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Analysis of a cable-stayed bridge with uncertainties
 in Young’s modulus and load - A fuzzy finite 

element approach
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Abstract. This paper presents a fuzzy finite element model for the analysis of structures in the presence
of multiple uncertainties. A new methodology to evaluate the cumulative effect of multiple uncertainties
on structural response is developed in the present work. This is done by modifying Muhanna’s approach
for handling single uncertainty. Uncertainty in load and material properties is defined by triangular
membership functions with equal spread about the crisp value. Structural response is obtained in terms of
fuzzy interval displacements and rotations. The results are further post-processed to obtain interval values
of bending moment, shear force and axial forces. Membership functions are constructed to depict the
uncertainty in structural response. Sensitivity analysis is performed to evaluate the relative sensitivity of
displacements and forces to uncertainty in structural parameters. The present work demonstrates the
effectiveness of fuzzy finite element model in establishing sharp bounds to the uncertain structural
response in the presence of multiple uncertainties. 
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1. Introduction 

Analysis and design of structures occupy an important place in the field of Civil Engineering.

Modern day structures are usually complex in geometry and are made of a combination of several

materials. In order to ensure that structures do not fail during their intended design life period with

catastrophic and unpredictable consequences, proper analysis and design are mandatory. Classical

finite element analysis is presently the most popular mathematical tool for the analysis of structures.

Finite element analysis, being an approximate numerical method, is used to solve a mathematical

model in order to make a reasonable prediction of behaviour of structural systems. The parameters

used in generating the mathematical model are normally crisp and certain in nature. It is presumed

that the structural response of the mathematical model closely corresponds to the behaviour of the
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actual structure. Any variation in the response of the structure predicted using the mathematical

model and the response of the physical structure could be owing to uncertainties involved in

material and geometric properties, service loads and boundary conditions. The errors due to these

uncertainties can neither be handled nor eliminated by the use of classical finite element analysis.

Thus uncertainty needs to be introduced in the engineering analysis and design of structures to

enhance the functionality and dependability of the mathematical model of the structure. The

uncertainty introduced in the mathematical model of the structure needs to be reflected in the

method of analysis and its output as well. This requires the redefinition and extension of the

classical finite element model to a fuzzy finite element model, which allows the use of fuzzy

interval variables in order to account for uncertainties in parameters. 

2. Literature survey

Koyluoglu et al. (1995) developed an interval based finite element method to deal with pattern

loading and structural uncertainty. In addition, linear programming and triangle inequalities were

used for the solution of simultaneous linear interval equations. Köyluoglu and Elishakoff (1998)

demonstrated the problem of shear frames with uncertain properties and compared the results

obtained by stochastic and interval versions of finite elements.

Rao and Sawyer (1995), Rao and Berke (1997), Rao and Chen Li (1998) have developed different

versions of interval-based finite elements to account for uncertainties in engineering problems. But

these works were primarily developed to suit narrow intervals and approximate numerical results.

Rao and Chen Li (1998) developed a new search-based algorithm to solve a system of linear

interval equations. The algorithm performs search operations with an accelerated step size in order

to locate the optimal setting of the hull of the solution. 

Extensive research helped understanding the behaviour of imprecisely defined systems using fuzzy

logic. Use of fuzzy logic to understand and model the behaviour of structural systems is of recent

origin. Mullen and Muhanna (1999) developed a fuzzy-based matrix method of structural analysis

for the calculation of extreme values of structural response for all possible loading combinations.

Concerted efforts were made since then to handle uncertainty in engineering problems realistically

by introducing fuzziness in material and geometric properties of structural systems and also in

service loads to which the structures are exposed to during their design life period. Muhanna and

Mullen (1999) dealt with the formulation by fuzzy-finite elements for solid mechanics problems.

The fuzzy approach to treating uncertainties in continuum mechanics is applied to individual

instances of load, geometric and material uncertainties thus obtaining sharp enclosure of fuzzy

solution in comparison with the exact solution. 

A practical approach for analyzing the structures with fuzzy parameters was developed by Akpan

et al. (2001). The uncertainties in material, loading and structural properties were represented by

convex normal fuzzy sets. Vertex solution methodology that was based on α-cut representation was

used for the fuzzy analysis. Response surface methodology and combinatorial optimization were

used to determine the binary combinations of the fuzzy variables that resulted in fuzzy responses at

an α-cut level. These binary combinations of the fuzzy variables were then used to obtain extreme

responses to the finite element model. 

