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Transverse stress determination of composite plates
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Abstract. Analysis of transverse stresses at layer interfaces in a composite laminate has always been a
challenging task. Composite structures possess highly irregular material properties at layer interfaces,
which cause high shear stresses. Classical Plate Theory and First Order Shear Deformation Theory
(FSDT) use post computing to calculate transverse stresses. This paper presents Reissner Mixed
Variational Theorem (RMVT) based finite element model to carry out layer-wise analysis of composite
laminates. Selective integration scheme has been used. The formulation has been validated by solving
numerical examples and comparing the results with those published in the literature. 
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1. Introduction

Over the last two decades composite materials has occupied a very significant position in the field

of engineering structures such as aircraft, ship, boat hulls, bridge decks and other industrial

applications. The ever increasing use of structural laminates has created considerable interest in their

analysis. 

Due to the geometry of laminated composite structures, two dimensional approaches have been

extensively used to trace their response. Anisotropic multilayered structures often exhibit both

higher transverse shear and transverse normal flexibilities with respect to the in-plane deformability

than that of single layered traditional isotropic ones. Recently, considerable amount of research has

been conducted towards development of computational models which are capable of predicting local

effects of laminated and sandwich composites. Exact three dimensional solutions by Pagano (1969,

1970, 1972) have shown that the transverse stresses and displacements are C0 continuous functions

in the thickness direction. Carrera (1996), Carrera and Demasi(2003) and Aitharaju (1999) referred

these facts as Cz
0  requirements.

Many equivalent single-layer models have been published in the literature which furnishes

interlaminar continuous transverse shear stresses. Some of them are Murakami (1986) and Toledano

(1987). Toledano and Murakami (1987) has considered interlaminar continuous transverse normal
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stresses also in the proposed mixed model. However, the accuracy of equivalent single-layer models

is problem dependent. Partial layer-wise models (zig-zag plate models) have been developed with

the purpose of considering the discrete layer effects of the transverse shear stresses. Some of them

can be found in the articles by Di Sciuva (1992), Bhaskar and Varadan (1989), Carrera (2004),

Demasi (2005), Lee and Lin (1993), Cho and Paramerter (1993), and Averill and Yip (1996). A

review of zig-zag theories based on Murakami’s zig-zag function can also be found in the article by

Demasi (2005). Since the transverse normal stress and strain effects are disregarded in zig-zag plate

models, they are not capable of accurately determining the interlaminar stresses near geometric and

material discontinuities, at the free edges, and when the layers have rather different mechanical

properties. Furthermore, they require integration of local differential equilibrium equations to

provide interlaminar stresses, while their finite element counterparts require C1 interpolation

functions. In contrast to equivalent single-layer laminated models, the layer-wise models assume the

displacement fields as C0-continuous through the laminate thickness. Hence, continuity of

interlaminar stresses at the layer interfaces is met. The opportunity of refinement offered by

stacking sublayers makes layer-wise models able to accurately capture the local stresses directly

from constitutive equations (Reddy and Robbins 1994, Setoodeh and Karami 2004). Mixed layer-

wise models for predicting local effects of composite structures have been proposed by Carrera

(1997, 1998), Carrera and Parisch (1998), Carrera (2005), Carrera and Ciuffreda (2005) and Demasi

(2006).

This paper presents an implementation of finite element method presented by Carrera (2000)

based on RMVT (Reissner 1984, 1986). The analysis has been done for multilayered plates

subjected to different types of loadings under different boundary conditions. The zig-zag effects and

inter laminar continuity requirements (Cz
0

 requirements) are met. A computer code has been

developed in C-language and the numerical results obtained have been compared with those

available in the literature. 

2. Finite element formulation

2.1 Geometry and notations for multilayered plates

The geometry and co-ordinate system of the laminated plates having number of layers is shown in

Fig. 1. ξk = 2 zk /hk is the non-dimensional local layer co-ordinate. The compact notations used in

Fig. 1 Geometry and co-ordinate system of laminated plates
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this work can be used for the finite element implementation of about 40 theories for the analysis of

multilayered composite plates loaded with transverse pressure (Carrera 2005).

