0.9084 0.1112 0.4362 -0.4663 0.5071 2.9732

0.0635 0.0170 —0.0575

Uniformly 10 ¢ ! 05474 05566 04981 1.1825
0/90/0/90 distributed 00'0757;1 00'07127905 0600548875
load a0 00563 0.0170 0. 05929 -0.5961 05082 0.9024

-0.7460 -0.7066 0.0484

0.0545  0.0170  -0.045
-0.7395 -0.7020  0.045

0.0543  0.0170 —0.0442
-0.7386 -0.7014 0.0442

100
0.1 5
114 |

051
Fig. 7 Sandwich plate subjected to uniformly distributed load at the centre

50 0.6166 -0.6174 0.5121  0.8235

100 0.6209 -0.6211 0.5039 0.8123

3 MPa; E; = 2.8 MPa; E\, = Ej3= Ex3=1 MPa; v, = vy3 = 0.25 respectively. The values of central
deflection and in-plane stresses obtained in the present analysis along with the solutions presented
by Carrera and Demasi (2003) are tabulated in Table 5. The absolute values of error presented in
Table 5 are calculated with respect to the three-Dimensional solutions.
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Table 5 Stresses and deflection values for sandwich plate

All edges simply supported All edges clamped

Analysis Top  Error Bottom Error Top Bottom
face (%) face (%) face face
3D analytical (Carrera and Demasi 2003) —3.7800 - =2.1400 - - -
U FEM (LM2") (Carrera and Demasi 2003) -3.7628 0.46 -2.1900 2.34 - -
* FEM (ED1%) (Carrera and Demasi 2003) —0.0187 99.51 —0.0181 99.15 - -
Present FEM (LM2) -3.7629 045 -2.1400 0.00 -3.5450 -1.9220
3D analytical Top  —624.00 - -241.00 - - -
(Carrera and Demasi 2003) Bottom  580.00 - 211.00 - - -
FEM (LM2) Top  —595.56 4.56 -223.93 7.08 - -
(Carrera and Demasi 2003) Bottom  556.00 4.14 19637 6.93 - -
O.YX
) FEM (ED1) Top  —29.460 9528 -23.990 90.05 - -
(Carrera and Demasi 2003) Bottom —29.170 105.03 —-23.750 111.26 - -
P ¢ FEM (LM2 Top —632.223 1.32 -22525 6.54 -519.480 —144.070
resett (LM2) Bottom 590375 1.79 195775 7.22 483.541 139.004
3D analytical Top -138.00 - -121.00 - - -
(Carrera and Demasi 2003) Bottom  146.00 - 127.00 - - -
FEM (LM2) Top -136.20 1.30 -118.99 1.66 - -
(Carrera and Demasi 2003) Bottom 144.03 1.35 125.00 1.57 - -
ot
: FEM (ED1) Top 48700 103.53 3.3200 102.74 - -
(Carrera and Demasi 2003) Bottom 63600 95.64 4.5000 96.46 - -

Top —138.515 037 -121.038 0.03 -209.392 124.096
Bottom 146.304 0.21 127.149 0.12 177431 118.693

“Layer-wise model based on RMVT with 2™ order expansion for displacement and transverse stress.
"Equivalent single layer model based on Principle of virtual displacement theory

Present FEM (LM2)

(b)
Fig. 8 Sandwich plate subjected to localized loads at the top surface
Example-5

In this example a simply supported square sandwich plate having geometry and material
properties same as that of Pagano (1970) is studied with different span to depth ratios under of



Table 6 Stresses and deflection values of sandwich plate for different span to depth ratios calculated using LM2