Muhanna and Mullen (2001) handled uncertainty in mechanics problems by using an interval-

based approach. Element-by-element (EBE) technique was employed to obtain a sharp enclosure for
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the fuzzy solution by eliminating the sources of overestimation.

A cable-stayed bridge was modelled and analysed using fuzzy-finite element analysis by Rama

Rao and Ramesh Reddy (2003). The Centre Canal Bridge at Obourg, Belgium was chosen as an

example problem. Uncertainty of live load was introduced by a triangular membership function.

Static response of the bridge to the fuzzy interval loading is obtained in terms of fuzzy interval

displacements. The results demonstrated the effectiveness of introducing fuzziness in the analysis of

cable-stayed bridges. 

However the efforts of the previous researchers were confined to the study of the effect of a

single uncertainty on the structural behavior. Effect of multiple uncertainties on the structural

response was not considered so far. Multiple uncertainties refer to the simultaneous presence and

concomitant variation of uncertainties of structural parameters. These uncertainties are considered as

fuzzy interval values. Fuzzy finite element analysis has not been hitherto applied to the study of

complex structures in order to understand their structural response. There exists no literature, which

incorporates multiple uncertainties in the analysis and design of complex structures such as cable-

stayed bridges. Thus there is a need to develop fuzzy finite element methodology to evaluate the

effect of multiple uncertainties on the structural response. Also, there is a need to study the effect of

these uncertainties on the membership functions of the structural response quantities. 

In the present work, a new methodology is developed using a fuzzy-finite element model to study

the effect of multiple uncertainties on the structural response. The methodology is validated by

comparing the results of an example problem with combinatorial solution. The validated

methodology is then applied to study the structural response of a cable-stayed bridge with

uncertainties in Young’s modulii and live load. The sensitivity of structural response to the

concomitant variation of load and material uncertainties is also explored. 

3. Formulation of linear interval equations-Muhanna’s approach

The variational formulation for an interval case of a discrete element-by-element structural model

is given as (Muhanna and Mullen 2001)

(1)

where  and  are  potential energy, stiffness matrix, constraint matrix,

displacement vector and load vector and vector of Lagrange multipliers respectively. In this model,

elements are kept separate throughout the course of the solution and constraints are imposed to

ensure the compatibility of displacement of coincident nodes. Constraints are imposed on coincident

nodes as 

(2)

Using Rayleigh-Ritz approach and invoking the stationarity of Π leads to 

(3)

where
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and

(5)

Here  is a deterministic singular matrix of size n × n and [D] is a diagonal matrix of size n × n

containing interval terms corresponding to uncertain Young’s modulus. Eq. (3) was solved by

Muhanna (Muhanna and Mullen 2001) by approximating the vector of internal forces {λ} by its

mid-point (crisp) vector) {λ
c
} to solve the equations when the load vector {P} is crisp and Young’s

modulus is uncertain.

3.1 Avoiding overestimation – present approach

Attempts by the authors to apply Muhanna’s approach in the presence of load and material

uncertainties resulted in an overestimated solution. It is found that the overestimation is due to 

a) coupling of elements of the interval load vector at the elemental level itself due to contribution

of various interval loads simultaneously acting on each element.

b) approximating of the interval vector of internal forces {λ} by its mid-point (crisp) vector {λ
c
}.

Overestimation of displacement vector is eliminated in the present work by

a) keeping the contribution of the loads to the overall solution separate throughout the solution

process in order to eliminate overestimation due to coupling of load vector.

b) developing a new approximation to the vector of internal forces.

4. Handling multiple uncertainties – present study

Using extension principle, Eqs. (2) and (3) can be rewritten at given levels of material uncertainty

α and load uncertainty β (0 ≤ α, β ≤ 1) as

 (6)

(7)

where [Kα] is interval stiffness matrix and [Dα] is an diagonal interval matrix at a specified level of

material uncertainty α, {Pβ} is interval load vector at a specified level of load uncertainty β.