2.2 Hooke’s law for orthotropic lamina

The material is assumed to be orthotropic. Accordingly c14 = c24 = c34 = c64 = 0 and c15 = c35 =

c65 = 0. Thus σ13 and σ23 depends only on ε13 and ε23. In matrix notation, the constitutive equation

for a composite lamina may be expressed as

 (1)

For the sake of convenience, Eq. (1) may be partitioned into in-plane and transverse components as

(2)

(3)

Similarly the C matrix can be grouped as

(4)

With the help of Eqs. (2), (3), and (4), Hooke’s law can be rewritten as

(5)

where

Eq. (5) represents the mixed form of Hooke’s law.

2.3 Strain-displacement relations

The strain-displacement relationship is

(6)
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The differential matrices are 

(7)

2.4 Finite element formulation and shape functions

The field displacements and nodal displacements are connected by

(8)

The addition of constraint equation for the transverse stress to the Principle of Virtual

Displacement (PVD) leads to RMVT.

RMVT therefore states 

(9)

The variation of the internal work has been split into in-plane and out-of-plane parts and involves

stress from Hooke’s law and strain from geometrical relations. δLe is the virtual variation of the

work done by the external force.

2.5 Displacement and transverse stress assumptions for RMVT

The displacement and transverse stress fields along thickness direction are assumed as follows

(10)

where

It may to be noted that the layer-wise description does not require any zig-zag function for the

simulation of zig-zag effects. The continuity of the displacement at each interface can be linked

using Eq. (11).
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2.6 Finite element matrices for the kth layer

Combining Eqs. (5), (6), (8), and (9), one gets

(12)

where

By imposing the definition of virtual variations, the RMVT leads to the equilibrium and

compatibility equations as given in Eqs. (13) and (14).

(13)

(14)

The relationship between nodal displacement vector, qk and nodal load vector, pk may be obtained

by eliminating nodal transverse stress vector, gk from Eqs. (13) and (14). The resulting equation will

be

(15)
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The elimination of transverse stress unknowns at element level using static condensation

technique distorts the continuity of transverse stresses at layer interfaces to a certain extend. This

defect can be rectified by solving the full mixed problem without the elimination of transverse stress

parameters from the equilibrium and compatibility equations. However, in engineering applications,

it was found that the difference between the out-of-plane stresses calculated with and without
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2.7 Assembly of element stiffness matrix from layer to multilayer

For the analysis of composite plates based on RMVT each lamina in a laminate is first divided

into n+1 2D-tiers. Tiers are taken as planes parallel to the surface of the lamina. The number of

divisions of plate along x-direction and y-direction can vary independently of each other. 

Stiffness matrices are calculated separately for each tier combination. Each tier has its own unique

value of the stiffness matrices depending upon their interpolation function values along the

thickness direction. Fig. 2 shows placing of tiers in an element for one-layer with second order

variation of displacements and transverse stresses along thickness. Several such elements are

stacked one above the other for getting the element extended over the entire plate thickness. Fig. 3

shows assembling of elements from layer to multi-layer level. After obtaining the stiffness matrix,

Kmixed and load vector for an element extended over the full thickness of the plate it has to be

assembled along the in-plane direction to form the overall stiffness matrix and load vector of the

whole system. Thus the governing equation of the system is obtained which is similar to the

Eq. (15). Next the boundary conditions are implemented. Finally, the governing equations are solved

to yield the nodal parameters of the whole system. 

3. Numerical examples 

Analysis has been done for orthotropic multilayered thin, moderately thick, thick and very thick

plates under different loadings with simply supported boundary condition. The order of variation of

displacement and transverse stress fields along the thickness direction are taken as four, if not

specified. Analysis of thin plates with present plate element using full integration scheme reduces

Fig. 2 Two dimensional Tiers in an element over one
layer

Fig. 3. A laminate element extended over 2 layers
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accuracy in results due to shear locking. To avoid shear locking in thin plates, the reduced and

selective reduced integration techniques were proposed in (Zienkiewicz et al. 1971, Pawsey and

Clough 1971, Briassoulis 1989). The reduced integration procedure is the reduction in the order of

integration in computing the stiffness matrix of the finite element. Similarly, the selective integration

procedure is also a kind of reduced integration rule which is used to evaluate the stiffness matrix

associated with the troublesome shear strain energy. Therefore, in order to avoid shear locking in

the present analysis reduced integration (2 × 2) has been done for terms which are related to the

transverse shear strain energy as suggested in (Carrera and Demasi 2002). The stresses and

displacements are non-dimensionalized according to the following formulas. Finite element model

of quarter plate used for the analysis is shown in Fig. 4. It also indicates the locations at which

stresses and displacements are calculated.