Type of ah=4 ah =10 a/h =50 a/h = 100
loading L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4
g W2 4430 9217 8007 6652 0747 2.004 1.692 1403 0274 0814 0681 0571 0259 0.775 0.648 0.545
T _p2 1398 5301 4339 3.545 0.652 1919 1.606 1310 0274 0.814 0.681 0.571 0259 0.775 0.648 0.545
2 1511 1.735 1.636 1.122 0461 1.023 0.881 0.693 0382 0985 0.834 0.662 0381 0.983 0.832 0.659
04 1065 -0530 —0.619 -0.326 0.111 0564 0455 0380 0295 0776 0656 0.523 0302 0783 0.663 0526
- ' 0.017 0.020 0.019 0.018 0.004 0.005 0.005 0.0043 0.0009 0.0019 0.0016 0.0014 0.0008 0.0018 0.0015 0.0013
0.4y, 0001 -0.0006-0.0006-0.0008-0.0005 ~0.002 ~0.0014-0.0011-0.0008-0.0018-0.0015-0.0013-0.0008-0.0018-0.0015-0.0013
" 20.191 -0.176 —0.177 —0.090 —0.173 —0.569 —0.472 —0.385 —0.296 —0.777 —0.657 —0.523 —0.302 —0.783 —0.663 —0.526
—h2 0249 —1.137 —0.923 —0.738 —0.415 —1.036 —0.881 —0.706 —0.382 —0.985 —0.834 —0.662 —0.381 —0.983 —0.832 —0.659
h2  0.189 0.037 0223 0235 0.061 0.110 0.0980 0.0833 0.0382 0.0623 0.0566 0.0566 0.037 0.060 0.055 0.0565
04, 00038 0.136 0103 0.044 0041 0.082 00719 0.0574 0.0304 0.0497 0.0451 0.0448 0.0294 0.0483 0.044 0.0451
- ' 0.018 0.025 0.023 0.0198 0.005 0.007 0.0061 0.0055 0.0014 0.0022 0.002 0.002 0.0013 0.0021 0.0019 0.0019
» .y, ~0-004 ~0.006 ~0.006 ~0.005 ~0.0017 ~0.004 ~0.0032-0.0025-0.0013-0.0021-0.0019~0.0019~0.0013-0.0021-0.0019-0.0019
7 20.082 -0.184 —0.158 —0.124 —0.047 —0.090 —0.079 —0.0645 —0.031 —0.050 —0.045 —0.045 —0.0295-0.0483 —0.044 —0.045
—h2 -0.700 —0.258 —0.214 —0.153 —0.0685 —0.117 —0.104 —0.0859-0.0385-0.0626-0.0569—0.0567—0.0369 —0.061 —0.055 —0.0565
W2 0.014 0.026 0.0234 —0.014 —0.0013 =0.005 —0.0037 —0.056 —0.0013-0.0038—0.0032 —0.008 —0.0009—0.0027—0.0023 —0.001
= 04k 0046 0.165 0136 0239 0.063 0229 0.1875 0244 0.0692 0.249 0205 0.289 0.0679 0.247 0204 0.297
* _0.4h 0.049 0.186 0.152 0.119 0.063 0.227 0.1866 0.215 0.0691 0249 0205 0.291 0.0679 0.047 0.204 0.298
—h2  -0.008 0.025 —0.021 0.002 —0.001 —0.004 —0.003 0.0006 —0.0013—0.0036 —0.003 —0.004 —0.0009 —0.003 —0.003 —0.0005
K2 0.006 0.005 0.006 0.190 0.0014 0.003 0.0024 0.0601 0.0004 0.0016 0.0013 —0.002 0.0004 0.0012 0.001 —0.0046
s 04k ~0.008 ~0.029 ~0.023 ~0.197 0.0032 ~0.002 ~0.0005 ~0.103 0.0032 0.0022 0.0027 ~0.0474 0.003 0.0011 0.0019 —0.043
¥ _0.4h -0.007 —0.052 —0.041 —0.045 0.0034 —0.002 0.00003-0.0499 0.0032 0.002 0.0024 —0.0482 0.003 0.0012 0.0018 —0.044
—h/2 —0.0003 0.0036 0.003 —0.009 0.001 0.003 0.0023 —0.0034 0.0005 0.0018 0.0015 —0.0009 0.0004 0.0013 0.0011 —0.004
B2 0909 0.997 0958 1.146 1.000 0.996 0.980 1.069 0.994 0.996 0.980 1.048 0.993 0.997 0.982 1.021
s 04h 0884 0962 0926 0897 0981 0944 0943 0933 0983 0952 0944 0979 0960 0951 0938 0.988
= _0.4h —-0.001 0.078 0.064 0.031 0.0997 0.055 0.0576 0.0738 0.0599 0.0547 0.055 0.065 0.056 0.060 0.0589 0.0786
—h/2  0.004 0.007 0.006 0.003 0.006 0.004 0.004 0.006 0.003 0.0015 0.0022 0.021 0.002 0.003 0.0028 0.051

Ly
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localised loadings. Four different types of loads are considered and they are Uniformly Distributed
Load (UDL) at the centre of the plate as in Fig. 8(a) (L1), UDL same as L1 distributed over an area
of a/2 * b/2 at the centre (L2), Bi-sinusoidal load (P = P, sin(mx/a) sin(ny/b)) distributed over an
area of a/2 * b/2 at the centre (L3), and a line loading at the center of the plate (L4). A quarter of
the plate with line loading considered (L.4) is shown in Fig. 8(b). The maximum values of non-
dimensionalised displacement and stress fields are tabulated in Table 6.

4. Conclusions

From the present work, it is observed that RMVT is an effective tool to analyze multilayered
structures. RMVT leads to a quasi-three-dimensional description of the stress fields of layered
plates. In the present formulation, the C? requirements are satisfied a priori and no post processing
operations are required to calculate transverse stresses. A computer code has been developed in C
programming language to analyze different numerical examples. The results obtained are compared
with the existing results and are found to be in good agreement. It is also concluded that use of
serendipity elements and selective integration scheme is more effective than that of quadratic
element with different integration schemes.
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Notation
a : shorter length of the plate
Ay : area of k™ layer
b (subscript) : parameters related to layer bottom
C : elastic constant matrix
D : differential operator matrix
E : Young’s modulus
F, : functions of coefficients of Legendre polynomial
g : transverse stress vector at nodes
G (subscript) : values calculated from geometrical relations

: thickness of the plate
H (subscript) : values calculated from Hooke’s Law
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i, j (sub/superscript)
k (sub/superscript)
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: thickness of k™ layer

: unit matrix

: number of node’s expansions

: parameters related to &A™ layer

: work done due to external loads

: values calculated from assumed model

: out-of-plane values

: interpolation function corresponding to i node of plate element
: number of layers of the plate

: number of nodes

: load vector

: amplitude of transverse applied pressure

: in-plane values

: coefficients of Legendre polynomial

:nodal displacement vector

: parameters related to layer top

: displacement vector

: plate volume

: cartesian co-ordinates reference systems used for plates
: thickness co-ordinate for ™ layer

: non-dimensional local layer co-ordinate

. stress vector

: expansion of parameters along thickness direction
: Poisson’s ratio

: plate reference surface

: layer reference surface

2 strain vector