Further, {λαβ} and {Uαβ} correspond to the interval internal force vector and interval displacement

vector respectively at a specified levels of material and load uncertainties α and β. It may be here

noted that [Kα] and [Dα] are functions of α alone, {Pβ} is a function of β alone, while {λαβ} and

{Uαβ} are functions are both α and β.

The interval stiffness matrix [Kα] is a symmetric indefinite square matrix owing to the de-assembled

state of elements in the EBE model (Muhanna and Mullen 2001). All the elements of the stiffness

matrix have the Young’s modulus as the multiplier. Therefore, stiffness uncertainty for an element is

equal to the material uncertainty α (of the Young’s modulus). The size of [Kα] is n × n where n is the

product of number of degrees of freedom per each element and total number of elements in the

structure. The vector {λαβ} represents the internal forces that are exposed because elements in the

EBE model are kept separate till the end. If the interval vector {λαβ} can be determined exactly, then

R̃[ ] S̃[ ] C̃[ ]
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S̃[ ]
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Uαβ{ } R̃[ ]
1–

Dα[ ]
1–

Pβ{ } C̃[ ]
T

λαβ{ }–{ }=



Analysis of a cable-stayed bridge with uncertainties in Young’s modulus and load 267

the solution of Eq. (7) represents the exact hull of interval system of equations

(8)

In the case of statically indeterminate structures, {λαβ} depends on uncertain structural stiffness (at

a level α) addition to uncertain load (at a level β) and boundary conditions (crisp). Therefore

evaluation of the exact value of {λαβ} is  uncertain.

Following section 3.1, the contribution of each the loads acting on the structure to the overall

solution is kept separate throughout the solution process. Thus the vector of internal forces {λαβ}

due to each of the loads acting on the structure is approximated as

(9)

The above approximation is validated in the section 5.1.

Substituting Eq. (9) in Eq. (7) leads to

(10)

Eq. (10) can be expressed as 

(11)

where [M] is a matrix of size n × m where m is the number of elements and {δα} is an interval

vector of size m × 1 containing interval Young’s modulus of m elements taken from the diagonal

entries of [Dα].

In order to solve Eq (11), it is necessary to compute the value of the mid-point internal force

vector {λ
cc

}. This is done by analysing the assembled finite element model of the structure with

crisp value of structural stiffness subjected to fuzzy interval loading with uncertainty β. Eq. (11)

represents a set of interval matrix equations. Solution of these equations using the inclusion theory

results in an optimal enclosure known as the hull of the solution (Fig. 1). Making use of Jansson’s

algorithm (Jansson 1991), the lower bound vector {x} and the upper bound vector {y} enclosing the

hull of the solution are obtained. The solution vector [Uαβ] is taken as the average of {x} and {y}.

The vector of internal forces for an element is obtained as

(12)

where  is a Boolean connectivity matrix containing 0s and 1s,  is the rotation

transformation matrix for the element and md is the number of degrees of freedom for the element.
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Fig. 1 Bounds on hull solution



268 M. V. Rama Rao and R. Ramesh Reddy

5. Validation of the present approach

A two-bay two-floor frame as shown in Fig. 2 is taken up to validate the present approach. The

properties of the frame are listed in Table 1. The frame is subjected to uncertain loads w1, w2, w3

and w4 acting on the beams 7, 8, 9 and 10. All the uncertain parameters are assumed to vary

independently. The results for displacements of nodes 4 and 9 of the two-floor two-bay frame are

given in Table 2. Combinatorial solution is obtained by introducing all possible combinations of the

bounds of the interval parameters into analysis and establishing the lower and upper bounds of the

structural response. The present approach leads to sharp bounds of the exact solution of

displacements with errors within a range of 0.002% to 0.162%. The corresponding errors for forces

and moments lie within the range of 0.68% to 0.944%. It is observed that the results obtained

yielded sharp bounds to the combinatorial solution, thus validating the present method.