;

Example-1

The problem of simply supported symmetric and anti-symmetric cross ply laminate is studied for

different span to thickness ratios (a/h) of 2 to 100 under bi-sinusoidal loading (P = Pz sin(πx/a)sin(πy/

b)). Even though the individual layers possess different orientation, they have equal thickness and

material properties. (E1/E2 = 25; G12 = G13 = 0.5 * E2; G23 = 0.2 * E2; υ12 = υ23 = 0.25; υ13 = 0.01).

The results obtained are compared in Tables 1, 2 and in Figs. 5(a)-(c) along with the three

dimensional solution presented by Pagano (1969) and those presented by Carrera and Demasi

(2002). In-plane stresses calculated with 2nd order and 4th order variation of displacement and

transverse stresses along thickness direction are plotted in Fig. 5.
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Fig. 4 Finite Element Model of quarter plate
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Table 2 Comparison of results for a symmetric laminate (0/90/90/0)

a/h Method  (z = 0)  (z = 0)  (z = 0)  (z = 0)

2

3D (Pagano1969) 0.1530 0.2950 - 5.075

FEM (LM4)* (Carrera and Demasi 2002) 0.1601 0.3105 0.4576 5.0800

Present FEM (LM4) 0.1584 0.3024 0.4695 5.0734

4

3D (Pagano1969) 0.2190 0.2920 - 1.9370

FEM (LM4) (Carrera and Demasi 2002) 0.2294 0.3148 0.4964 1.9374

Present FEM (LM4) 0.2251 0.2990 0.5083 1.9365

10

3D (Pagano1969) 0.3010 0.1960 - 0.7370

FEM (LM4) (Carrera and Demasi 2002) 0.3073 0.1607 0.5018 0.7376

Present FEM (LM4) 0.3090 0.2010 0.5124 0.7370

20

3D (Pagano1969) 0.3280 0.1560 - 0.5123

FEM (LM4) (Carrera and Demasi 2002) 0.3592 0.1697 0.5342 0.5133

Present FEM (LM4) 0.3365 0.1560 0.5122 0.5123

50

3D (Pagano1969) 0.3370 0.1410 - 0.4460

FEM (LM4) (Carrera and Demasi 2002)
0.3665

(8.75%)
0.1533 0.5305 0.4449

Present FEM (LM4) 0.3450 0.1440 0.5100 0.4445

100

3D (Pagano1969) 0.3390 0.1390 - 0.4350

FEM (LM4) (Carrera and Demasi 2002) 0.3665
0.1505
(8.27%)

0.5302 0.4348

Present FEM (LM4) 0.3470 0.1426 0.5083 0.4343

1000

3D (Pagano1969) - - - -

FEM (LM4) (Carrera and Demasi 2002) 0.3663 0.1496 0.5301 0.4315

Present FEM (LM4) 0.3639 0.1871 0.5076 0.4154

*Layer-wise model with 4th order variation of displacement and transverse stresses

σ zx σ zy σ zz U z

Table 1 Comparison of results for an anti-symmetric laminate (0/90/0/90)

a/h Method  (z = 0)  (z = 0)  (z = 0)  (z = 0)

2

3D (Pagano1969) 0.1625 0.1947 0.4512 5.2632

FEM (LM4)* (Carrera and Demasi 2002) 0.1727 0.2058 0.4512 5.2642

Present FEM (LM4) 0.1680 0.2014 0.4629 5.2622

10

3D (Pagano1969) 0.2713 0.2719 0.4996 0.7623

FEM (LM4) (Carrera and Demasi 2002) 0.2638 0.2645 0.5015 0.7629

Present FEM (LM4) 0.2781 0.2788 0.5121 0.7623

100

3D (Pagano1969) 0.2803 0.2803 0.5000 0.5092

FEM (LM4) (Carrera and Demasi 2002) 0.3032 0.3033 0.5302 0.5094

Present FEM (LM4) 0.2871 0.2871 0.5083 0.5091

*Layer-wise model with 4th order variation of displacement and transverse stresses

σ zx σ zy σ zz U z
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Fig. 5 Variation of in-plane stress along the thickness direction for a symmetric plate under bi-sinusoidal
loading
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Example-2

A three ply simply supported laminate (0/90/0) with span to thickness ratios (a/h) of 4 and 100

under sinusoidal loading (P = Pz sin(πx/a)) and under bi-sinusoidal loading (P = Pz sin(πx/a)

sin(πy/b)) has been analyzed. Due to geometric, material and loading symmetry, only one quarter

of the plate was considered. The analysis has been done with an eight-noded isoparametric

element with 2nd order and 4th order variation of displacement and transverse stress fields along

thickness direction. The results are compared in Figs. 6(a)-(n) with the exact solution of Pagano

(1969) and with the solution obtained from Carrera (2002). The material properties are:

E1/E2 = 25; G12 = G13 = 0.5 * E2; G23 = 0.2 * E2; υ12 = υ23 = 0.25; υ13 = 0.01 and h1 = h3 = h2 =

h/3. 

Example-3

Analysis for symmetric and anti-symmetric cross ply laminate is studied for different span to

thickness ratios (a/h) of 2 to 100 under uniformly distributed load as well as sinusoidal loading (P =

Pz sin(πx/a)) has been done and the results are tabulated in Table 3 and Table 4. The material

properties are: E1/E2 = 25; G12 = G13 = 0.5 * E2; G23 = 0.2 * E2; υ12 = υ23 = 0.25; υ13 = 0.01 and

h1 = h2 = h3 = h4 = h/4. 

Fig. 5 Continued
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 *Equivalent single layer model with 4th order variation of displacement field.
**Layer-wise model with 4th order variation of displacement and transverse stress fields.

Fig. 6 Variation of stresses and displacement along the thickness direction for a laminated plate (0/90/0) under
simply supported boundary conditions
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Fig. 6 Continued
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Example-4

A sandwich plate (f/c/f) subjected to localized uniformly distributed load of 1.0 MPa at the centre

as shown in Fig. 7 is considered in this example. Analysis has been done with simply supported and

clamped boundary conditions. The material properties for the face and core are E1 = 70000 MPa;

E2 = 71000 MPa; E3 = 69000 MPa; E12 = E13 = E23 = 26000 MPa; υ12 = υ23 = 0.3 and E1 = E2 =

Table 3 Non-dimensional stresses and deflection values for symmetric laminate calculated using LM4 

Model Loading a/h
(±h/2)

 
(± h/4)

 
(± h/2)

 
(z = 0) (z = 0)

 
(z = 0)

 
(z = 0)

0/90/90/0
Sinusoidal 

loading

2 
1.1375
−1.6327

0.9772
−0.9502

−0.0899
0.1477

0.1927 −0.4593 0.4962 6.2200

10
0.6947
−0.6957

0.4422
−0.4442

−0.0387
0.0388

0.3789 −0.4374 0.5056 0.9126

20
0.6758
−0.6762

0.3265
−0.3270

−0.0322
0.0321

0.4128 −0.4089 0.5115 0.6365

50
0.6715
−0.6716

0.2858
−0.2859

−0.0301
0.0301

0.4244 −0.4029 0.5104 0.5524

100
0.6709
−0.8709

0.2796
−0.2796

−0.0298
0.0298

0.4257 −0.4032 0.5058 0.5400

0/90/90/0
Uniformly 
distributed 

load 

2
1.6327
−1.1375

0.9771
−0.9502

−0.0899
0.1478

0.1927 −0.4593 0.4065 6.2210

10
0.8306
−0.8287

0.5596
−0.5618

−0.0549
0.0561

0.5721 −0.5109 0.4979 1.1410

20
0.8248
−0.8244

0.4160
−0.4160

−0.0442
0.0441

0.6294 −0.4788 0.5083 0.8029

50
0.8258
−0.8257

0.3643
−0.3644

−0.0401
0.0401

0.6530 −0.4742 0.5121 0.6998

100
0.8260
−0.8260

0.3563
−0.3563

−0.0395
0.0395

0.6569 −0.4742 0.5038 0.6847

σ xx σ yy σ xy σ zx σ zy σ zz U z

Fig. 6 Continued
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3 MPa; E3 = 2.8 MPa; E12 = E13 = E23 = 1 MPa; υ12 = υ23 = 0.25 respectively. The values of central

deflection and in-plane stresses obtained in the present analysis along with the solutions presented

by Carrera and Demasi (2003) are tabulated in Table 5. The absolute values of error presented in

Table 5 are calculated with respect to the three-Dimensional solutions. 