Table 1 Properties of two bay – two floor frame

Columns Area of Cross section 0.4 m2 Moment of Inertia 0.036 m4

Beams Area of Cross section 0.6 m2 Moment of Inertia 0.08 m4

Young’s Modulus = [199,201] GPa w1 = w2 = [24, 26] kN/m w3 = w4 = [48, 52] kN/m

Table 2 Two bay two floor Frame – Displacements and forces

Response Comb Present
Error

(Lower bound)
Error

(Upper bound)

V4×10−6 (m) [−6.7640, −6.1548] [−6.7660, −6.1530] 0.029% 0.029%

V9×10−6(m) [−13.0697, −11.9207] [−13.070, −11.920] 0.002% 0.006%

θ9 ×10−6 (rad) [5.6331, 6.2691] [5.624, 6.279] 0.162% 0.16%

N1 (kN) [−149.676, −137.3503] [−151.090, −136.066] 0.944% 0.935%

V1(kN) [5.2608, 5.8790] [5.224, 5.919] 0.699% 0.68%

M1(kNm) [−14.1977, −12.5250] [−14.297, −12.431] 0.699% 0.75%

Fig. 2 Two-bay two-floor frame
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5.1 Validation of the approximation of vector of internal forces {λαβ}

The above two-bay two-floor frame is now subjected to uniformly distributed load w4 alone. The

uncertain load and Young’s modulus correspond to  = [0.96, 1.04] and  = [0.995,

1.005]. The axial force N5, shear force V5 and bending moment M5 at node 5 are presented in

Table 3. In this table, {λ
cc

} refers to crisp values of forces and moments while {λαβ} refers to the

interval forces and moments. Relative error computed between the lower and upper bounds of {λαβ}

and {λ
cc

} is presented in the last column. It is observed at the percentage of relative error is

limited to the range of 1.025% to 1.145%. This validates the approximation made in Eq. (9).

6. Case study

The case study considered is a cable-stayed bridge with fan configuration of cable-stays, shown in

Fig. 3. This problem is adopted from the configuration of Canal du Centre Bridge at Obourg,

Belgium (Walther 1988). The properties of the bridge are mentioned in Table 4. The bridge is

symmetric about the longitudinal axis. Owing to the symmetry of the bridge deck about the

longitudinal axis of the bridge, only one half of the bridge along with a single plane of cables is

used for analysis. The structural elements belonging to bridge deck and the pylon are idealized as

plane frame elements while cables are modelled as bar elements. The cable-stayed bridge described

above is subjected to the action of a uniformly distributed live load. Membership functions of

uncertainties α and β of Young’s modulus and live load adopted for the bridge are indicated in

Fig. 4 and Fig. 5.

β1 βu,[ ] α1 αu,[ ]

β
1

βu,[ ]

Table 3 Two bay two storey truss with load on beam 10 alone – Forces and moments at node 5 

Description {λ
cc

} [β1, βu
]{λ

cc
} {λαβ}

Relative error

Lower bound Upper bound

N5 (kN) −119.451 [−124.22, −114.67] [−125.507, −113.394] 1.025% 1.125%

V5 (kN) 14.1215 [13.556, 14.686] [13.385, 14.858] 1.277% 1.158%

M5 (kNm) −32.944 [−34.262, −31.626] [−34.620, −31.268] 1.034% 1.145%

Fig. 3 Cable stayed bridge
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7. Results and discussion

Table 5, Table 6 and Table 7 show the concomitant variation of horizontal displacement at node 2,

vertical displacement at node 3 and rotation at node 4 respectively for various combinations of α and

β. Table 8 represents the concomitant variation of bending moment in deck at node 4 whereas Table

Fig. 4 Membership function for Uncertainty of Young’s modulus

Fig. 5 Membership function for load uncertainty

Table 4 Properties of cable stayed bridge

Description Pedestrian foot bridge across Canal du Centre, Belgium of span 2 × 67.0 = 134.0 m

Concrete Desk Slab Double T Section made of Pre-cast PSC

Overall width 1.8 m Depth 0.6 m Flange thickness 0.20 m Web thickness 0.3 m

Pylon
Double armed Rectangular Pylon, each arm 0.60 × 0.80 m with height 20 m above deck 

(30 m total height)

Cables
Stranded cables each with 37 

strands of 12.7 mm φ 
Young’s Modulus 30 GPa (Concrete), 200 GPa(Steel)

Live Load 4.0 kN/m2 Material uncertainty  ±5% Load uncertainty ±10% about mean 
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Table 5 Concomitant Variation of Horizontal displacement of node 2 (×10−4 m) w.r.t α and β