Fig. 7 Sandwich plate subjected to uniformly distributed load at the centre

Table 4 Non-dimensional stresses and deflection values for anti-symmetric laminate calculated using LM4 

Model Loading a/h
 

(± h/2)
 

(± h/4)
 

(± h/2)
 

(z = 0) (z = 0) (z = 0) (z = 0)

0/90/0/90
Sinusoidal 

loading

2
0.2306
−1.1902

0.0320
−0.9437

−0.0923
0.1288

0.2079 −0.3476 0.3365 6.4839

4
0.1050
−0.8727

0.0177
−0.7269

−0.0631
0.0672

0.2919 −0.3943 0.5207 2.4131

10
0.0556
−0.6628

0.0145
−0.5798

−0.4030
0.4030

0.3431 −0.4676 0.5453 0.9486

20
0.0476
−0.6274

0.0139
−0.5578

−0.0351
0.0350

0.3554 −0.4995 0.5616 0.7175

50
0.0453
−0.6181

0.0138
−0.5521

−0.0333
0.0333

0.3597 −0.5185 0.5659 0.6521

100
0.0450
−0.6168

0.0138
−0.5512

−0.0329
0.0330

0.3617 −0.5230 0.5600 0.6427

0/90/0/90
Uniformly 
distributed 

load

2 0.2364
−1.4182

0.0283
−1.1786

−0.1233
0.2518

0.3009 −0.3685 0.5300 7.9506

4
0.1135
−1.0044

0.0177
−0.9084

−0.0891
0.1112

0.4362 −0.4663 0.5071 2.9732

10
0.0635
−0.7761

0.0170
−0.7295

−0.0575
0.0587

0.5474 −0.5566 0.4981 1.1825

20
0.0563
−0.7460

0.0170
−0.7066

−0.0485
0.0484

0.5929 −0.5961 0.5082 0.9024

50
0.0545
−0.7395

0.0170
−0.7020

−0.045
0.045

0.6166 −0.6174 0.5121 0.8235

100
0.0543
−0.7386

0.0170
−0.7014

−0.0442
0.0442

0.6209 −0.6211 0.5039 0.8123

σ xx σ yy σ xy σ zx σ zy σ zz U z
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Example-5

In this example a simply supported square sandwich plate having geometry and material

properties same as that of Pagano (1970) is studied with different span to depth ratios under of

Fig. 8 Sandwich plate subjected to localized loads at the top surface 

Table 5 Stresses and deflection values for sandwich plate

Analysis

All edges simply supported All edges clamped

Top 
face

Error 
(%)

Bottom 
face

Error 
(%)

Top 
face

Bottom 
face

Uz

3D analytical (Carrera and Demasi 2003) −3.7800  - −2.1400 - - -

FEM (LM2*) (Carrera and Demasi 2003) −3.7628 0.46 −2.1900 2.34 - -

FEM (ED1†) (Carrera and Demasi 2003) −0.0187 99.51 −0.0181 99.15 - -

Present FEM (LM2)  −3.7629 0.45 −2.1400 0.00 −3.5450 −1.9220

σxx

3D analytical 
(Carrera and Demasi 2003)

Top −624.00 - −241.00 - - -

Bottom 580.00 - 211.00 - - -

FEM (LM2) 
(Carrera and Demasi 2003)

Top −595.56 4.56 −223.93 7.08 - -

Bottom 556.00 4.14 196.37 6.93 - -

FEM (ED1) 
(Carrera and Demasi 2003)

Top −29.460 95.28 −23.990 90.05 - -

Bottom −29.170 105.03 −23.750 111.26 - -

Present FEM (LM2)
Top −632.223 1.32 −225.25 6.54 −519.480 −144.070

Bottom 590.375 1.79 195.775 7.22 483.541 139.004

σyy

3D analytical 
(Carrera and Demasi 2003)

Top −138.00 - −121.00 - - -

Bottom 146.00 - 127.00 - - -

FEM (LM2) 
(Carrera and Demasi 2003)

Top −136.20 1.30 −118.99 1.66 - -

Bottom 144.03 1.35 125.00 1.57 - -

FEM (ED1) 
(Carrera and Demasi 2003)

Top 4.8700 103.53 3.3200 102.74 - -

Bottom 6.3600 95.64 4.5000 96.46 - -

Present FEM (LM2)
Top −138.515 0.37 −121.038 0.03 −209.392 124.096

Bottom 146.304 0.21 127.149 0.12 177.431 118.693

*Layer-wise model based on RMVT with 2nd order expansion for displacement and transverse stress. 
†Equivalent single layer model based on Principle of virtual displacement theory
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Table 6 Stresses and deflection values of sandwich plate for different span to depth ratios calculated using LM2

Type of 
loading

a/h = 4 a/h = 10 a/h = 50 a/h = 100

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

h/2 4.430 9.217 8.007 6.652 0.747 2.004 1.692 1.403 0.274 0.814 0.681 0.571 0.259 0.775 0.648 0.545

−h/2 1.398 5.301 4.339 3.545 0.652 1.919 1.606 1.310 0.274 0.814 0.681 0.571 0.259 0.775 0.648 0.545

h/2 1.511 1.735 1.636 1.122 0.461 1.023 0.881 0.693 0.382 0.985 0.834 0.662 0.381 0.983 0.832 0.659

0.4h
−1.065 −0.530 −0.619 −0.326 0.111 0.564 0.455 0.380 0.295 0.776 0.656 0.523 0.302 0.783 0.663 0.526

0.017 0.020 0.019 0.018 0.004 0.005 0.005 0.0043 0.0009 0.0019 0.0016 0.0014 0.0008 0.0018 0.0015 0.0013

−0.4h
−0.001 −0.0006−0.0006−0.0008−0.0005 −0.002 −0.0014−0.0011−0.0008−0.0018−0.0015−0.0013−0.0008−0.0018−0.0015−0.0013

−0.191 −0.176 −0.177 −0.090 −0.173 −0.569 −0.472 −0.385 −0.296 −0.777 −0.657 −0.523 −0.302 −0.783 −0.663 −0.526

−h/2 −0.249 −1.137 −0.923 −0.738 −0.415 −1.036 −0.881 −0.706 −0.382 −0.985 −0.834 −0.662 −0.381 −0.983 −0.832 −0.659

h/2 0.189 0.037 0.223 0.235 0.061 0.110 0.0980 0.0833 0.0382 0.0623 0.0566 0.0566 0.037 0.060 0.055 0.0565

0.4h
0.0038 0.136 0.103 0.044 0.041 0.082 0.0719 0.0574 0.0304 0.0497 0.0451 0.0448 0.0294 0.0483 0.044 0.0451

0.018 0.025 0.023 0.0198 0.005 0.007 0.0061 0.0055 0.0014 0.0022 0.002 0.002 0.0013 0.0021 0.0019 0.0019

−0.4h
−0.004 −0.006 −0.006 −0.005 −0.0017 −0.004 −0.0032−0.0025−0.0013−0.0021−0.0019−0.0019−0.0013−0.0021−0.0019−0.0019

−0.082 −0.184 −0.158 −0.124 −0.047 −0.090 −0.079 −0.0645 −0.031 −0.050 −0.045 −0.045 −0.0295−0.0483 −0.044 −0.045

−h/2 −0.700 −0.258 −0.214 −0.153 −0.0685 −0.117 −0.104 −0.0859−0.0385−0.0626−0.0569−0.0567−0.0369 −0.061 −0.055 −0.0565

h/2 0.014 0.026 0.0234 −0.014 −0.0013 −0.005 −0.0037 −0.056 −0.0013−0.0038−0.0032 −0.008 −0.0009−0.0027−0.0023 −0.001

0.4h 0.046 0.165 0.136 0.239 0.063 0.229 0.1875 0.244 0.0692 0.249 0.205 0.289 0.0679 0.247 0.204 0.297

−0.4h 0.049 0.186 0.152 0.119 0.063 0.227 0.1866 0.215 0.0691 0.249 0.205 0.291 0.0679 0.047 0.204 0.298