β→
α ↓

1.0 0.8 0.6 0.4 0.2 0.0

1.0
0.8
0.6
0.4
0.2
0.0

[3.275,3.275]
[3.198,3.353]
[3.122,3.432]
[3.046,3.511]
[2.970,3.591]
[2.896,3.672]

[3.169,3.382]
[3.095,3.458]
[3.021,3.535]
[2.948,3.613]
[2.875,3.691]
[2.803,3.770]

[3.063,3.488]
[2.989,3.565]
[2.915,3.643]
[2.843,3.721]
[2.770,3.800]
[2.698,3.880]

[2.956,3.595]
[2.883,3.672]
[2.810,3.750]
[2.738,3.829]
[2.666,3.909]
[2.594,3.989]

[2.850,3.701]
[2.777,3.779]
[2.704,3.858]
[2.632,3.937]
[2.561,4.018]
[2.490,4.099]

[2.743,3.808]
[2.671,3.886]
[2.599,3.965]
[2.527,4.045]
[2.456,4.126]
[2.437,5.337]

Table 6 Concomitant Variation of Vertical displacement of node 3 (×10−2 m) w.r.t α and β

β→
α ↓

1.0 0.8 0.6 0.4 0.2 0.0

1.0
0.8
0.6
0.4
0.2
0.0

[−1.474,−1.474]
[−1.566,−1.382]
[−1.658,−1.291]
[−1.750,−1.200]
[−1.843,−1.109]
[−1.937,−1.018]

[−1.604,−1.344]
[−1.696,−1.253]
[−1.789,−1.162]
[−1.882,−1.071]
[−1.975,−0.980]
[−2.069,−0.889]

[−1.734,−1.214]
[−1.827,−1.123]
[−1.920,−1.032]
[−2.013,−0.942]
[−2.107,−0.853]
[−2.202,−0.761]

[−1.864,−1.084]
[−1.957,−0.993]
[−2.051,−0.902]
[−2.145,−0.812]
[−2.239,−0.722]
[−2.335,−0.632]

[−1.994,−0.953]
[−2.088,−0.863]
[−2.182,−0.773]
[−2.276,−0.683]
[−2.372,−0.593]
[−2.467,−0.504]

[−2.124,−0.823]
[−2.218,−0.733]
[−2.313,−0.644]
[−2.408,−0.554]
[−2.504,−0.465]
[−2.600,−0.375]

Table 7 Concomitant Variation of Rotation at node 4 (×10−3 radians) w.r.t α and β

β→
α ↓

1.0 0.8 0.6 0.4 0.2 0.0

1.0
0.8
0.6
0.4
0.2
0.0

[0.381,0.381]
[0.328,0.434]
[0.275,0.487]
[0.221,0.541]
[0.168,0.595]
[0.115,0.648]

[0.306,0.456]
[0.253,0.509]
[0.199,0.563]
[0.146,0.616]
[0.098,0.670]
[0.041,0.724]

[0.231,0.530]
[0.178,0.584]
[0.125,0.638]
[0.072,0.692]
[0.019,0.746]

[−0.033,0.800]

[0.156,0.605]
[0.103,0.659]
[0.051,0.713]

[−0.002,0.767]
[−0.054,0.821]
[−0.107,0.876]

[0.081,0.680]
[0.028,0.734]

[−0.023,0.788]
[−0.076,0.842]
[−0.129,0.897]
[−0.182,0.951]

[0.006,0.754]
[−0.045,0.809]
[−0.098,0.863]
[−0.151,0.918]
[−0.203,0.972]
[−0.256,1.028]

Table 8 Concomitant Variation of Bending Moment (kNm) in deck at node 4 w.r.t α and β

β→
α ↓

1.0 0.8 0.6 0.4 0.2 0.0

1.0
0.8
0.6
0.4
0.2
0.0

[−83.2,−83.2]
[−86.1,−80.2]
[−89.2,−77.3]
[−92.2,−74.3]
[−95.3,−71.4]
[−98.4,−68.5]

[−85.7,−80.5]
[−88.7,−77.6]
[−91.8,−74.6]
[−94.8,−71.7]
[−97.9,−68.9]
[−101.1,−66.0]