−h/2 −0.008 0.025 −0.021 0.002 −0.001 −0.004 −0.003 0.0006 −0.0013−0.0036 −0.003 −0.004 −0.0009 −0.003 −0.003 −0.0005

h/2 0.006 0.005 0.006 0.190 0.0014 0.003 0.0024 0.0601 0.0004 0.0016 0.0013 −0.002 0.0004 0.0012 0.001 −0.0046

0.4h −0.008 −0.029 −0.023 −0.197 0.0032 −0.002 −0.0005 −0.103 0.0032 0.0022 0.0027 −0.0474 0.003 0.0011 0.0019 −0.043

−0.4h −0.007 −0.052 −0.041 −0.045 0.0034 −0.002 0.00003−0.0499 0.0032 0.002 0.0024 −0.0482 0.003 0.0012 0.0018 −0.044

−h/2 −0.0003 0.0036 0.003 −0.009 0.001 0.003 0.0023 −0.0034 0.0005 0.0018 0.0015 −0.0009 0.0004 0.0013 0.0011 −0.004

h/2 0.909 0.997 0.958 1.146 1.000 0.996 0.980 1.069 0.994 0.996 0.980 1.048 0.993 0.997 0.982 1.021

0.4h 0.884 0.962 0.926 0.897 0.981 0.944 0.943 0.933 0.983 0.952 0.944 0.979 0.960 0.951 0.938 0.988

−0.4h −0.001 0.078 0.064 0.031 0.0997 0.055 0.0576 0.0738 0.0599 0.0547 0.055 0.065 0.056 0.060 0.0589 0.0786

−h/2 0.004 0.007 0.006 0.003 0.006 0.004 0.004 0.006 0.003 0.0015 0.0022 0.021 0.002 0.003 0.0028 0.051

U z

σ xx

σ yy

σ zx

σ zy

σ zz
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localised loadings. Four different types of loads are considered and they are Uniformly Distributed

Load (UDL) at the centre of the plate as in Fig. 8(a) (L1), UDL same as L1 distributed over an area

of a/2 * b/2 at the centre (L2), Bi-sinusoidal load (P = P
z
sin(πx/a) sin(πy/b)) distributed over an

area of a/2 * b/2 at the centre (L3), and a line loading at the center of the plate (L4). A quarter of

the plate with line loading considered (L4) is shown in Fig. 8(b). The maximum values of non-

dimensionalised displacement and stress fields are tabulated in Table 6.

4. Conclusions

From the present work, it is observed that RMVT is an effective tool to analyze multilayered

structures. RMVT leads to a quasi-three-dimensional description of the stress fields of layered

plates. In the present formulation, the C
z

0  requirements are satisfied a priori and no post processing

operations are required to calculate transverse stresses. A computer code has been developed in C

programming language to analyze different numerical examples. The results obtained are compared

with the existing results and are found to be in good agreement. It is also concluded that use of

serendipity elements and selective integration scheme is more effective than that of quadratic

element with different integration schemes. 
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Notation

a : shorter length of the plate
Ak : area of kth layer
b (subscript) : parameters related to layer bottom
C : elastic constant matrix
D : differential operator matrix
E : Young’s modulus
Fτ : functions of coefficients of Legendre polynomial
g : transverse stress vector at nodes
G (subscript) : values calculated from geometrical relations
h : thickness of the plate
H (subscript) : values calculated from Hooke’s Law
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hk : thickness of kth layer
I : unit matrix
i, j (sub/superscript) : number of node’s expansions
k (sub/superscript) : parameters related to kth layer
Le : work done due to external loads
M (subscript) : values calculated from assumed model
n (subscript) : out-of-plane values
Ni : interpolation function corresponding to ith node of plate element
Nl : number of layers of the plate
Nn : number of nodes
p : load vector
Pz : amplitude of transverse applied pressure
p (subscript) : in-plane values
Pr : coefficients of Legendre polynomial
q : nodal displacement vector
t (subscript) : parameters related to layer top
u : displacement vector
V : plate volume
x, y, z : cartesian co-ordinates reference systems used for plates
zk : thickness co-ordinate for kth layer 
ξk : non-dimensional local layer co-ordinate
σ : stress vector
τ, s (sub/superscript) : expansion of parameters along thickness direction
υ : Poisson’s ratio
Ω : plate reference surface
Ωk : layer reference surface
ε : strain vector