[−88.3,−77.9]
[−91.4,−75.0]
[−94.4,−72.1]
[−97.5,−69.2]
[−100.6,−66.3]
[−103.8,−63.5]

[−90.9,−75.3]
[−94.0,−72.4]
[−97.1,−69.5]
[−100.2,−66.7]
[−103.4,−63.8]
[−106.5,−61.0]

[−93.5,−72.7]
[−96.6,−69.8]
[−99.7,−67.0]
[−102.9,−64.1]
[−106.1,−61.3]
[−109.3,−58.4]

[−96.2,−70.1]
[−99.3,−67.2]
[−102.4,−64.4]
[−105.6,−61.6]
[−108.8,−58.7]
[−112.0,−55.9]

9 represents the variation of axial force in deck at node 12. Table 10 shows the concomitant variation

of shear force in deck at node 3. Table 11 represents the variation of axial force in cable 3. In all the

above tables, the variation of interval-width of structural response is found to be less with variation of

material uncertainty in comparison with to live load uncertainty. This is because of the larger

uncertainty associated with load (±10%) compared to the uncertainty of Young’s modulus (±5%).
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Table 9 Concomitant Variation of Axial Force in deck in element 12 (kN) w.r.t α and β

β→
α ↓

1.0 0.8 0.6 0.4 0.2 0.0

1.0
0.8
0.6
0.4
0.2
0.0

[−128.1,−128.1]
[−132.1,−124.2]
[−136.2,−120.4]
[−140.5,−116.7]
[−144.8,−113.0]
[−149.3,−109.5]

[−130.7,−125.5]
[−134.7,−121.7]
[−138.9,−118.0]
[−143.3,−114.3]
[−147.7,−110.8]
[−152.3,−107.3] 

[−133.2,−123.0]
[−137.4,−119.2]
[−141.7,−115.6]
[−146.1,−112.0]
[−150.6,−108.5]
[−155.3,−105.1]

[−135.8,−120.4]
[−140.0,−116.7]
[−144.4,−113.1]
[−148.9,−109.7]
[−153.5,−106.3]
[−158.3,−102.9]

[−138.3,−117.8]
[−142.7,−114.2]
[−147.1,−110.7]
[−151.7,−107.3]
[−156.4,−104.0]
[−161.3,−100.7]

[−140.9,−115.3]
[−145.3,−111.8]
[−149.9,-108.3]
[−154.5,−105.0]
[−159.3,−101.7]
[−164.2,−98.5]

Table 10 Concomitant Variation of Shear Force in deck at node 3 (kN) w.r.t α and β

β→
α ↓

1.0 0.8 0.6 0.4 0.2 0.0

1.0
0.8
0.6
0.4
0.2
0.0

[31.64, 31.64]
[31.02, 32.26]
[30.41, 32.89]
[29.81, 33.54]
[29.21, 34.19]
[28.62, 34.86]

[30.86,32.41]
[30.25,33.04]
[29.65,33.68]
[29.06,34.34]
[28.47,35.00]
[27.89,35.68]

[30.09,33.17]
[29.49,33.82]
[28.90,34.47]
[28.31,35.13]
[27.73,35.81]
[27.15,36.49]

[29.32,33.94]
[28.73,34.60]
[28.14,35.26]
[27.56,35.93]
[26.99,36.61]
[26.42,37.31]

[28.55,34.71]
[27.96,35.37]
[27.39,36.05]
[26.81,36.73]
[26.25,37.42]
[25.69,38.12]

[27.78,35.49]
[27.20,36.15]
[26.63,36.83]
[26.07,37.52]
[25.51,38.23]
[24.9638.94]

Table 11 Concomitant Variation of Axial Force (kN) in cable 3 w.r.t α and β

β→
α ↓

1.0 0.8 0.6 0.4 0.2 0.0

1.0
0.8
0.6
0.4
0.2
0.0

[129.62,129.62]
[124.80,134.53]
[120.06,139.54]
[115.41,144.65]
[110.83,149.88]
[106.32,155.22]

[126.48,132.75]
[121.72,137.73]
[117.05,142.81]
[112.45,148.00]
[107.93,153.30]
[103.47,158.71] 

[123.34,135.89]
[118.65,140.94]
[114.03,146.09]
[109.50,151.35]
[105.03,156.72]
[100.63,162.21]

[120.20,139.03]
[115.57,144.15]
[111.02,149.36]
[106.55,154.69]
[102.14,160.14]
[97.79,165.72]

[117.06,142.17]
[112.50,147.35]
[108.01,152.64]
[103.59,158.04]
[99.24,163.56]
[94.95,169.22]

[113.92,145.31]
[109.42,150.56]
[105.00,155.91]
[100.64,161.39]
[96.34,166.99]
[92.11,172.72]

Fig. 6 Membership Function for horizontal displacement at node 2 at beta = 1.0
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Fig. 7 Membership function for vertical displacement at node 3 at beta = 0.8

Fig. 8 Membership function for Axial force in element 12 at alpha = 0.8

Fig. 9 Membership function for Bending moment at node 4 at beta = 0.8
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Fig. 6 represents the membership function for horizontal displacement at node 2 at β = 1.0. Fig. 7

represents the membership function for vertical displacement at node 3 at β = 0.8. Fig. 8 represents

the membership function for axial force in deck in element 12 at α = 0.8. Fig. 9 represents the

membership function for bending moment in deck at node 4 at β = 0.8. Fig. 10 represents the

membership function for shear force in deck at node 3 at β = 0.8. Fig. 11 represents the membership

function for axial force (kN) in cable 3 at β = 1.0. It is observed in all the cases that the membership

functions are triangular in the presence of a single uncertainty and are trapezoidal in the presence of

multiple uncertainties.

8. Sensitivity analysis

Sensitivity analysis aims at analyzing the relative variation of structural response to a given

variation of structural parameters. Percentage variation about the mean value is computed after

normalisation of the intervals. An interval [a, b] can be normalised by dividing its lower and upper

bounds a and b by the mid-point µ = 0.5 * (a + b). Thus a Young’s modulus [199,201] GPa can be

normalised as [0.995,1.005], the variation about the mean being ±0.5%. In general, a normalised

Fig. 10 Membership function for Shear Force at node 3 at beta = 0.8

Fig. 11 Membership function for Axial Force (kN) in Cable 3 at beta = 1.0
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interval [1−ε1, 1 + ε2] indicates that lower bound and upper bound variations of the given interval

about its nominal (mean) value are ε1 and ε2 respectively. 

Fig. 12 depicts the relative sensitivity of horizontal and vertical displacements and rotation of the

deck under the action of live load at β = 1.0 with respect to percentage variation of Young’s

modulus about its mean value. The slopes of these plots are 3.05, 5.69 and 6.22 respectively.

Similarly, Fig. 13 depicts the relative sensitivity of these displacements at α = 1.0 with respect to

percentage variation of live load about its mean value. The slopes of these plots are 2.232, 4.377

and 4.422 respectively. It is observed from Fig. 12 and Fig. 13 that the greatest sensitivity (steeper

slope) to the variation of the Young’s modulus (from the mean) is exhibited by vertical

displacement while the lowest sensitivity is exhibited by horizontal displacement. Further, it is

observed that the displacements are more sensitive to the variation of Young’s modulus in

comparison to the variation of the load. A study of sensitivity of displacements other nodes also

yielded similar results.

Fig. 12 Sensitivity of displacements at node 3 at beta = 1.0

Fig. 13 Sensitivity of displacements at alpha = 1.0
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9. Conclusions

In this paper, the interval-based approach proposed by Muhanna and Mullen has been modified to

take into account the multiple uncertainties in Young’s modulus and live load concomitantly. A

sharp enclosure to the solution vector is obtained by uncoupling of load vector by keeping the load

contributions separate throughout the solution process. A new approximation to the vector of

internal forces is found to yield a sharp solution. The proposed method is illustrated by applying it

to the problem of a cable-stayed bridge. Structural response is tabulated and is found to vary for

various combinations of load and material uncertainties. Membership functions are found to be

triangular in the presence of a single uncertainty and trapezoidal in the presence of multiple

uncertainties. The effectiveness of the new methodology to evaluate the structural response of a

cable-stayed bridge in the presence of multiple uncertainties is demonstrated. Sensitivity analysis is

found to be a useful tool to evaluate the relative sensitivity of structural response in the presence of

multiple uncertainties.
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